JPH07278668A - Manufacture of grain-oriented silicon steel sheet with low iron loss - Google Patents

Manufacture of grain-oriented silicon steel sheet with low iron loss

Info

Publication number
JPH07278668A
JPH07278668A JP6067058A JP6705894A JPH07278668A JP H07278668 A JPH07278668 A JP H07278668A JP 6067058 A JP6067058 A JP 6067058A JP 6705894 A JP6705894 A JP 6705894A JP H07278668 A JPH07278668 A JP H07278668A
Authority
JP
Japan
Prior art keywords
annealing
silicon steel
decarburization
temperature
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6067058A
Other languages
Japanese (ja)
Other versions
JP2680987B2 (en
Inventor
Yoshiyuki Ushigami
義行 牛神
Takeo Nagashima
武雄 長島
Shuichi Yamazaki
修一 山崎
Hiroyasu Fujii
浩康 藤井
Kenichi Murakami
健一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6067058A priority Critical patent/JP2680987B2/en
Publication of JPH07278668A publication Critical patent/JPH07278668A/en
Application granted granted Critical
Publication of JP2680987B2 publication Critical patent/JP2680987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To stably manufacture the grain-oriented silicon steel sheet with low iron loss at a low cost by performing the decarburization annealing of the silicon steel strip containing Si and C of a specific amount in the specific atmospheric gas at the specific temperature raising speed and annealing temperature. CONSTITUTION:The silicon steel coil containing, by weight, 0.8-4.8% Si and 0.03-0.1% C is cold rolled, and decarburization annealed, and then, the separating agent for annealing is coated thereon to perform the finish annealing to obtain the silicon steel sheet. In the decarburization annealing, the temperature is risen to the temperature range of 770-860 deg.C at the temperature raising speed of >=9 deg.C/sec, and the degree of oxidation (PH20/PH2) of the atmospheric gas in this temperature range is set to 0.01-0.15 to execute the annealing. The separating agent for annealing which is mainly composed of Al2O3 or MgO is preferable. This constitution performs the decarburization where the carbon content of the silicon steel coil is approximately <=0.003% to effectively improve the iron loss property.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は主として変圧器その他の
電気機器等の鉄心として利用される一方向性珪素鋼板の
製造方法に関するものである。特に、その表面を効果的
に仕上げることにより、鉄損特性の向上を図ろうとする
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a unidirectional silicon steel sheet mainly used as an iron core of a transformer or other electric equipment. In particular, it is intended to improve the iron loss characteristics by effectively finishing the surface.

【0002】[0002]

【従来の技術】一方向性珪素鋼板は、磁気鉄心として多
くの電気機器に用いられている。一方向性珪素鋼板は、
Siを0.8〜4.8%含有し製品の結晶粒の方位を
{110}〈001〉方位に高度に集積させた鋼板であ
る。その磁気特性として磁束密度が高く(B8 値で代表
される)、鉄損が低い(W17/50 値で代表される)こと
が要求される。特に、最近では省エネルギーの見地から
電力損失の低減に対する要求が高まっている。この要求
に応え、一方向性珪素鋼板の鉄損を低減させる手段とし
て、磁区を細分化する技術が開発された。
2. Description of the Related Art Unidirectional silicon steel sheets are used as magnetic cores in many electric devices. Unidirectional silicon steel sheet,
It is a steel sheet containing 0.8 to 4.8% of Si and having the crystal grains of the product highly integrated in the {110} <001> orientation. The magnetic properties are required to have a high magnetic flux density (represented by a B 8 value) and low iron loss (represented by a W 17/50 value). In particular, recently, there is an increasing demand for reduction of power loss from the viewpoint of energy saving. In response to this demand, a technique for subdividing magnetic domains has been developed as a means for reducing the iron loss of a unidirectional silicon steel sheet.

【0003】積み鉄心の場合、仕上げ焼鈍後の鋼板にレ
ーザ−ビームを照射して局部的な微少歪を与えることに
より磁区を細分化して鉄損を低減させる方法が、例えば
特開昭58−26405号公報に開示されている。しか
しながら、これらの磁区の動きを観察すると鋼板表面の
グラス皮膜の凹凸によりピン止めされ、動かない磁区も
存在していることが分かった。従って、方向性電磁鋼板
の鉄損値を更に低減させるためには、磁区細分化と合わ
せて磁区の動きを阻害する鋼板表面のグラス皮膜の凹凸
によるピン止め効果をなくすことが重要であると考えら
れる。
In the case of a laminated iron core, a method of irradiating a steel plate after finish annealing with a laser beam to give a local minute strain to subdivide a magnetic domain to reduce iron loss is disclosed, for example, in Japanese Patent Laid-Open No. 58-26505. It is disclosed in the publication. However, by observing the movement of these magnetic domains, it was found that some magnetic domains were pinned due to the unevenness of the glass film on the surface of the steel sheet and did not move. Therefore, in order to further reduce the iron loss value of grain-oriented electrical steel sheet, it is important to eliminate the pinning effect due to the unevenness of the glass film on the surface of the steel sheet that inhibits the movement of the magnetic domain together with the subdivision of the magnetic domain. To be

【0004】そのためには、磁区の動きを阻害する鋼板
表面のグラス皮膜を形成させないことが有効であると考
えられ、その手段として、焼鈍分離剤として粗大高純ア
ルミナを用いることによりグラス皮膜を形成させない方
法が、例えばU.S.Patent3785882に開
示された。しかしながらこの方法では表面直下の介在物
をなくすことができず、その介在物によるピニング効果
のため、鉄損の向上代はW15/60 で高々2%に過ぎな
い。
For that purpose, it is considered effective not to form a glass film on the surface of the steel sheet which hinders the movement of magnetic domains. As a means for forming it, a glass film is formed by using coarse high pure alumina as an annealing separator. A method that does not prevent it is, for example, U.S.P. S. Patent 3785882. However, this method cannot eliminate the inclusions just below the surface, and due to the pinning effect due to the inclusions, the iron loss improving margin is only 2% at W 15/60 .

【0005】この表面直下の介在物を制御し、かつ表面
の鏡面化を達成する方法として、仕上げ焼鈍後に化学研
磨あるいは電解研磨を行う方法が、例えば特開昭64−
83620号公報に開示されている。しかしながら、化
学研磨・電解研磨等の方法は、研究室レベルでの少試料
の材料を加工することは可能であるが、工業的規模で行
うには薬液の濃度管理、温度管理、公害設備の付与等の
点で大きな問題があり、いまだ実用化されるに至ってい
ない。本発明者等は、上記課題を解決するために種々の
実験を行い脱炭焼鈍の露点を制御し、脱炭焼鈍時に形成
される酸化層においてFe系酸化物(Fe2 SiO4
FeO等)を形成させないことが表面の介在物を消去す
ることに有効であることを見出した(特願平5−267
546号)。
As a method for controlling the inclusions just below the surface and achieving a mirror-finished surface, a method of performing chemical polishing or electrolytic polishing after finish annealing is disclosed in, for example, JP-A-64-
No. 83620. However, chemical polishing, electrolytic polishing, etc. can process a small amount of material at the laboratory level, but for industrial scale processing, chemical concentration control, temperature control, and provision of pollution equipment are required. There is a big problem in terms of such things, and it has not yet been put to practical use. The present inventors have conducted various experiments in order to solve the above problems, controlled the dew point of decarburization annealing, and in the oxide layer formed during decarburization annealing, Fe-based oxides (Fe 2 SiO 4 ,
It was found that not forming FeO or the like is effective in eliminating inclusions on the surface (Japanese Patent Application No. 5-267).
546).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、脱炭焼
鈍において重要な課題である炭素の除去においては、鉄
損を低減させるために必要な0.003%以下にならな
い場合が発生するという問題が生じた。本発明の目的は
製造コストを上げることなく脱炭を安定して行う方法を
提示することである。
However, in the removal of carbon, which is an important issue in decarburization annealing, there arises a problem that it may not reach 0.003% or less, which is necessary for reducing iron loss. It was An object of the present invention is to provide a method for performing stable decarburization without increasing the manufacturing cost.

【0007】[0007]

【課題を解決するための手段】本発明者等は、上記課題
を解決するために種々の実験を行い脱炭に対し、脱炭焼
鈍の昇温速度、焼鈍温度及び雰囲気ガスが重要な支配因
子であり、昇温速度9℃/秒以下で770〜860℃の
温度域まで昇温し、Fe系酸化物(Fe2 SiO4 ,F
eO等)を形成させない雰囲気ガスの酸化度(P H2 O
/P H2 ):0.01〜0.15で焼鈍を行うことによ
り脱炭が安定して行われることを見出した。
Means for Solving the Problems The present inventors have conducted various experiments in order to solve the above-mentioned problems, and decarburization is characterized by the temperature rising rate of decarburization annealing, the annealing temperature and the atmosphere gas being important controlling factors. And the temperature was raised to a temperature range of 770 to 860 ° C. at a temperature rising rate of 9 ° C./sec or less, and the Fe-based oxide (Fe 2 SiO 4 , F
The degree of oxidation of the atmospheric gas (P H 2 O
/ P H 2): decarburization by performing annealing at from 0.01 to 0.15 were found to be stably performed.

【0008】以下、詳細に説明する。本発明者等は、珪
素鋼板の脱炭挙動に対し、脱炭焼鈍初期(昇温過程)で
形成される酸化層が以降の脱炭挙動に大きな影響を及ぼ
すものと考え、これに関連した種々の実験を行った。重
量で、Si:3.3%、Mn:0.14%、C:0.0
5%、S:0.007%、酸可溶性Al:0.028
%、N:0.008%の珪素鋼スラブを1150℃で加
熱した後、板厚1.6mmに熱延した。この熱延板を11
00℃で2分間焼鈍した後最終板厚0.15mmに冷延し
た。この冷延板を雰囲気ガスの酸化度(P H2 O /P H
2 ):0.01の湿潤ガス中で830℃で脱炭焼鈍を施
した。ここで、脱炭焼鈍の昇温時間として(1)30秒
(28℃/秒)、(2)60秒(14℃/秒)、(3)
90秒(9℃/秒)、(4)120秒(7℃/秒)、
(5)180秒(5℃/秒)の条件で焼鈍を行った。
The details will be described below. The present inventors consider that the decarburization behavior of silicon steel sheets is greatly affected by the oxide layer formed in the initial stage of decarburization annealing (heating process), and various decarburization behaviors related thereto are considered. The experiment was done. By weight, Si: 3.3%, Mn: 0.14%, C: 0.0
5%, S: 0.007%, acid-soluble Al: 0.028
%, N: 0.008% of a silicon steel slab was heated at 1150 ° C. and then hot-rolled to a plate thickness of 1.6 mm. This hot rolled sheet 11
After annealing at 00 ° C. for 2 minutes, it was cold-rolled to a final plate thickness of 0.15 mm. This cold-rolled sheet is subjected to an atmospheric gas oxidation degree (PH 2 O / PH
2 ): Decarburization annealing was performed at 830 ° C. in a wet gas of 0.01. Here, as the temperature rising time for decarburization annealing, (1) 30 seconds (28 ° C / second), (2) 60 seconds (14 ° C / second), (3)
90 seconds (9 ° C / second), (4) 120 seconds (7 ° C / second),
(5) Annealing was performed under the condition of 180 seconds (5 ° C./second).

【0009】焼鈍後の炭素量を図1に示す。図1より昇
温速度9℃/秒以上で鋼中炭素量が0.003%以下に
安定して減少していることが分かる。この結果を基に脱
炭焼鈍温度の影響を調べた。すなわち、先述の冷延板を
雰囲気ガスの酸化度(P H2O /P H2 ):0.06の
湿潤ガス中で昇温速度28℃/秒で(1)740℃、
(2)770℃、(3)800℃、(4)830℃、
(5)860℃、(6)890℃の温度で焼鈍を行っ
た。焼鈍後の炭素量を図2に示す。図2より、焼鈍温度
770〜860℃の範囲で鋼中炭素量が0.003%以
下に安定して減少していることが分かる。
The carbon content after annealing is shown in FIG. It can be seen from FIG. 1 that the carbon content in the steel stably decreases to 0.003% or less at the temperature rising rate of 9 ° C./second or more. Based on this result, the effect of decarburization annealing temperature was investigated. That is, the above cold-rolled sheet was heated at a heating rate of 28 ° C./sec (1) 740 ° C. in a wet gas having an atmospheric gas oxidation degree (P H 2 O / P H 2 ) of 0.06,
(2) 770 ° C, (3) 800 ° C, (4) 830 ° C,
Annealing was performed at temperatures of (5) 860 ° C and (6) 890 ° C. The amount of carbon after annealing is shown in FIG. From FIG. 2, it can be seen that the carbon content in the steel stably decreases to 0.003% or less in the annealing temperature range of 770 to 860 ° C.

【0010】以上の結果より、昇温速度9℃/秒以上で
昇温し、770〜860℃の範囲で焼鈍することによ
り、炭素は安定して0.003%以下になることが分か
った。この原因は明確ではないが、昇温過程で鋼板表面
に形成されるシリカの形態に依存するものと考えられ
る。すなわち、脱炭焼鈍の表面においては(1)脱炭反
応と、(2)シリカ形成(酸化)反応が雰囲気の水分に
対して競合して行われている。本条件のような低い酸化
度においては、一般にシリカは稠密な膜状で生成し脱炭
を阻害するが、速い昇温速度で昇温して脱炭反応を行わ
せ、一旦表面に脱炭反応のサイトを確保すると、シリカ
の稠密な膜は形成できず引き続いて脱炭反応が起こるも
のと考えられる。
From the above results, it was found that carbon is stably reduced to 0.003% or less by heating at a temperature rising rate of 9 ° C./sec or more and annealing in the range of 770 to 860 ° C. The cause of this is not clear, but it is considered that it depends on the form of silica formed on the surface of the steel sheet during the temperature rising process. That is, on the surface of decarburization annealing, (1) decarburization reaction and (2) silica formation (oxidation) reaction are performed in competition with the moisture content of the atmosphere. At low oxidation degree like this condition, silica generally forms a dense film and inhibits decarburization, but the decarburization reaction is carried out by raising the temperature at a high rate of temperature, and once the decarburization reaction occurs on the surface. It is considered that if a site of is secured, a dense silica film cannot be formed, and the decarburization reaction subsequently occurs.

【0011】このように、初期に形成されるシリカの形
態を制御した後の770〜860℃の均熱時には、雰囲
気ガスは酸化度(P H2 O /P H2 )を0.01以上
0.15以下で焼鈍すればよい。酸化度が0.15を超
えた場合、製品の表面下に介在物が生成し、鉄損低下の
障害となる。また、酸化度が0.01より低いと脱炭速
度が遅くなり、工業的に問題となる。
As described above, at the time of soaking at 770 to 860 ° C. after controlling the morphology of initially formed silica, the atmospheric gas has an oxidation degree (PH 2 O / PH 2 ) of 0.01 or more and 0 or more. Annealing may be performed at 0.15 or less. When the degree of oxidation exceeds 0.15, inclusions are formed under the surface of the product, which becomes an obstacle to lower iron loss. Further, if the degree of oxidation is lower than 0.01, the decarburization rate becomes slow, which is an industrial problem.

【0012】以下、実施形態を説明する。基本的な製造
法としては、磁束密度B8 が高い製品を製造できる田口
・坂倉等によるAlNとMnSを主インヒビターとして
用いる製造法(例えば特公昭40−15644)、また
は小松等による(Al,Si)Nを主インヒビターとし
て用いる製造法(例えば特公昭62−45285)を適
用すればよい。Siは電気抵抗を高め、鉄損を下げるう
えで重要な元素である。含有量が4.8%を超えると、
冷間圧延時に材料が割れ易くなり、圧延不可能となる。
一方、Si量を下げると仕上げ焼鈍時にα→γ変態を生
じ、結晶の方向性が損なわれるので、実質的に結晶の方
向性に影響を及ぼさない0.8%を下限とする。
Embodiments will be described below. As a basic manufacturing method, a manufacturing method using AlN and MnS as main inhibitors by Taguchi, Sakakura, etc. capable of manufacturing a product having a high magnetic flux density B 8 (for example, Japanese Patent Publication No. 40-15644), or Komatsu et al. (Al, Si ) A production method using N as a main inhibitor (for example, JP-B-62-45285) may be applied. Si is an important element for increasing electric resistance and reducing iron loss. If the content exceeds 4.8%,
During cold rolling, the material becomes fragile and cannot be rolled.
On the other hand, if the amount of Si is reduced, α → γ transformation occurs during finish annealing, and the crystal orientation is impaired. Therefore, the lower limit is 0.8%, which does not substantially affect the crystal orientation.

【0013】酸可溶性AlはNと結合してAlNまたは
(Al,Si)Nとしてインヒビターとして機能するた
めに必須の元素である。磁束密度が高くなる0.012
〜0.050%を限定範囲とする。Nは製鋼時に0.0
1%以上添加するとブリスターと呼ばれる鋼板中の空孔
を生じるので0.01%を上限とする。他のインヒビタ
ー構成元素として、B,Bi,Se,Pb,Sn,Ti
等を添加することもできる。
Acid-soluble Al is an essential element for binding N and functioning as AlN or (Al, Si) N as an inhibitor. Higher magnetic flux density 0.012
˜0.050% is the limited range. N is 0.0 during steelmaking
If 1% or more is added, voids in the steel sheet called blister are generated, so 0.01% is made the upper limit. As other inhibitor constituent elements, B, Bi, Se, Pb, Sn, Ti
Etc. can also be added.

【0014】Cは残留すると、製品特性(鉄損)の低下
を引き起こすので0.003%以下に抑えることが必要
とされている。しかしながら、製鋼段階でC量を低くす
ると熱延板の結晶組織に粗大な{100}伸長粒が存在
し、二次再結晶に悪影響を及ぼす。また、析出物や一次
再結晶集合組織制御の観点からもCはある程度製鋼段階
で添加することが必要である。従って、製鋼段階では
0.003%以上、好ましくはα/γ変態が生じる0.
02%以上添加することが望ましい。0.1%より多く
添加しても、上述の結晶組織、析出物等への影響はほぼ
飽和し、脱炭に必要な時間が長くなるので0.1%を上
限とする。
When C remains, it causes deterioration of product characteristics (iron loss), so it is necessary to keep C to 0.003% or less. However, if the C content is lowered in the steelmaking stage, coarse {100} elongated grains are present in the crystal structure of the hot rolled sheet, which adversely affects secondary recrystallization. Further, from the viewpoint of controlling precipitates and primary recrystallization texture, it is necessary to add C to some extent in the steelmaking stage. Therefore, at the steelmaking stage, 0.003% or more, preferably α / γ transformation occurs at a level of 0.
It is desirable to add 02% or more. Even if more than 0.1% is added, the above-mentioned influence on the crystal structure, precipitates, etc. is almost saturated and the time required for decarburization becomes long, so 0.1% is made the upper limit.

【0015】上記成分の溶鋼は、通常の工程により熱延
板とされるか、もしくは溶鋼を連続鋳造して薄帯とす
る。前記熱延板または連続鋳造薄帯はただちに、もしく
は短時間焼鈍を経て冷間圧延される。上記焼鈍は750
〜1200℃の温度域で30秒〜30分間行われ、この
焼鈍は製品の磁気特性を高めるために有効である。望む
製品の特性レベルとコストを勘案して採否を決めるとよ
い。
The molten steel having the above components is formed into a hot-rolled sheet by a usual process, or the molten steel is continuously cast into a ribbon. The hot-rolled sheet or the continuously cast ribbon is immediately or cold-rolled after annealing for a short time. The above annealing is 750
The annealing is performed in a temperature range of ~ 1200 ° C for 30 seconds to 30 minutes, and this annealing is effective for enhancing the magnetic properties of the product. It is advisable to decide whether to accept or reject the product considering the characteristic level and cost of the desired product.

【0016】冷間圧延は、基本的には特公昭40−15
644号公報に開示されているように最終冷延圧下率8
0%以上とすればよい。冷間圧延後の材料は、鋼中に含
まれる炭素を除去するために湿水素雰囲気中で、脱炭焼
鈍を行う。この脱炭焼鈍において、雰囲気ガスの酸化度
(P H2 O /P H2 )を0.01以上0.15以下のF
e系の酸化物(Fe2 SiO4 ,FeO等)を形成させ
ない低い酸化度で焼鈍を行う際に脱炭を安定に行わせる
ことが本発明のポイントである。昇温速度を9℃/秒以
上、脱炭温度を770〜860℃に限定することが本発
明の開示するところである。
Cold rolling is basically carried out in Japanese Examined Patent Publication No. 40-15.
As disclosed in Japanese Patent No. 644, the final cold rolling reduction rate is 8
It may be 0% or more. The material after cold rolling is subjected to decarburization annealing in a wet hydrogen atmosphere in order to remove carbon contained in steel. In this decarburization annealing, the degree of oxidation (P H 2 O / P H 2 ) of the atmosphere gas was 0.01 or more and 0.15 or less F.
The point of the present invention is to perform decarburization stably during annealing at a low degree of oxidation that does not form an e-based oxide (Fe 2 SiO 4 , FeO, etc.). The present invention discloses that the rate of temperature rise is limited to 9 ° C / sec or more and the decarburization temperature is limited to 770 to 860 ° C.

【0017】この温度域での脱炭終了後に、粒径調整の
ために例えば900℃等の温度で焼鈍する場合もある。
場合により、この脱炭焼鈍板に(Al,Si)Nを主イ
ンヒビターとして用いる製造法(例えば特公昭62−4
5285号公報)においては、窒化処理を施す。この窒
化処理の方法は特に限定するものではなく、アンモニア
等の窒化能のある雰囲気ガス中で行う方法等がある。量
的には0.005%以上、望ましくは全窒素量として鋼
中のAl当量以上窒化すればよい。これらの脱炭焼鈍板
を積層する際に、シリカと反応し難いアルミナを主成分
とする焼鈍分離剤を水スラリーもしくは静電塗布法等に
よりドライ・コートすることにより、仕上げ焼鈍後の表
面を鏡面状に仕上げ、鉄損を大きく低下させることがで
きる。
After completion of decarburization in this temperature range, there is a case where annealing is performed at a temperature of 900 ° C., for example, in order to adjust the grain size.
In some cases, a manufacturing method using (Al, Si) N as a main inhibitor for this decarburized annealed sheet (see, for example, Japanese Examined Patent Publication No. 62-4
No. 5285), a nitriding treatment is performed. The method of this nitriding treatment is not particularly limited, and there is a method of performing it in an atmosphere gas having a nitriding ability such as ammonia. Quantitatively, 0.005% or more, preferably, the total nitrogen content may be nitrided by Al equivalent or more in the steel. When laminating these decarburized and annealed plates, the surface after finishing annealing is mirror-finished by dry-coating an annealing separating agent whose main component is alumina, which is difficult to react with silica, with water slurry or electrostatic coating method. It is possible to greatly reduce the iron loss by finishing it into a shape.

【0018】また、従来のようにマグネシアを主成分と
する焼鈍分離剤を水スラリーで塗布、もしくは静電塗布
法等によりドライ・コートすることも有効である。この
場合は焼鈍分離剤としてアルミナを用いた場合のように
表面は鏡面にはならないが、表面グラス皮膜の凹凸を低
減し、鉄損を従来製品よりも低下させることができる。
この積層した脱炭焼鈍板を仕上げ焼鈍して、二次再結晶
と窒化物の純化を行う。二次再結晶を特開平2−258
929号公報に開示されるように一定の温度で保持する
等の手段により所定の温度域で行うことは磁束密度を上
げるうえで有効である。二次再結晶完了後、窒化物の純
化等を行うために100%水素で1100℃以上の温度
で焼鈍する。仕上げ焼鈍後、表面に張力コーティング処
理を行い、必要に応じてレーザー照射等の磁区細分化処
理を施せばよい。
Further, it is also effective to apply an annealing separating agent containing magnesia as a main component in a water slurry or dry-coat by an electrostatic coating method as in the prior art. In this case, the surface does not become a mirror surface as in the case where alumina is used as the annealing separator, but the unevenness of the surface glass film can be reduced and the iron loss can be reduced as compared with the conventional product.
This laminated decarburized annealed plate is finish annealed to perform secondary recrystallization and purification of the nitride. Secondary recrystallization is described in JP-A-2-258.
As disclosed in Japanese Patent No. 929, it is effective to increase the magnetic flux density by carrying out in a predetermined temperature range by means such as holding at a constant temperature. After the completion of secondary recrystallization, annealing is performed at a temperature of 1100 ° C. or higher with 100% hydrogen in order to purify the nitride. After finish annealing, the surface may be subjected to tension coating treatment and, if necessary, magnetic domain subdivision treatment such as laser irradiation.

【0019】[0019]

【実施例】【Example】

実施例1 重量で、Si:3.3%、Mn:0.1%、C:0.05
%、S:0.007%、酸可溶性Al:0.03%、N:
0.008%、Sn:0.05%の板厚1.8mm珪素鋼
熱延板を酸洗後1.4mmに冷延した。次いで、1100
℃で2分間焼鈍した後最終板厚0.14mmに冷延した。
この冷延板を酸化度(P H2 O /P H2)(1)0.0
6及び(2)0.33(従来法)に調整した窒素と水素
の混合ガス中において、昇温速度(1)42℃/秒、
(2)28℃/秒、(3)14℃/秒、(4)5℃/秒
で830℃の温度まで昇温し、70秒焼鈍し脱炭焼鈍を
施した。次いでアンモニア雰囲気中で焼鈍することによ
り、窒素量を0.025%に増加して、インヒビターの
強化を行った。
Example 1 By weight, Si: 3.3%, Mn: 0.1%, C: 0.05
%, S: 0.007%, acid-soluble Al: 0.03%, N:
A hot-rolled silicon steel sheet of 0.008% and Sn: 0.05% with a thickness of 1.8 mm was pickled and cold-rolled to 1.4 mm. Then 1100
After annealing at 0 ° C for 2 minutes, it was cold rolled to a final plate thickness of 0.14 mm.
The cold rolled sheet was subjected to an oxidation degree (P H 2 O / P H 2 ) (1) of 0.0
6 and (2) in a mixed gas of nitrogen and hydrogen adjusted to 0.33 (conventional method), the heating rate (1) 42 ° C./second,
(2) 28 ° C./sec, (3) 14 ° C./sec, and (4) 5 ° C./sec, the temperature was raised to 830 ° C., and annealing was performed for 70 seconds to perform decarburization annealing. Then, by annealing in an ammonia atmosphere, the amount of nitrogen was increased to 0.025% to strengthen the inhibitor.

【0020】これらの鋼板をその後、一部は(1)アル
ミナ(Al2 3 )を、一部は(2)従来のようにマグ
ネシア(MgO)を水スラリーで塗布した後、仕上げ焼
鈍を施した。仕上げ焼鈍は1200℃まではN2 :75
%+H2 :25%の雰囲気ガス中で10℃/hrの昇温速
度で行い、1200℃でH2 :100%に切り替え20
時間焼鈍を行った。これらの試料を張力コーティング処
理を施した後に、レーザー照射して磁区細分化した。得
られた製品の磁気特性を表1に示す。
These steel sheets were then partially coated with (1) alumina (Al 2 O 3 ) and partially (2) magnesia (MgO) as a conventional water slurry, and then subjected to finish annealing. did. Finish annealing is N 2 : 75 up to 1200 ° C
% + H 2: performed in 25% of the ambient gas at a heating rate of 10 ° C. / hr, at 1200 ° C. H 2: switch 20 to 100%
Annealed for a period of time. These samples were subjected to tension coating treatment and then laser-irradiated to subdivide the magnetic domains. The magnetic properties of the obtained product are shown in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】実施例2 重量で、Si:3.3%、Mn:0.07%、C:0.
07%、S:0.025%、酸可溶性Al:0.026
%、N:0.008%、Sn:0.06%の板厚2.0
mm珪素鋼熱延板を1120℃で2分間焼鈍した後最終板
厚0.23mmに冷延した。この冷延板を酸化度(P H2
O /P H2 )0.1に調整した窒素と水素の混合ガス中
において昇温速度30℃/秒で800℃に昇温し、90
秒焼鈍し脱炭した後、900℃で60秒焼鈍し粒径調整
を行った。これらの鋼板をその後、一部は(1)アルミ
ナ(Al2 3 )を、一部は(2)マグネシア(Mg
O)を水スラリーで塗布した後、仕上げ焼鈍を施した。
Example 2 By weight, Si: 3.3%, Mn: 0.07%, C: 0.
07%, S: 0.025%, acid-soluble Al: 0.026
%, N: 0.008%, Sn: 0.06%, plate thickness 2.0
mm hot rolled silicon steel sheet was annealed at 1120 ° C. for 2 minutes and then cold rolled to a final sheet thickness of 0.23 mm. This cold-rolled sheet was subjected to an oxidation degree (P H 2
O 2 / P H 2 ) In a mixed gas of nitrogen and hydrogen adjusted to 0.1, the temperature was raised to 800 ° C. at a heating rate of 30 ° C./sec, and 90
After second annealing and decarburization, it was annealed at 900 ° C. for 60 seconds to adjust the grain size. These steel sheets are then partly (1) alumina (Al 2 O 3 ) and partly (2) magnesia (Mg).
O) was applied as a water slurry and then subjected to finish annealing.

【0023】一方、比較材として上記冷延板を酸化度
(P H2 O /P H2 )0.4に調整した窒素と水素の混
合ガス中において昇温速度30℃/秒で800℃に昇温
し、90秒焼鈍し脱炭した後、900℃で60秒焼鈍し
粒径調整を行い、マグネシア(MgO)を水スラリーで
塗布した後、仕上げ焼鈍を施した。仕上げ焼鈍は120
0℃まではN2 :15%+H2 :85%の雰囲気ガス中
で15℃/hrの昇温速度で行い、1200℃でH2 :1
00%に切り替え20時間焼鈍を行った。これらの試料
を張力コーティング処理を施した後、レーザー照射して
磁区細分化した。得られた製品の磁気特性を表2に示
す。
On the other hand, as a comparative material, the cold-rolled sheet was heated to 800 ° C. at a heating rate of 30 ° C./sec in a mixed gas of nitrogen and hydrogen in which the degree of oxidation (P H 2 O / P H 2 ) was adjusted to 0.4. After the temperature was raised, annealing was performed for 90 seconds to decarburize, annealing was performed at 900 ° C. for 60 seconds to adjust the particle size, and magnesia (MgO) was applied with a water slurry, and then final annealing was performed. Finish annealing is 120
Up to 0 ° C., in an atmosphere gas of N 2 : 15% + H 2 : 85% at a temperature rising rate of 15 ° C./hr, H 2 : 1 at 1200 ° C.
It switched to 00% and annealed for 20 hours. After subjecting these samples to tension coating, laser irradiation was performed to subdivide the magnetic domains. The magnetic properties of the obtained product are shown in Table 2.

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【発明の効果】本発明により、脱炭焼鈍において従来よ
りも低酸化度雰囲気中で脱炭を安定して行わせることが
でき、製品の表面の効果的に仕上げることにより従来製
品よりも低い鉄損の方向性電磁鋼板をコストアップする
ことなく製造することができる。
Industrial Applicability According to the present invention, decarburization can be stably decarburized in an atmosphere having a lower oxidation degree than conventional ones, and by effectively finishing the surface of the product, the iron content is lower than that of the conventional product. The loss-oriented electrical steel sheet can be manufactured without increasing the cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】脱炭焼鈍時の昇温速度と脱炭焼鈍後の炭素残留
量の関係を示す図表である。
FIG. 1 is a chart showing the relationship between the temperature rising rate during decarburization annealing and the residual carbon amount after decarburization annealing.

【図2】脱炭焼鈍時の焼鈍温度と脱炭焼鈍後の炭素残留
量の関係を示す図表である。
FIG. 2 is a chart showing the relationship between the annealing temperature during decarburization annealing and the residual carbon amount after decarburization annealing.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤井 浩康 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 (72)発明者 村上 健一 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiroyasu Fujii, 20-1 Shintomi, Futtsu City, Nippon Steel Corporation Technical Development Division (72) Kenichi Murakami, 20-1 Shintomi, Futtsu City Nippon Steel Corporation Technology Development Division

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 Si:0.8〜4.8%、 C :0.03〜0.1% を含有する珪素鋼帯を冷延・脱炭焼鈍後、焼鈍分離剤を
塗布し仕上げ焼鈍を施す方向性珪素鋼板の脱炭焼鈍にお
いて、9℃/秒以上の昇温速度で770〜860℃の温
度域に昇温し、当該温度域で雰囲気ガスの酸化度(P H
2 O /P H2 )を0.01以上0.15以下として焼鈍
することを特徴とする鉄損の低い方向性珪素鋼板の製造
方法。
1. A cold rolling / decarburizing annealing of a silicon steel strip containing Si: 0.8 to 4.8% and C: 0.03 to 0.1% by weight, and then applying an annealing separator. In the decarburizing annealing of the grain-oriented silicon steel sheet subjected to the finishing annealing, the temperature is raised to a temperature range of 770 to 860 ° C. at a temperature rising rate of 9 ° C./sec or more, and the degree of oxidation (P H
A method of manufacturing a grain-oriented silicon steel sheet having a low iron loss, which comprises annealing at a rate of 2 O / PH 2 of 0.01 or more and 0.15 or less.
【請求項2】 焼鈍分離剤として、アルミナを主成分と
して使用する請求項1記載の方法。
2. The method according to claim 1, wherein alumina is used as a main component as the annealing separator.
【請求項3】 焼鈍分離剤として、マグネシアを主成分
として使用する請求項1記載の方法。
3. The method according to claim 1, wherein magnesia is used as a main component as the annealing separator.
JP6067058A 1994-04-05 1994-04-05 Method for producing grain-oriented silicon steel sheet with low iron loss Expired - Fee Related JP2680987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6067058A JP2680987B2 (en) 1994-04-05 1994-04-05 Method for producing grain-oriented silicon steel sheet with low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6067058A JP2680987B2 (en) 1994-04-05 1994-04-05 Method for producing grain-oriented silicon steel sheet with low iron loss

Publications (2)

Publication Number Publication Date
JPH07278668A true JPH07278668A (en) 1995-10-24
JP2680987B2 JP2680987B2 (en) 1997-11-19

Family

ID=13333868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6067058A Expired - Fee Related JP2680987B2 (en) 1994-04-05 1994-04-05 Method for producing grain-oriented silicon steel sheet with low iron loss

Country Status (1)

Country Link
JP (1) JP2680987B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348643A (en) * 2001-05-22 2002-12-04 Nippon Steel Corp Grain-oriented silicon steel sheet superior in adhesiveness of tension-imparting insulation film, and manufacturing method therefor
CN104087823A (en) * 2009-03-23 2014-10-08 新日铁住金株式会社 Grain oriented electrical steel sheet for wound core and wound core
WO2020012666A1 (en) 2018-07-13 2020-01-16 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and manufacturing method for same
WO2020149332A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Method for producing grain-oriented electrical steel sheet
WO2020149333A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
WO2020149348A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Method for producing unidirectional electromagnetic steel sheet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5844152A (en) * 1981-09-10 1983-03-15 日本設備コア株式会社 Plastic tile

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5844152A (en) * 1981-09-10 1983-03-15 日本設備コア株式会社 Plastic tile

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348643A (en) * 2001-05-22 2002-12-04 Nippon Steel Corp Grain-oriented silicon steel sheet superior in adhesiveness of tension-imparting insulation film, and manufacturing method therefor
CN104087823A (en) * 2009-03-23 2014-10-08 新日铁住金株式会社 Grain oriented electrical steel sheet for wound core and wound core
KR20210018433A (en) 2018-07-13 2021-02-17 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet and its manufacturing method
WO2020012666A1 (en) 2018-07-13 2020-01-16 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and manufacturing method for same
WO2020149332A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Method for producing grain-oriented electrical steel sheet
WO2020149348A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Method for producing unidirectional electromagnetic steel sheet
WO2020149333A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
CN113272457A (en) * 2019-01-16 2021-08-17 日本制铁株式会社 Method for producing unidirectional electromagnetic steel sheet
KR20210110866A (en) 2019-01-16 2021-09-09 닛폰세이테츠 가부시키가이샤 Manufacturing method of unidirectional electrical steel sheet
KR20210110868A (en) 2019-01-16 2021-09-09 닛폰세이테츠 가부시키가이샤 Manufacturing method of uni-directional electrical steel sheet
KR20210111812A (en) 2019-01-16 2021-09-13 닛폰세이테츠 가부시키가이샤 Method for manufacturing grain-oriented electrical steel sheet
JPWO2020149348A1 (en) * 2019-01-16 2021-11-25 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
EP3913078A4 (en) * 2019-01-16 2022-10-12 Nippon Steel Corporation Method for producing unidirectional electromagnetic steel sheet
CN113272457B (en) * 2019-01-16 2023-04-14 日本制铁株式会社 Method for producing unidirectional electromagnetic steel sheet

Also Published As

Publication number Publication date
JP2680987B2 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
JP4288054B2 (en) Method for producing grain-oriented silicon steel sheet
JPH05112827A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic property and coating film pr0perty
JP2679944B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP2653638B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP3474837B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet having B8 of 1.91 T or more
JP2680987B2 (en) Method for producing grain-oriented silicon steel sheet with low iron loss
JPH10130727A (en) Production of low core loss mirror finished grain oriented silicon steel sheet high in magnetic flux density
JP4331886B2 (en) Method for producing grain-oriented silicon steel sheet
JP4119635B2 (en) Method for producing mirror-oriented electrical steel sheet with good decarburization
JP2678855B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JP3148096B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP2680532B2 (en) Method for producing grain-oriented electrical steel sheet with low iron loss
JP2678850B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JP4585141B2 (en) Method for producing grain-oriented silicon steel sheet and decarburization annealing furnace
JP3148092B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH07278669A (en) Manufacture of mirror surface oriented silicon steel sheet with low iron loss
JP3148094B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH0756047B2 (en) Method for producing grain-oriented electrical steel sheet with excellent magnetic properties
JP3148093B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3154935B2 (en) Manufacturing method of low iron loss mirror-oriented unidirectional electrical steel sheet with high magnetic flux density
JP4427225B2 (en) Method for producing grain-oriented electrical steel sheet
JP2719266B2 (en) Method for producing ultra-low iron loss unidirectional silicon steel sheet
JP3148095B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3182666B2 (en) Method for producing ultra-low iron loss unidirectional silicon steel sheet
JP2678858B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees