JPH09176826A - Continuous production of high silicon steel sheet excellent in surface property and good in workability - Google Patents

Continuous production of high silicon steel sheet excellent in surface property and good in workability

Info

Publication number
JPH09176826A
JPH09176826A JP35158595A JP35158595A JPH09176826A JP H09176826 A JPH09176826 A JP H09176826A JP 35158595 A JP35158595 A JP 35158595A JP 35158595 A JP35158595 A JP 35158595A JP H09176826 A JPH09176826 A JP H09176826A
Authority
JP
Japan
Prior art keywords
steel sheet
treatment
siliconizing
zone
carburizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35158595A
Other languages
Japanese (ja)
Inventor
Kazuhisa Okada
和久 岡田
Tatsuhiko Hiratani
多津彦 平谷
Katsuji Kasai
勝司 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP35158595A priority Critical patent/JPH09176826A/en
Publication of JPH09176826A publication Critical patent/JPH09176826A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the generation of pickup caused by the formation of silica by suppressing the formation of silica in a siliconizing zone. SOLUTION: A steel sheet contg. <4wt.% Si is subjected to siliconizing treatment in a nonoxidizing gaseous atmosphere in a siliconizing zone and is next subjected to diffusion soaking treatment of diffusing Si over the inside part of the steel sheet in a diffusion soaking zone to continuously produce a high silicon steel sheet. Then, the steel sheet before being applied with the siliconizing treatment is subjected to decarburizing treatment to increase the content of carbon in the steel sheet, and after that, the siliconizing treatment and subsequent diffusion soaking treatment are executed, and in the carburizing treatment and diffusion soaking treatment, by the oxygen content in the atmosphere in the furnace, decarburizing reaction is allowed to occur in the steel sheet. By this decarburizing reaction, the oxygen content in the furnace is consumed, by which, while the formation of silica is prevented, the high silicon steel sheet having <=60ppm car on content can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、連続浸珪処理法に
よる高珪素鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high silicon steel sheet by a continuous siliconizing method.

【0002】[0002]

【従来の技術】Si含有量が4wt%以上の高珪素鋼板
を工業的に製造する方法として、特開昭62−2270
78号公報等に示される浸珪処理法が知られている。こ
の製造方法は、Si:4wt%未満の薄鋼板をSiCl
4と高温で反応させることによりSiを浸透させ、浸透
したSiを板厚方向に拡散させることにより高珪素鋼板
を得る方法であり、例えば、特開昭62−227078
号公報や特開昭62−26324号公報等では、鋼板を
SiCl4が5〜35wt%含まれる無酸化性ガス雰囲
気中において1023℃〜1200℃の温度で連続的に
浸珪処理し、コイル状の高珪素鋼板を得ている。
2. Description of the Related Art As a method for industrially producing a high silicon steel sheet having a Si content of 4 wt% or more, JP-A-62-1270.
A siliconizing method shown in Japanese Patent No. 78 is known. In this manufacturing method, a thin steel sheet containing Si: less than 4 wt% is SiCl
4 is a method of infiltrating Si by reacting with 4 at a high temperature and diffusing the infiltrated Si in the plate thickness direction to obtain a high silicon steel sheet, for example, JP-A-62-227078.
In Japanese Patent Laid-Open No. 62-26324, etc., a steel sheet is subjected to continuous siliconizing treatment at a temperature of 1023 ° C. to 1200 ° C. in a non-oxidizing gas atmosphere containing 5 to 35 wt% of SiCl 4 to form a coil. Of high silicon steel sheet.

【0003】一般に、鋼板の浸珪処理ではSi供給用の
原料ガスとしてSiCl4が使用され、このSiCl4
下記の反応式により鋼板と反応してSiが鋼板表層に浸
透する。 SiCl4+5Fe→Fe3Si+2FeCl2 このようにして鋼板表層に浸透したSiは、SiCl4
を含まない無酸化性ガス雰囲気中で鋼板を均熱処理する
ことにより板厚方向に拡散される。
Generally, in the siliconizing treatment of a steel sheet, SiCl 4 is used as a raw material gas for supplying Si, and this SiCl 4 reacts with the steel sheet according to the following reaction formula so that Si penetrates into the surface layer of the steel sheet. SiCl 4 + 5Fe → Fe 3 Si + 2FeCl 2 Si thus permeated into the surface layer of the steel sheet is SiCl 4
It is diffused in the plate thickness direction by soaking the steel plate in a non-oxidizing gas atmosphere containing no oxygen.

【0004】このようなプロセスにより鋼板を連続的に
浸珪処理するために、図3に示されるような連続浸珪処
理ラインが用いられている。この連続浸珪処理ラインは
入側から加熱帯、浸珪処理帯、拡散均熱処理帯および冷
却帯を備え、鋼板を加熱帯において処理温度まで連続的
に加熱した後、浸珪処理帯でSiCl4と反応させるこ
とによりSiを浸透させ、次いで、拡散均熱処理帯にお
いてSiを板厚方向に拡散させるための熱処理を連続的
に施した後、冷却帯で冷却することでコイル状の高珪素
鋼板が製造される。
In order to continuously perform the siliconizing treatment on the steel sheet by such a process, a continuous siliconizing treatment line as shown in FIG. 3 is used. This continuous siliconizing line is equipped with a heating zone, a siliconizing zone, a diffusion soaking zone and a cooling zone from the inlet side. After continuously heating the steel sheet to the processing temperature in the heating zone, the SiCl 4 zone is used in the siliconizing zone. Si is infiltrated by reacting with, and then a heat treatment for diffusing Si in the plate thickness direction is continuously performed in the diffusion soaking zone, and the coil-shaped high silicon steel sheet is obtained by cooling in the cooling zone. Manufactured.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記のよう
な連続浸珪処理ラインで高珪素鋼板を製造する場合、製
造中の鋼板に押し疵が生じ、製品鋼板の品質が損われる
という問題がある。本発明者らはこのような問題を生じ
る原因について検討を重ね、その結果、浸珪処理帯にお
いてSiCl4が雰囲気中の微量酸素や水分と反応する
ことによって鋼板表面で発生するシリカが、鋼板に押し
疵を生じさせる元凶であることを突き止めた。
By the way, when a high silicon steel sheet is produced by the above continuous siliconizing line, there is a problem that the steel sheet being produced is flawed and the quality of the product steel sheet is deteriorated. . The present inventors have repeatedly studied the cause of such a problem, and as a result, silica generated in the surface of the steel sheet by the reaction of SiCl 4 with a trace amount of oxygen and moisture in the atmosphere in the siliconized zone is We have found out that it is the source of the flaw.

【0006】すなわち、Siを浸透させるための浸珪処
理帯には反応ガスであるSiCl4が大量に供給される
が、このSiCl4は非常に活性なガスであるため、鋼
板と直接反応する以外に、炉内雰囲気中の微量酸素や水
分と下式に示すように反応してシリカ(SiO2)を生
成する。 SiCl4+O2→SiO2+2Cl2 SiCl4+2H2O→SiO2+4HCl
That is, a large amount of reaction gas SiCl 4 is supplied to the siliconizing zone for infiltrating Si, but since this SiCl 4 is a very active gas, it reacts directly with the steel sheet. First, silica (SiO 2 ) is produced by reacting with a slight amount of oxygen and water in the atmosphere in the furnace as shown in the following formula. SiCl 4 + O 2 → SiO 2 + 2Cl 2 SiCl 4 + 2H 2 O → SiO 2 + 4HCl

【0007】このようなシリカが鋼板表面で発生して鋼
板面に付着すると、炉内に設置されている鋼板搬送用の
ハースロールの表面にシリカが転写されて堆積すること
によりハースロール表面に凹凸が生じ、この凹凸が高温
に加熱されている鋼板に押し疵を生じさせていること
(この現象をピックアップという)が判った。したがっ
て、このようなシリカの生成を抑制する方策としては、
浸珪処理帯内の雰囲気中の酸素濃度及び露点を極力低減
させるような雰囲気制御を行うことが考えられる。しか
しながら、連続炉において炉内の酸素濃度や露点を極限
まで下げることは技術的に極めて困難であり、また露点
や酸素濃度をある程度のレベルまで下げることですら非
常に長時間を要する。
When such silica is generated on the surface of the steel sheet and adheres to the surface of the steel sheet, the silica is transferred and deposited on the surface of the hearth roll for conveying the steel sheet installed in the furnace, so that the surface of the hearth roll becomes uneven. It was found that the unevenness caused dents on the steel sheet heated to a high temperature (this phenomenon is called pickup). Therefore, as a measure to suppress the formation of such silica,
It is conceivable to control the atmosphere so as to reduce the oxygen concentration and the dew point in the atmosphere in the siliconizing zone. However, it is technically extremely difficult to lower the oxygen concentration and dew point in the furnace in a continuous furnace, and it takes a very long time to lower the dew point and oxygen concentration to a certain level.

【0008】特に、連続浸珪処理ラインの浸珪処理帯内
は上述した浸珪反応が生じる特殊な環境であるため、一
般の連続焼鈍ライン等に較べて炉内雰囲気制御は遥かに
困難である。また最近では、炉内耐火物として断熱性に
優れたファイバー系の耐火物の使用比率が高まってお
り、このファイバー系耐火物は気孔率が高い故にH2
を吸収し易く、また、炉の建設直後や炉修理或いは点検
時に炉を大気開放した際には、その内部に大量の空気や
水分を吸収してしまう。したがって、このような耐火物
内に吸収された水分や空気は操業中に徐々に炉内雰囲気
中に浸出するため、浸珪処理帯内の雰囲気制御は困難を
極める。したがって、炉内雰囲気を制御することは実際
には容易ではなく、仮に炉の操業初期においてそのよう
な低露点、低酸素濃度を実現できたとしても、一定期間
操業を続けると露点や酸素濃度が上昇し、ピックアップ
が発生してしまう。
Particularly, since the inside of the siliconizing zone of the continuous siliconizing line is a special environment in which the above-mentioned siliconizing reaction occurs, it is much more difficult to control the atmosphere in the furnace as compared with a general continuous annealing line. . In addition, recently, the use ratio of fiber-based refractory materials having excellent heat insulation properties as furnace refractory materials has been increasing, and since this fiber-based refractory material has a high porosity, H 2 O
Is easily absorbed, and when the furnace is opened to the atmosphere immediately after the construction of the furnace or at the time of repairing or inspecting the furnace, a large amount of air or moisture is absorbed therein. Therefore, the moisture and air absorbed in such refractory material gradually leach into the atmosphere in the furnace during the operation, which makes it extremely difficult to control the atmosphere in the siliconizing zone. Therefore, it is not easy to control the atmosphere in the furnace in practice, and even if such a low dew point and low oxygen concentration could be achieved at the beginning of the operation of the furnace, the dew point and the oxygen concentration would be reduced if the operation was continued for a certain period of time. It rises and picks up.

【0009】したがって本発明の目的は、浸珪処理帯の
炉内雰囲気の露点や酸素濃度の厳しい管理、制御を行う
ことなく、浸珪処理帯内でのシリカの生成を抑制してシ
リカの生成に起因したピックアップの発生を適切に防止
し、表面性状に優れた高珪素鋼板を安定して製造するこ
とができる方法を提供することにある。
Therefore, an object of the present invention is to suppress the generation of silica in the siliconized zone without strict control and control of the dew point and oxygen concentration of the furnace atmosphere of the siliconized zone and to form the silica. It is an object of the present invention to provide a method capable of appropriately preventing the occurrence of pickup due to the above and stably manufacturing a high-silicon steel sheet having excellent surface properties.

【0010】[0010]

【課題を解決するための手段】このような課題を解決す
るため、本発明は以下のような特徴を有する。 [1] Si:4wt%未満を含有する鋼板を、浸珪処理
帯においてSiCl4を含む無酸化性ガス雰囲気中で浸
珪処理し、次いで拡散均熱処理帯においてSiCl4
含まない無酸化性ガス雰囲気中でSiを鋼板内部に拡散
させる拡散均熱処理を施すことにより、高珪素鋼板を連
続的に製造する方法において、浸珪処理を施す前の鋼板
に浸炭処理を施すことにより鋼板中の炭素含有量を増加
せしめた後、前記浸珪処理及びこれに続く拡散均熱処理
を行い、該浸珪処理及び拡散均熱処理において炉内雰囲
気中の酸素分によって鋼板の脱炭反応を生じさせること
により、拡散均熱処理後の炭素含有量が60ppm以下
の高珪素鋼板を得ることを特徴とする表面性状が優れ且
つ加工性が良好な高珪素鋼板の連続製造方法。
In order to solve such problems, the present invention has the following features. [1] Si: A steel sheet containing less than 4 wt% is subjected to a siliconizing treatment in a non-oxidizing gas atmosphere containing SiCl 4 in the siliconizing treatment zone, and then an nonoxidizing gas containing no SiCl 4 in the diffusion soaking zone. In a method for continuously producing a high-silicon steel sheet by performing a diffusion soaking treatment for diffusing Si into the steel sheet in an atmosphere, a carbon content in the steel sheet is obtained by carburizing the steel sheet before the siliconizing treatment. After increasing the amount, the siliconizing treatment and the subsequent diffusion soaking treatment are performed, and the decarburization reaction of the steel sheet is caused by the oxygen content in the furnace atmosphere in the siliconizing treatment and the diffusion soaking treatment, whereby the diffusion A continuous production method of a high silicon steel sheet having excellent surface properties and good workability, characterized by obtaining a high silicon steel sheet having a carbon content of 60 ppm or less after soaking.

【0011】[2] 上記[1]の製造方法において、浸炭処
理を浸珪処理帯直前に設けられた加熱帯においてガス浸
炭または固体浸炭により行うことを特徴とする表面性状
が優れ且つ加工性が良好な高珪素鋼板の連続製造方法。
[2] In the manufacturing method of the above-mentioned [1], the carburizing treatment is carried out by gas carburizing or solid carburizing in a heating zone provided immediately before the siliconizing zone. A good continuous production method of a high silicon steel sheet.

【0012】[0012]

【発明の実施の形態】先に述べたように、鋼板の押し疵
発生の原因となるシリカが浸珪処理帯内で発生する反応
は、基本的には雰囲気中の酸素や水分が鋼板表面上でS
iCl4と反応し鋼板表面上にシリカを発生させる反応
である。したがって、鋼板表面上において雰囲気中の酸
素や水分(酸素源)を消費する還元剤、それもSiCl
4に較べて高い還元能力を有する還元剤が存在すれば、
雰囲気中の酸素源はその還元剤との反応で消費され、S
iCl4と反応することはなくなる。しかし一方におい
て、上記還元剤は鋼板自体の特性や浸珪処理に影響を与
えるものであってはならない。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, the reaction in which silica, which causes the occurrence of flaws in the steel sheet, occurs in the siliconizing zone is basically the oxygen and moisture in the atmosphere on the surface of the steel sheet. And S
It is a reaction that reacts with iCl 4 to generate silica on the surface of the steel sheet. Therefore, a reducing agent that consumes oxygen and moisture (oxygen source) in the atmosphere on the surface of the steel sheet, which is also SiCl
If there is a reducing agent that has a higher reducing ability compared to 4 ,
The oxygen source in the atmosphere is consumed by the reaction with the reducing agent, and S
It no longer reacts with iCl 4 . On the other hand, however, the reducing agent should not affect the properties of the steel sheet itself or the siliconizing treatment.

【0013】本発明では、上記の作用を得るのに好適な
還元剤として鋼板に含まれる炭素に着目した。すなわ
ち、炭素は浸珪処理帯のような高温雰囲気下では極めて
高い還元能力を示し、鋼板中に含まれる炭素は鋼板表面
上に存在する雰囲気中の水分や酸素と反応してCO(ガ
ス)を生成する。つまり、鋼板の脱炭反応により鋼帯表
面上の酸素及び水分が消費される。この結果、SiCl
4は鋼板表面上において反応すべき酸素源を失い、シリ
カの生成が防止されることになる。また、上記反応を得
るために予め鋼板中に炭素を多めに含有させておいて
も、この炭素は浸珪処理帯での上記の脱炭反応、さらに
は続く拡散均熱処理帯での脱炭反応(浸珪処理帯と同
様、鋼帯表面上における雰囲気中の酸素及び水分と鋼帯
中の炭素との反応)によりCOとして鋼板中から離脱す
るため、浸珪処理前の鋼板の炭素含有量を上記脱炭量に
応じた適正な範囲にコントロールしておけば、炭素が鋼
板中に過剰に残留し、製造された高珪素鋼板の磁気特性
等に悪影響を与えることはない。したがって、浸珪処理
前の鋼板中に炭素を適量添加しておくことにより、製品
鋼帯(高珪素鋼帯)の磁気特性等に悪影響を与えること
なく、浸珪処理時における鋼帯面上でのシリカの発生を
適切に防止することができる。
In the present invention, attention is paid to carbon contained in the steel sheet as a reducing agent suitable for obtaining the above-mentioned action. That is, carbon exhibits an extremely high reducing ability in a high temperature atmosphere such as a siliconized zone, and carbon contained in a steel sheet reacts with moisture and oxygen in the atmosphere present on the surface of the steel sheet to form CO (gas). To generate. That is, the decarburization reaction of the steel sheet consumes oxygen and water on the surface of the steel strip. As a result, SiCl
No. 4 loses the oxygen source to react on the surface of the steel sheet and prevents the formation of silica. Further, even if a large amount of carbon is contained in the steel sheet in advance in order to obtain the above reaction, this carbon does not react with the above decarburization reaction in the siliconizing zone, and further the decarburization reaction in the subsequent diffusion soaking zone. (Since it reacts with oxygen in the atmosphere on the surface of the steel strip and the reaction of carbon in the steel strip with carbon in the steel strip as in the case of the siliconizing treatment zone), CO is released from the steel sheet. If the control is carried out within an appropriate range according to the decarburization amount, carbon will not remain excessively in the steel sheet and will not adversely affect the magnetic properties and the like of the produced high silicon steel sheet. Therefore, by adding an appropriate amount of carbon to the steel sheet before the siliconizing treatment, it does not adversely affect the magnetic properties of the product steel strip (high silicon steel strip) and the like on the steel strip surface during the siliconizing treatment. It is possible to appropriately prevent the generation of silica.

【0014】ところで、浸珪処理前の鋼板に予め炭素を
多めに添加しておくための方法として、製鋼段階で鋼中
の炭素量を多めに調整しておくことが考えられる。しか
し、製鋼段階で鋼中に多量の炭素を含有させた場合、圧
延時に鋼板が破断したり或いはコイル溶接時に割れや溶
接不良を生じ易い等、圧延性や溶接性が著しく悪化する
という問題があり、また、それ以前の問題として製鋼段
階では炭素含有量を本発明法で要求されるような限定さ
れた範囲にコントロールすること自体が難かしい。すな
わち、母材鋼板中の炭素含有量が多過ぎると浸珪処理−
拡散均熱処理後の残留炭素量が過剰となるため製造され
た高珪素鋼板の鉄損特性等が著しく劣化し、一方、母材
鋼板中の炭素含有量が少な過ぎると上記したような反応
が効果的に生じないため鋼帯面上でのシリカの発生を適
切に抑制できず、このため母材鋼板の炭素含有量は特定
範囲に高精度にコントロールされる必要があるが、製鋼
段階ではこのような炭素量の高精度のコントロールは難
しい。加えて、浸珪処理前の鋼板中の適正炭素含有量は
浸珪処理帯や拡散均熱処理帯での反応量、換言すればそ
れら帯域の雰囲気中の酸素濃度や露点により変化するた
め、常に一定な訳ではなく、製鋼段階で炭素量を調整す
る方法ではこのような適正炭素含有量の変化に対応する
ことは事実不可能である。
By the way, as a method for adding a large amount of carbon to the steel sheet before the siliconizing treatment, it is conceivable to adjust a large amount of carbon in the steel at the steel making stage. However, when a large amount of carbon is contained in the steel in the steelmaking stage, there is a problem that the rolling property and the weldability are significantly deteriorated such that the steel plate is broken during rolling or cracks or welding defects are likely to occur during coil welding. Further, as a problem before that, it is difficult to control the carbon content within the limited range required by the method of the present invention in the steelmaking stage. That is, if the carbon content in the base steel sheet is too high, the siliconizing treatment-
Since the residual carbon amount after the diffusion soaking is excessive, the iron loss characteristics and the like of the produced high-silicon steel sheet are significantly deteriorated, while if the carbon content in the base steel sheet is too small, the above reaction is effective. It is not possible to appropriately suppress the generation of silica on the steel strip surface because it does not occur, and therefore the carbon content of the base steel sheet must be controlled to a specific range with high accuracy. It is difficult to precisely control the amount of carbon. In addition, the appropriate carbon content in the steel sheet before the siliconizing treatment is always constant because it changes depending on the reaction amount in the siliconizing treatment zone and the diffusion soaking zone, in other words, the oxygen concentration and dew point in the atmosphere of those zones. This is not the case, and it is virtually impossible to deal with such changes in the proper carbon content by the method of adjusting the carbon content in the steelmaking stage.

【0015】そこで、本発明者らは母材鋼板の圧延性や
溶接性を損うことなく、しかも炉内雰囲気中の酸素濃度
や露点に応じて母材鋼板中の炭素含有量を所望の範囲に
適宜コントロールし得る方法について検討を加え、その
結果、浸珪処理前の加熱段階において鋼板に連続的な浸
炭処理を施す方法が最も適当であるとの結論を得た。す
なわち、このような方法で母材鋼板に炭素を添加すれ
ば、鋼板の圧延性や溶接性は全く問題とならず、しかも
浸珪処理帯等の炉内雰囲気や被処理鋼板の板厚、鋼板の
在炉時間等に拘りなく炭素添加量を容易にコントロール
することができ、また添加量の変更も随時行うことがで
きる。したがって、このように炭素添加量が適切にコン
トロールされた鋼板を浸珪処理すれば、上記脱炭反応に
より鋼板面上でのシリカの発生が適切に防止され、しか
も得られる高珪素鋼板に過剰な炭素が残留することもな
い。
Therefore, the present inventors set the carbon content in the base steel sheet within a desired range according to the oxygen concentration in the furnace atmosphere and the dew point without impairing the rolling property and weldability of the base steel sheet. As a result, it was concluded that the method of continuously carburizing the steel sheet in the heating stage before the siliconizing treatment is the most suitable. That is, if carbon is added to the base steel sheet by such a method, the rollability and weldability of the steel sheet are not a problem at all, and the atmosphere in the furnace such as the siliconized zone and the thickness of the steel sheet to be treated, the steel sheet The amount of carbon added can be easily controlled regardless of the in-furnace time, and the amount of carbon added can be changed at any time. Therefore, if the steel sheet having the carbon content appropriately controlled in this manner is subjected to the siliconizing treatment, the generation of silica on the steel sheet surface is appropriately prevented by the decarburization reaction, and moreover the obtained high silicon steel sheet has an excessive amount. No carbon remains.

【0016】上記の浸炭処理は母材鋼板を浸珪処理する
直前の加熱段階で行われ、通常の連続浸珪処理ライン
(図3参照)では浸珪処理帯の直前に加熱帯が存在する
ため、通常はこの加熱帯内で浸炭処理が行われる。以
下、この加熱帯で浸炭処理を行う場合を例に説明する。
加熱帯における浸炭処理の方法は任意であるが、通常は
ガス浸炭法若しくは固体浸炭法により処理が行われる。
このうちガス浸炭法は、加熱帯内を浸炭性のガス雰囲気
とすることにより或いは加熱帯内で浸炭ガスを吹む雰囲
ガスを鋼板面に吹き付けること等により実施される。通
常、浸炭ガスとしてはCOやCH3等が使用でき、これ
らの浸炭ガスを含む雰囲気ガス(例えば、CO−N2
囲気ガス、CH3−N2雰囲気ガス)を用いる。また、浸
炭量は雰囲気ガス中の浸炭ガス濃度および/または炉内
の露点等を制御することにより任意に調整できる。
The above-mentioned carburizing treatment is carried out in the heating stage immediately before the base material steel plate is subjected to the siliconizing treatment, and in the usual continuous siliconizing treatment line (see FIG. 3), the heating zone exists immediately before the siliconizing treatment zone. Usually, carburization is performed in this heating zone. Hereinafter, the case where the carburizing process is performed in this heating zone will be described as an example.
Although the method of carburizing treatment in the heating zone is arbitrary, it is usually carried out by a gas carburizing method or a solid carburizing method.
Among them, the gas carburizing method is carried out by setting a carburizing gas atmosphere in the heating zone or by blowing an atmosphere gas for blowing the carburizing gas in the heating zone onto the steel plate surface. Usually, CO, CH 3 or the like can be used as the carburizing gas, and an atmosphere gas containing these carburizing gases (for example, CO—N 2 atmosphere gas, CH 3 —N 2 atmosphere gas) is used. The carburizing amount can be arbitrarily adjusted by controlling the carburizing gas concentration in the atmosphere gas and / or the dew point in the furnace.

【0017】なお、浸炭ガスとしてCH3等の水素を含
んだガスを使用する場合は浸炭反応によりH2が発生す
るため、このH2を含む加熱帯の雰囲気ガスが浸珪処理
帯内に侵入しないような工夫が必要である。この理由
は、H2が浸珪処理帯に浸入するとSiCl4と反応して
塩酸を生じ、この塩酸が鋼板をエッチングしたり、或い
は金属Siを析出させて鋼板表面の性状を劣化させるか
らである。したがって、浸炭ガスとしてはこのような配
慮が不要であるCOの方がより好ましい。
When a gas containing hydrogen such as CH 3 is used as the carburizing gas, H 2 is generated by the carburizing reaction. Therefore, the atmosphere gas in the heating zone containing H 2 enters the siliconizing zone. It is necessary to devise something that does not happen. The reason for this is that, when H 2 enters the siliconized zone, it reacts with SiCl 4 to generate hydrochloric acid, which etches the steel sheet or precipitates metal Si and deteriorates the properties of the steel sheet surface. . Therefore, CO is more preferable as the carburizing gas because such consideration is unnecessary.

【0018】また、固体浸炭法は、例えば鋼板が加熱帯
に入る前に鋼板表面に炭素粒子若しくは炭素含有粒子を
塗布することにより実施でき、また浸炭量は炭素粒子等
の塗布量を制御することにより調整できる。具体的な塗
布方法は、前記炭素粒子等をそのまま鋼板表面に摺り付
けて塗布してもよいし、炭素粒子等を適当な溶媒(例え
ば揮発性の有機溶剤)中に分散させ、これを鋼板面に塗
布装置等で塗布するようにしてもよい。また、後者の場
合には塗膜を乾燥させて炭素皮膜(または炭素含有皮
膜)を形成させた後に加熱帯に導入してもよい。このよ
うな固体浸炭法では浸炭量が塗布量によって直接制御で
きるため、浸炭量の制御が容易であるという利点があ
る。
The solid carburizing method can be carried out, for example, by applying carbon particles or carbon-containing particles to the surface of the steel sheet before the steel sheet enters the heating zone, and the amount of carburizing can be controlled by controlling the application amount of carbon particles or the like. Can be adjusted by. As a specific coating method, the carbon particles or the like may be directly applied to the surface of the steel plate by coating, or the carbon particles or the like may be dispersed in an appropriate solvent (for example, a volatile organic solvent), and then the steel plate surface Alternatively, it may be applied by a coating device or the like. In the latter case, the coating film may be dried to form a carbon film (or a carbon-containing film) and then introduced into the heating zone. In such a solid carburizing method, the carburizing amount can be directly controlled by the coating amount, and thus there is an advantage that the carburizing amount can be easily controlled.

【0019】バッチ式試験炉を用い、炭素含有量が20
ppmの3%Si鋼板を気体浸炭法により浸炭処理した
後、浸珪処理を施して板厚方向の平均Si含有量が6.
5%の高珪素鋼板を製造し、その際の浸炭処理後の鋼板
の炭素含有量と浸珪処理による鋼板面上でのシリカ発生
量との関係を調べた。その結果を図1に示す。この試験
では、CO−N2雰囲気中において鋼板を2分間で12
00℃まで昇温させた後、1分間保持することにより浸
炭処理を実施し、冷却後、鋼板の炭素含有量を測定し
た。この浸炭処理では雰囲気中のCO濃度を0.01〜
0.6%の範囲で変えることにより浸炭量を調整した。
次いで、浸炭処理された鋼板を再加熱した後、浸珪処理
ガス雰囲気(SiCl4濃度:20vol%,残部:
2)中において露点を−30℃に保ったままで120
0℃、3分の浸珪処理を行い、処理後の鋼板面に付着し
たシリカの量を測定した。図1によれば、浸珪処理前に
浸炭処理を施し炭素含有量を増加させた鋼板を浸珪処理
すると、浸炭処理を施さずに浸珪処理した鋼板に較べて
シリカの発生量が大幅に減少しており、上述した鋼板の
脱炭反応が生じる結果として浸珪処理時のシリカの発生
反応が抑止されていることが判る。
Using a batch type test furnace, the carbon content is 20
After carburizing a 3 ppm Si steel sheet of ppm by a gas carburizing method, a carburizing treatment is performed so that the average Si content in the plate thickness direction is 6.
A 5% high silicon steel sheet was manufactured, and the relationship between the carbon content of the steel sheet after the carburizing treatment and the amount of silica generated on the steel sheet surface by the siliconizing treatment was investigated. The result is shown in FIG. In this test, at 2 minutes steel in CO-N 2 atmosphere 12
After raising the temperature to 00 ° C., it was held for 1 minute to carry out a carburizing treatment, and after cooling, the carbon content of the steel sheet was measured. In this carburizing process, the CO concentration in the atmosphere is 0.01-
The amount of carburization was adjusted by changing it in the range of 0.6%.
Then, the carburized steel sheet is reheated, and then a siliconizing gas atmosphere (SiCl 4 concentration: 20 vol%, balance:
In N 2 ) while keeping the dew point at -30 ° C.
Silicidation treatment was performed at 0 ° C. for 3 minutes, and the amount of silica adhering to the treated steel plate surface was measured. According to Fig. 1, when the steel sheet subjected to the carburizing treatment to increase the carbon content before the siliconizing treatment has undergone the siliconizing treatment, the amount of generated silica is significantly larger than that of the steel sheet subjected to the siliconizing treatment without the carburizing treatment. It has been decreased, and it can be seen that as a result of the above-described decarburization reaction of the steel sheet, the silica generation reaction during the siliconizing treatment is suppressed.

【0020】浸珪処理帯内において鋼帯面上にシリカを
生じさせないために必要な最低浸炭量は、母材鋼板の元
々の炭素含有量と浸珪処理帯の雰囲気中の酸素濃度及び
露点によって決まってくる。一方、母材鋼板の浸炭量が
過剰になると、シリカ発生の抑止作用は問題なく得られ
るものの、浸珪処理及び拡散均熱処理後の製品鋼板中に
過剰な炭素が残留し、製品鋼板の磁気特性を著しく劣化
させる。図2は高珪素鋼板(6.5%Si鋼板)中の炭
素含有量と鉄損値との関係を示したもので、鉄損値は鋼
板中の炭素量が50ppmを超えると増加し始め、60
ppm以上では急激に増加している。したがって、母材
鋼板への浸炭量は、浸珪処理および均熱拡散処理が終了
した時点で鋼板の炭素含有量が60ppmを超えない量
に抑える必要がある。
The minimum carburizing amount required to prevent silica from forming on the steel strip surface in the siliconizing zone depends on the original carbon content of the base steel sheet and the oxygen concentration and dew point in the atmosphere of the siliconizing zone. It will be decided. On the other hand, if the amount of carburization of the base steel sheet is excessive, the effect of suppressing silica generation can be obtained without any problem, but excess carbon remains in the product steel sheet after the siliconizing treatment and diffusion soaking treatment, and the magnetic properties of the product steel sheet Significantly deteriorates. FIG. 2 shows the relationship between the carbon content and the iron loss value in a high silicon steel sheet (6.5% Si steel sheet). The iron loss value starts to increase when the carbon amount in the steel sheet exceeds 50 ppm, 60
Above ppm, it increases sharply. Therefore, the amount of carburizing the base steel sheet should be suppressed to an amount such that the carbon content of the steel sheet does not exceed 60 ppm at the time when the siliconizing treatment and the soaking diffusion treatment are completed.

【0021】浸珪処理及び拡散均熱処理時の脱炭量は炉
内雰囲気中の露点及び酸素濃度と処理時間(各処理帯で
の在炉時間)で決まるため、これら各処理帯の雰囲気の
露点及び酸素濃度、処理時間(さらには、必要に応じて
被処理鋼板の板厚)等に応じて、加熱帯における浸炭量
を制御することが必要である。このため例えば、上記パ
ラメータ(浸珪処理帯及び拡散均熱処理帯における露点
及び酸素濃度、処理時間等)を加熱帯での浸炭量制御に
フィードバックさせることで、最終製品の炭素含有量を
60ppm以下にコントロールすることが好ましい。先
に述べたように、加熱帯における浸炭量制御は、例えば
ガス浸炭であれば浸炭ガスの濃度をコントロールするこ
とにより行うことができる。
The decarburization amount during the siliconizing treatment and the diffusion soaking treatment is determined by the dew point in the atmosphere in the furnace, the oxygen concentration and the processing time (the time spent in the furnace in each processing zone). It is necessary to control the amount of carburization in the heating zone according to the oxygen concentration, the treatment time (further, the thickness of the steel sheet to be treated, if necessary), and the like. Therefore, for example, by feeding back the above parameters (dew point and oxygen concentration in the siliconizing zone and diffusion soaking zone, treatment time, etc.) to the carburizing amount control in the heating zone, the carbon content of the final product is reduced to 60 ppm or less. It is preferable to control. As described above, the amount of carburization in the heating zone can be controlled by controlling the concentration of carburizing gas in the case of gas carburizing, for example.

【0022】なお、鋼板の炭素含有量が10ppmを下
回ると、雰囲気中の水分や酸素を消費する能力がほとん
どなくなるため、拡散均熱処理が終了した時点で鋼板の
炭素含有量が10ppm未満となっている場合には、炉
内でのシリカの生成や後述する粒界酸化を生じるおそれ
がある。これに対し、処理が終了した時点で鋼板に10
ppm以上の炭素が残留していれば、鋼板は未だ水分や
酸素と反応する余力を維持した状態で炉から出てくるた
め、上述したような問題を生じるおそれは全くない。こ
のため、拡散均熱処理が終了した時点で鋼板の炭素含有
量は10ppm以上であることが好ましい。
When the carbon content of the steel sheet is less than 10 ppm, the ability to consume moisture and oxygen in the atmosphere is almost lost, so that the carbon content of the steel sheet becomes less than 10 ppm at the end of the diffusion soaking treatment. If so, there is a possibility that silica may be generated in the furnace or grain boundary oxidation described later may occur. On the other hand, 10
If carbon content of more than ppm remains, the steel sheet will come out of the furnace in a state where the surplus capacity of reacting with moisture and oxygen is still maintained, and there is no possibility of causing the above-mentioned problems. Therefore, the carbon content of the steel sheet is preferably 10 ppm or more when the diffusion soaking treatment is completed.

【0023】また、浸炭処理によって鋼帯中に炭素を添
加することにより、炉内(浸珪処理帯及び拡散均熱処理
帯)での鋼板表面および粒界酸化が効果的に防止され、
この結果、浸炭処理を経ないで製造された高珪素鋼帯に
較べて加工性も向上することが判った。このような酸化
防止効果は、シリカの発生反応が抑制される効果と同じ
く、鋼板表面上の雰囲気ガス中に存在する酸素や水分が
上記脱炭反応に消費される結果、鋼の酸化反応が抑制さ
れることによるものである。このため、高珪素鋼帯が加
工性に劣る原因の1つである鋼帯の酸化、とりわけ粒界
酸化が適切に抑制され、曲げ加工等に対する加工性が向
上する。
Further, by adding carbon to the steel strip by the carburizing treatment, the steel sheet surface and grain boundary oxidation in the furnace (siliconizing treatment zone and diffusion soaking zone) are effectively prevented,
As a result, it was found that the workability was also improved as compared with the high silicon steel strip produced without carburizing. Similar to the effect of suppressing the generation reaction of silica, such an antioxidant effect suppresses the oxidation reaction of steel as a result of the oxygen and water present in the atmosphere gas on the surface of the steel sheet being consumed in the decarburization reaction. It is due to being done. Therefore, the oxidation of the steel strip, which is one of the causes of the poor workability of the high silicon steel strip, particularly the grain boundary oxidation, is appropriately suppressed, and the workability for bending and the like is improved.

【0024】なお、本発明が対象とする連続浸珪処理法
による高珪素鋼板の製造では、通常、浸珪処理帯にSi
Cl4濃度が約5〜35mol%程度の処理ガスが供給
され、この浸珪処理帯に導入された鋼板は1023〜1
200℃程度の処理温度で浸珪処理され、引き続き拡散
均熱処理帯に導入されて1200〜1230℃程度の処
理程度で均熱処理される。また、製造される高珪素鋼板
の珪素含有量は任意であるが、一般にはSi:5〜10
wt%の高珪素鋼板が製造される。
In the production of a high silicon steel sheet by the continuous siliconizing method, which is the object of the present invention, the siliconizing zone is usually made of Si.
A processing gas having a Cl 4 concentration of about 5 to 35 mol% was supplied, and the steel plates introduced into this siliconized zone were 1023 to 1
It is subjected to a siliconizing treatment at a treatment temperature of about 200 ° C., subsequently introduced into a diffusion soaking zone, and soaked at a treatment degree of about 1200 to 1230 ° C. The silicon content of the high silicon steel sheet produced is arbitrary, but generally Si: 5-10
A wt% high silicon steel sheet is manufactured.

【0025】[0025]

【実施例】【Example】

〔実施例1〕図3に示す連続浸珪処理ラインにおいて、
炭素含有量20ppm、板厚0.3mmの3%Si鋼板
を連続浸珪処理し、6.5%Si鋼板を製造した。この
際、本発明例では加熱帯でガス浸炭を実施し、一方、比
較例ではガス浸炭を実施しなかった。なお、加熱帯内で
浸炭処理を行った本発明例では加熱帯内を0.6%CO
−N2のガス雰囲気とし、鋼板を1200℃まで加熱し
た。この時の鋼板の加熱帯内での在炉時間は6分であっ
た。また、本発明例及び比較例ともに浸珪処理条件及び
拡散均熱処理条件は以下の通りである。
[Example 1] In the continuous siliconizing treatment line shown in FIG.
A 3% Si steel plate having a carbon content of 20 ppm and a plate thickness of 0.3 mm was subjected to continuous siliconizing treatment to produce a 6.5% Si steel plate. At this time, in the example of the present invention, gas carburization was performed in the heating zone, while in the comparative example, gas carburization was not performed. In the example of the present invention in which the carburizing treatment was performed in the heating zone, 0.6% CO
The steel sheet was heated to 1200 ° C. in a −N 2 gas atmosphere. The in-furnace time within the heating zone of the steel sheet at this time was 6 minutes. Further, the conditions of the siliconizing treatment and the diffusion soaking treatment are as follows in the present invention example and the comparative example.

【0026】(a) 浸珪処理条件 炉内雰囲気条件 雰囲気ガス:N2+SiCl4(濃度18vol%) 露点:−30℃ 処理温度:1200℃ 処理時間(鋼帯の在炉時間):5分 (b)拡散均熱処理条件 炉内雰囲気条件 雰囲気ガス:N2 露点:−50℃ 処理温度:1200℃ 処理時間(鋼帯の在炉時間):15分(A) Siliconization treatment conditions Atmosphere conditions in furnace Atmosphere gas: N 2 + SiCl 4 (concentration 18 vol%) Dew point: -30 ° C. Treatment temperature: 1200 ° C. Treatment time (Steel strip working time): 5 minutes ( b) Diffusion soaking condition In-furnace atmosphere condition Atmospheric gas: N 2 Dew point: -50 ° C Treatment temperature: 1200 ° C Treatment time (Steel band working time): 15 minutes

【0027】製造された6.5%Si鋼板について鋼板
表面に付着したシリカ量を測定するとともに、鋼板の加
工性を限界曲げ半径を測定することにより評価した。そ
の結果を図4及び図5に示す。これらから明らかなよう
に、加熱帯でガス浸炭を実施した本発明例ではシリカの
発生はほとんどなく、また製造された高珪素鋼板の加工
性も良好である。また、表1に製造された高珪素鋼板の
残留炭素量の分析値と鉄損値を示す。これによれば本発
明例で得られた高珪素鋼板も炭素含有量は60ppm以
下であり、したがって鉄損値も良好である。
With respect to the manufactured 6.5% Si steel sheet, the amount of silica adhering to the steel sheet surface was measured, and the workability of the steel sheet was evaluated by measuring the critical bending radius. The results are shown in FIGS. As is clear from these, in the examples of the present invention in which gas carburization was carried out in the heating zone, almost no silica was generated, and the workability of the produced high-silicon steel sheet was good. In addition, Table 1 shows the analysis value of the residual carbon amount and the iron loss value of the manufactured high silicon steel sheet. According to this, the high silicon steel sheet obtained in the example of the present invention also has a carbon content of 60 ppm or less, and therefore the iron loss value is also good.

【0028】[0028]

【表1】 [Table 1]

【0029】〔実施例2〕図3に示す連続浸珪処理ライ
ンにおいて、炭素含有量20ppm、板厚0.3mmの
3%Si鋼板を連続浸珪処理し、6.5%Si鋼板を製
造した。この際、加熱帯に導入される前の鋼板に部分的
に固体浸炭用の炭素皮膜を形成し、この炭素皮膜を形成
した部分を本発明例、炭素皮膜を形成しない部分を比較
例とした。前記本発明例の部分は、加熱帯への導入前に
炭素粒子を分散させた有機溶剤(トルエン及びメチルア
ルコール)を鋼板面に塗布しこれを乾燥させることによ
り炭素皮膜を形成した。なお、浸珪処理条件及び拡散均
熱処理条件は以下の通りである。
Example 2 In the continuous siliconizing treatment line shown in FIG. 3, a 3% Si steel plate having a carbon content of 20 ppm and a plate thickness of 0.3 mm was continuously siliconized to produce a 6.5% Si steel plate. . At this time, a carbon film for solid carburization was partially formed on the steel sheet before being introduced into the heating zone, the part on which the carbon film was formed was set as an example of the present invention, and the part on which the carbon film was not formed was set as a comparative example. In the portion of the present invention example, a carbon film was formed by applying an organic solvent (toluene and methyl alcohol) in which carbon particles were dispersed onto the steel plate surface before introducing it into the heating zone and drying it. The siliconizing treatment conditions and the diffusion soaking treatment conditions are as follows.

【0030】(a) 浸珪処理条件 炉内雰囲気条件 雰囲気ガス:N2+SiCl4(濃度18vol%) 露点:−30℃ 処理温度:1200℃ 処理時間(鋼帯の在炉時間):5分 (b)拡散均熱処理条件 炉内雰囲気条件 雰囲気ガス:N2 露点:−50℃ 処理温度:1200℃ 処理時間(鋼帯の在炉時間):15分(A) Siliconization treatment conditions In-furnace atmosphere conditions Atmosphere gas: N 2 + SiCl 4 (concentration 18 vol%) Dew point: -30 ° C. Treatment temperature: 1200 ° C. Treatment time (Steel strip working time): 5 minutes ( b) Diffusion soaking condition In-furnace atmosphere condition Atmospheric gas: N 2 Dew point: -50 ° C Treatment temperature: 1200 ° C Treatment time (Steel band working time): 15 minutes

【0031】製造された6.5%Si鋼板の本発明例の
部分と比較例の部分について、シリカの発生状況を比較
したところ、比較例の部分は白色の粉状のシリカが一面
に付着していたのに対し、浸炭処理を行った本発明例の
部分にはシリカは全く付着しておらず、鋼帯面は非常に
光沢があった。また、本発明例の部分と比較例の部分に
ついて、鋼板表面に付着したシリカ量の測定を行うとと
もに、鋼板の加工性を限界曲げ半径を測定することによ
り評価した。その結果を図6及び図7に示す。これらか
ら明らかなように、固体浸炭を実施した本発明例でもシ
リカの発生はほとんどなく、また製造された高珪素鋼板
の加工性も良好である。
When the generation conditions of silica were compared between the produced inventive 6.5% Si steel sheet and the comparative example, the white powdery silica adhered to the entire surface of the comparative example. However, silica was not attached to the carburized portion of the present invention, and the steel strip surface was very glossy. In addition, regarding the portion of the present invention example and the portion of the comparative example, the amount of silica adhering to the steel sheet surface was measured, and the workability of the steel sheet was evaluated by measuring the critical bending radius. The results are shown in FIGS. As is clear from these, even in the case of the present invention in which the solid carburization was carried out, almost no silica was generated, and the workability of the produced high silicon steel sheet was good.

【0032】[0032]

【発明の効果】以上述べた本発明によれば、連続浸珪処
理法により高珪素鋼板を製造する方法において、製造さ
れる高珪素鋼板の磁気特性を劣化させることなく、浸珪
処理時の鋼板表面上でのシリカの発生を適切に防止する
ことができ、しかも浸珪処理及び拡散均熱処理時におけ
る鋼板表面及び粒界での酸化も抑制することでができ、
このため押し疵等のない優れた表面性状を有し、しかも
加工性や磁気特性が良好な高珪素鋼板を安定して製造す
ることができる。また、鋼帯への炭素の添加を浸珪処理
直前の加熱段階を利用して行うため、炉内雰囲気に応じ
た炭素添加量の調整を容易に行うことができる。
According to the present invention described above, in the method for producing a high silicon steel sheet by the continuous siliconizing treatment method, the steel sheet during the siliconizing treatment is not deteriorated without deteriorating the magnetic characteristics of the produced high silicon steel sheet. It is possible to appropriately prevent the generation of silica on the surface, and also to suppress the oxidation on the steel sheet surface and grain boundaries during the siliconizing treatment and the diffusion soaking treatment,
For this reason, it is possible to stably manufacture a high silicon steel sheet having excellent surface properties without dents and the like and having good workability and magnetic properties. Further, since carbon is added to the steel strip by utilizing the heating step immediately before the siliconizing treatment, the amount of carbon added can be easily adjusted according to the atmosphere in the furnace.

【図面の簡単な説明】[Brief description of the drawings]

【図1】炭素含有量が20ppmの3%Si鋼板を気体
浸炭法により浸炭処理した後、浸珪処理を施して6.5
%Si鋼板を製造した際において、浸炭処理後の鋼板の
炭素含有量と浸珪処理による鋼板面上でのシリカ発生量
との関係を示すグラフ
FIG. 1 A 3% Si steel sheet having a carbon content of 20 ppm is carburized by a gas carburizing method and then subjected to a silicon carburizing treatment to 6.5.
A graph showing the relationship between the carbon content of the steel sheet after the carburizing treatment and the amount of silica generated on the steel sheet surface by the carburizing treatment when the% Si steel sheet was manufactured.

【図2】高珪素鋼板(6.5%Si鋼板)中の炭素含有
量と鉄損値との関係を示したグラフ
FIG. 2 is a graph showing the relationship between carbon content and iron loss value in a high silicon steel sheet (6.5% Si steel sheet).

【図3】連続浸珪処理ラインの構成を示す説明図FIG. 3 is an explanatory view showing the structure of a continuous siliconizing treatment line.

【図4】実施例1で製造された本発明例及び比較例の
6.5%Si鋼板について、鋼板表面に付着したシリカ
量を示したグラフ
FIG. 4 is a graph showing the amount of silica adhering to the steel plate surface for the 6.5% Si steel plates of the present invention example and comparative example manufactured in Example 1.

【図5】実施例1で製造された本発明例及び比較例の
6.5%Si鋼板について、鋼板の限界曲げ半径で評価
した加工性を示したグラフ
FIG. 5 is a graph showing the machinability of the 6.5% Si steel sheets of the present invention and the comparative example produced in Example 1 evaluated by the limit bending radius of the steel sheet.

【図6】実施例2で製造された本発明例及び比較例の
6.5%Si鋼板について、鋼板表面に付着したシリカ
量を示したグラフ
FIG. 6 is a graph showing the amount of silica adhering to the steel plate surface for the 6.5% Si steel plates of the present invention example and comparative example manufactured in Example 2;

【図7】実施例2で製造された本発明例及び比較例の
6.5%Si鋼板について、鋼板の限界曲げ半径で評価
した加工性を示したグラフ
FIG. 7 is a graph showing the workability of the 6.5% Si steel sheets of the present invention example and the comparative example produced in Example 2 evaluated by the critical bending radius of the steel sheet.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Si:4wt%未満を含有する鋼板を、
浸珪処理帯においてSiCl4を含む無酸化性ガス雰囲
気中で浸珪処理し、次いで拡散均熱処理帯においてSi
Cl4を含まない無酸化性ガス雰囲気中でSiを鋼板内
部に拡散させる拡散均熱処理を施すことにより、高珪素
鋼板を連続的に製造する方法において、浸珪処理を施す
前の鋼板に浸炭処理を施すことにより鋼板中の炭素含有
量を増加せしめた後、前記浸珪処理及びこれに続く拡散
均熱処理を行い、該浸珪処理及び拡散均熱処理において
炉内雰囲気中の酸素分によって鋼板の脱炭反応を生じさ
せることにより、拡散均熱処理後の炭素含有量が60p
pm以下の高珪素鋼板を得ることを特徴とする表面性状
が優れ且つ加工性の良好な高珪素鋼板の連続製造方法。
1. A steel sheet containing Si: less than 4 wt%,
The siliconizing treatment is performed in a non-oxidizing gas atmosphere containing SiCl 4 in the siliconizing treatment zone, and then Si is applied in the diffusion soaking zone.
In a method for continuously producing a high-silicon steel sheet by performing a diffusion soaking treatment for diffusing Si into the steel sheet in a non-oxidizing gas atmosphere containing no Cl 4 , a carburizing treatment is performed on the steel sheet before the siliconizing treatment. To increase the carbon content in the steel sheet, the siliconizing treatment and the subsequent diffusion soaking treatment are performed, and the steel sheet is deoxidized by the oxygen content in the furnace atmosphere in the siliconizing treatment and the diffusion soaking treatment. By causing a charcoal reaction, the carbon content after diffusion soaking is 60 p
A continuous production method of a high silicon steel sheet having excellent surface properties and good workability, characterized by obtaining a high silicon steel sheet of pm or less.
【請求項2】 浸炭処理を浸珪処理帯直前に設けられた
加熱帯においてガス浸炭または固体浸炭により行うこと
を特徴とする請求項1に記載の表面性状が優れ且つ加工
性の良好な高珪素鋼板の連続製造方法。
2. The high silicon having excellent surface properties and good workability according to claim 1, wherein the carburizing is performed by gas carburizing or solid carburizing in a heating zone provided immediately before the siliconizing zone. Continuous manufacturing method of steel sheet.
JP35158595A 1995-12-26 1995-12-26 Continuous production of high silicon steel sheet excellent in surface property and good in workability Pending JPH09176826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35158595A JPH09176826A (en) 1995-12-26 1995-12-26 Continuous production of high silicon steel sheet excellent in surface property and good in workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35158595A JPH09176826A (en) 1995-12-26 1995-12-26 Continuous production of high silicon steel sheet excellent in surface property and good in workability

Publications (1)

Publication Number Publication Date
JPH09176826A true JPH09176826A (en) 1997-07-08

Family

ID=18418271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35158595A Pending JPH09176826A (en) 1995-12-26 1995-12-26 Continuous production of high silicon steel sheet excellent in surface property and good in workability

Country Status (1)

Country Link
JP (1) JPH09176826A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010513716A (en) * 2006-12-22 2010-04-30 キュング スング、ジン Method for forming surface {100} plane in iron and iron-based alloy, method for producing non-oriented electrical steel sheet using the same, and non-oriented electrical steel sheet produced using the same
JP2014047363A (en) * 2012-08-29 2014-03-17 Jfe Steel Corp Method of manufacturing high-silicon steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010513716A (en) * 2006-12-22 2010-04-30 キュング スング、ジン Method for forming surface {100} plane in iron and iron-based alloy, method for producing non-oriented electrical steel sheet using the same, and non-oriented electrical steel sheet produced using the same
JP2014047363A (en) * 2012-08-29 2014-03-17 Jfe Steel Corp Method of manufacturing high-silicon steel sheet

Similar Documents

Publication Publication Date Title
CA1320108C (en) Process for preparation of grain-oriented electrical steel sheet having excellent magnetic and film characteristics
JPH09176826A (en) Continuous production of high silicon steel sheet excellent in surface property and good in workability
JP3183129B2 (en) Method for producing high silicon steel sheet with excellent surface properties
JP3446051B2 (en) Method for producing high silicon steel sheet with excellent surface properties
JP3382804B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent glass coating
JP5664286B2 (en) Method for producing high silicon steel sheet
KR950007376B1 (en) Annealing method of hot rolling steel sheet
JP5664287B2 (en) Method for producing high silicon steel sheet
JPH07278668A (en) Manufacture of grain-oriented silicon steel sheet with low iron loss
JP3265946B2 (en) Method for producing high silicon steel sheet with excellent workability
JP2947107B2 (en) Continuous production method of high silicon steel strip
JP2959400B2 (en) Continuous production method of high silicon steel strip
JP3013707B2 (en) Continuous production method of high silicon steel strip
JP4585141B2 (en) Method for producing grain-oriented silicon steel sheet and decarburization annealing furnace
JP3707249B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating uniformity
JP2002294335A (en) Annealing method for bell-type annealing furnace with suppressed decarburizing reaction
JP4559865B2 (en) Method for producing grain-oriented electrical steel sheet
JPH0853712A (en) Control of distribution of dew point in continuous decarburize-annealing furnace
JP3019600B2 (en) Method for producing high silicon steel sheet having excellent magnetic and mechanical properties by diffusion infiltration treatment
JP2001254126A (en) Method of producing high silicon steel sheet excellent in surface property and workability
KR20230132831A (en) Grain-oriented electrical steel sheet and method of manufacturing the same
JP5527196B2 (en) Method for adjusting furnace atmosphere in continuous hot dip galvanizing equipment
JPH1129824A (en) Manufacture of grain oriented silicon steel sheet with excellent glass film
JP4304728B2 (en) High silicon steel sheet
JPH04337033A (en) Method for controlling additive quantity of oxygen in grain-oriented silicon steel sheet