JPH0756047B2 - Method for producing grain-oriented electrical steel sheet with excellent magnetic properties - Google Patents

Method for producing grain-oriented electrical steel sheet with excellent magnetic properties

Info

Publication number
JPH0756047B2
JPH0756047B2 JP1128423A JP12842389A JPH0756047B2 JP H0756047 B2 JPH0756047 B2 JP H0756047B2 JP 1128423 A JP1128423 A JP 1128423A JP 12842389 A JP12842389 A JP 12842389A JP H0756047 B2 JPH0756047 B2 JP H0756047B2
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
oxidation
atmosphere
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1128423A
Other languages
Japanese (ja)
Other versions
JPH02305921A (en
Inventor
義行 牛神
洋三 菅
美樹雄 伊藤
敏夫 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1128423A priority Critical patent/JPH0756047B2/en
Priority to EP90107029A priority patent/EP0392534B1/en
Priority to DE69032461T priority patent/DE69032461T2/en
Priority to US07/508,772 priority patent/US5082509A/en
Publication of JPH02305921A publication Critical patent/JPH02305921A/en
Publication of JPH0756047B2 publication Critical patent/JPH0756047B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、結晶粒がミラー指数で{110}<001>方位を
もつ一方向性電磁鋼板或は{100}<001>方位をもつ二
方向性電磁鋼板のように、ある結晶方位に強く配向した
所謂方向性電磁鋼板の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a grain-oriented grain-oriented electrical steel sheet having a {110} <001> orientation, or a grain having a {100} <001> orientation. The present invention relates to a method for producing a so-called grain-oriented electrical steel sheet that is strongly oriented in a certain crystal orientation, such as grain-oriented electrical steel sheet.

これらの鋼板は、軟磁性材料として主に電気機器の鉄心
として用いられる。
These steel sheets are mainly used as a soft magnetic material for iron cores of electric devices.

(従来の技術) 方向性電磁鋼板は先に述べたように、一定の方位をもつ
結晶粒から構成された、通常、4.5%以下のSiを含有す
る板厚:0.10〜0.35mmの鋼板である。
(Prior Art) As described above, a grain-oriented electrical steel sheet is a steel sheet composed of crystal grains having a certain orientation and usually containing 4.5% or less of Si and a thickness of 0.10 to 0.35 mm. .

この鋼板は、磁気特性として励磁特性と鉄損特性に優れ
ていることが要求される。
This steel sheet is required to have excellent magnetic characteristics such as excitation characteristics and iron loss characteristics.

磁気特性に優れた方向性電磁鋼板を得るためには、結晶
粒の方位を高度に揃えることが重要である。この結晶方
位の集積化は、二次再結晶と呼ばれるカタストロフィッ
クな粒成長現象を利用して達成される。
In order to obtain a grain-oriented electrical steel sheet having excellent magnetic properties, it is important to make the crystal grains highly oriented. This integration of crystal orientation is achieved by utilizing a catastrophic grain growth phenomenon called secondary recrystallization.

二次再結晶を制御するためには、二次再結晶前の一次再
結晶組織の調整とインヒビターと呼ばれる微細析出物或
は粒界偏析型の元素の調整が必須となる。このインヒビ
ターは、一次再結晶組織の中で一般の一次再結晶粒の成
長を抑え、ある特定の方位粒を選択的に成長させる機能
をもつ。
In order to control the secondary recrystallization, adjustment of the primary recrystallization structure before secondary recrystallization and adjustment of fine precipitates or grain boundary segregation type elements called inhibitors are essential. This inhibitor has the function of suppressing the growth of general primary recrystallized grains in the primary recrystallized structure and selectively growing certain oriented grains.

代表的な析出物として、M.F.Littmann(特公昭30-3651
号公報)およびJ.E.May,D.Turnbull(Trans.Met.Soc.AI
ME 212(1958)p.769〜781)はMnSを、田口、板倉(特
公昭40-15644号公報)はAlNを、今中等(特公昭51-1346
9号公報)はMnSeを、小松等は(Al,Si)Nを、それぞれ
提示している。
As a typical precipitate, MFLittmann (Japanese Patent Publication No. 30-3651)
Issue) and JEMay, D. Turnbull (Trans.Met.Soc.AI
ME 212 (1958) p.769 to 781) is MnS, Taguchi and Itakura (Japanese Patent Publication No. 40-15644) AlN, and Ima Junior and Senior College (Japanese Patent Publication 51-1346).
No. 9) presents MnSe, and Komatsu et al. Presents (Al, Si) N.

一方、粒界偏析型の元素として、斉藤(日本金属学会誌
27(1963)p.186〜195)は、Pb,Sb,Nb,Ag,Te,Se,S等を
提示しているが、これらは工業的には、何れも析出物型
インヒビターの補助的なものとして使用されているにす
ぎない。
On the other hand, as a grain boundary segregation type element, Saito (Journal of Japan Institute of Metals)
27 (1963) p.186-195) presents Pb, Sb, Nb, Ag, Te, Se, S, etc., which are industrially used as auxiliary substances for precipitate-type inhibitors. It is only used as a thing.

上記析出物がインヒビターとしての機能を発揮する上で
必要な条件は、必ずしも明確ではないが、松岡(「鉄と
鋼」53(1967)p.1007〜1023)や黒木等(「日本金属学
会誌」43(1979)p.419〜424)の結果を纏めると、次の
ように考えられる。
The conditions required for the above-mentioned precipitate to function as an inhibitor are not necessarily clear, but Matsuoka ("Iron and Steel" 53 (1967) p.1007-1023), Kuroki et al. 43 (1979) p.419-424), the following can be considered.

(1) 二次再結晶前に、一次再結晶粒の粒成長を抑え
るに十分な量の微細析出物が存在すること。
(1) Prior to secondary recrystallization, there should be a sufficient amount of fine precipitates to suppress grain growth of primary recrystallized grains.

(2) 析出物の大きさがある程度大きく、二次再結晶
焼鈍時にあまり急激に熱的変化をしないこと。
(2) The size of the precipitate is large to a certain extent, and the thermal change does not change very rapidly during the secondary recrystallization annealing.

(発明が解決しようとする課題) 現在、工業生産されている代表的な一方向性電磁鋼板の
製造法としては、3種類ある。
(Problems to be Solved by the Invention) Currently, there are three types of manufacturing methods for typical industrially produced grain-oriented electrical steel sheets.

第一の製造法は、T.F.Littmannにより特公昭30-3651号
公報に提示された、MnSをインヒビターとして用いる2
回冷延工程によるものであり、第二の製造法は、田口、
板倉によって特公昭40-15644号公報に提示された、AlN
+MnSをインヒビターとして用い、最終冷間圧延率を80
%以上の強圧下とする工程によるものであり、第三の製
造法は、今中等により特公昭51-13469号公報に開示され
たMnS(またはMnSe)+Sbをインヒビターとして用いる
2回冷延工程によるものである。
The first production method is proposed by TFLittmann in Japanese Patent Publication No. Sho 30-3651 and uses MnS as an inhibitor.
The second manufacturing method is Taguchi,
AlN presented in Japanese Patent Publication No. 40-15644 by Itakura
+ MnS is used as an inhibitor and the final cold rolling rate is 80
%, And the third production method is a double cold rolling step using MnS (or MnSe) + Sb as an inhibitor disclosed in Japanese Patent Publication No. 51-13469. It is a thing.

これらの製造技術にあっては、何れも析出物の量の確保
とその微細化の要件を満たすために、スラブを熱間圧延
する前に1400℃前後の高温に加熱してインヒビターを完
全に溶体化することを、基本的な要件としている。
In all of these manufacturing technologies, in order to secure the amount of precipitates and meet the requirements for refinement, the slab is heated to a high temperature of around 1400 ° C before hot rolling to completely dissolve the inhibitor. The basic requirement is that

しかしながら、高温スラブ加熱には、次の問題点があ
る。
However, the high temperature slab heating has the following problems.

(1) 方向性電磁鋼板専用の高温スラブ加熱炉が必要
である。
(1) A high temperature slab heating furnace dedicated to grain-oriented electrical steel is required.

(2) 加熱炉のエネルギー原単位が高い。(2) The energy intensity of the heating furnace is high.

(3) スラブ表面の酸化が進み、ノロと呼ばれる溶融
物が発生し、加熱炉補修の頻度を高くしてメインテナン
ス・コストを高くし、設備稼働率を低くする。
(3) Oxidation of the slab surface progresses, and a molten material called slag is generated, which increases the frequency of heating furnace repairs, raises maintenance costs, and lowers equipment availability.

このような問題点を解消すべく、低温スラブ加熱を実現
するためには、高温スラブ加熱によらないインヒビター
作り込み技術が必要となる。
In order to solve such a problem, in order to realize the low temperature slab heating, a technique for producing an inhibitor that does not rely on the high temperature slab heating is required.

本発明者等の一部は、材料を最終板厚とした後に鋼板を
窒化処理することによってインヒビターを形成する方向
性電磁鋼板の製造方法を、一方向性電磁鋼板については
特公昭62-45285公報に、また、二方向性電磁鋼板につい
ては特願昭62-297825号にそれぞれ提案している。
Some of the inventors of the present invention have disclosed a method for producing a grain-oriented electrical steel sheet in which an inhibitor is formed by nitriding a steel sheet after the material has a final thickness, and for a unidirectional electrical steel sheet, Japanese Patent Publication No. 62-45285. In addition, regarding the grain-oriented electrical steel sheet, it is proposed in Japanese Patent Application No. 62-297825.

特に、鋼板の窒化処理を一次再結晶焼鈍後に施すプロセ
スによる場合には、単に高温スラブ加熱に起因する諸問
題を解決し得るのみならず、一次再結晶をインヒビター
の制約から解放し、自由に粒組織と集合組織を制御する
ことが可能となり、二次再結晶を安定化させ、高い磁束
密度を有する製品を製造することができる。
In particular, when the nitriding treatment of the steel sheet is performed after the primary recrystallization annealing, not only the problems caused by high temperature slab heating can be solved, but the primary recrystallization is released from the restriction of the inhibitor, and the grains can be freely grained. It becomes possible to control the texture and texture, stabilize the secondary recrystallization, and manufacture a product having a high magnetic flux density.

しかし、前記技術によって、工業的規模で生産を行おう
とするとき、ストリップの長さ方向、幅方向において窒
化の不均一があると、それに対応して磁気特性が不均一
になるという問題を生じる。従って、鋼板の窒化を均一
かつ安定して行わせることが必要である。鋼板(ストリ
ップ)を窒化するときの律速段階は、鋼板表面での反応
であり、一次再結晶焼鈍時に表面に形成される酸化層の
制御が重要となる。また、この酸化層は、焼鈍分離剤と
して鋼板表面に塗布されるMgOと化学反応して仕上焼鈍
中にフォルステライト皮膜を形成する。このフォルステ
ライト皮膜は、製品をたとえばトランスとして積層して
使用するとき、板間の絶縁性を確保しまた、鋼板に張力
を付与し鉄損特性を向上させるという機能をもつ。
However, according to the above-mentioned technique, when production is performed on an industrial scale, if there is uneven nitriding in the length direction and width direction of the strip, there arises a problem that the magnetic characteristics become non-uniform. Therefore, it is necessary to uniformly and stably nitride the steel sheet. The rate-determining step when nitriding a steel sheet (strip) is a reaction on the surface of the steel sheet, and it is important to control the oxide layer formed on the surface during primary recrystallization annealing. Further, this oxide layer chemically reacts with MgO applied to the surface of the steel sheet as an annealing separator to form a forsterite film during finish annealing. This forsterite film has a function of securing insulation between plates and applying a tension to the steel plate to improve iron loss characteristics when the product is laminated and used as a transformer, for example.

従って、一次再結晶焼鈍において鋼板表面に形成せしめ
る酸化層は、窒化を安定化させかつ、フォルステライト
皮膜の形成を安定化させるべく機能しなければならな
い。
Therefore, the oxide layer formed on the surface of the steel sheet in the primary recrystallization annealing must function to stabilize the nitriding and the formation of the forsterite coating.

本発明は、かかる酸化層を鋼板表面に形成する方法を提
供することを目的としてなされた。
The present invention has been made for the purpose of providing a method for forming such an oxide layer on the surface of a steel sheet.

(課題を解決するための手段) 本発明は、鋼板(ストリップ)に一次再結晶焼鈍を施す
に際し、昇温過程における雰囲気の酸化度(PH2O/PH2
と均熱過程における雰囲気の酸化度(PH2O/PH2)を規定
することにより、窒化能に優れかつ、鉄損特性の優れた
フォルステライト皮膜を形成する表面酸化層をつくる方
法を提示するものである。
(Means for Solving the Problem) In the present invention, when the steel sheet (strip) is subjected to primary recrystallization annealing, the degree of oxidation (PH 2 O / PH 2 ) of the atmosphere in the temperature rising process
And a method of forming a surface oxide layer that forms a forsterite film with excellent nitriding ability and iron loss characteristics by defining the degree of oxidation (PH 2 O / PH 2 ) in the atmosphere during the soaking process It is a thing.

即ち、重量で、Si:0.8〜6.8%、酸可溶性Al:0.008〜0.0
48%、残部Feおよび不可避的不純物からなるスラブを、
熱圧延間し、必要に応じて焼鈍した後、冷間圧延によっ
て最終板厚とし、次いで一次再結晶焼鈍を行った後焼鈍
分離剤を塗布し、仕上焼鈍を施す工程からなり、一次再
結晶焼鈍後から仕上焼鈍における二次再結晶開始前の間
に鋼板の窒化処理を行い、二次再結晶に必要なインヒビ
ターを形成させる方向性電磁鋼板の製造方法において、
一次再結晶焼鈍の雰囲気の酸化度(PH2O/PH2)を昇温段
階と均熱段階に分け、均熱段階の雰囲気の酸化度(PH2O
/PH2):xに対して昇温段階の650〜800℃の温度域を少な
くとも5秒間、下記不等式で規定する領域内の酸化度
(PH2O/PH2):yを有する雰囲気中で焼鈍することを特徴
とする磁気特性の優れた方向性電磁鋼板の製造方法であ
る。
That is, by weight, Si: 0.8-6.8%, acid-soluble Al: 0.008-0.0
A slab consisting of 48%, balance Fe and unavoidable impurities,
Hot rolling, after annealing if necessary, cold rolling to the final plate thickness, then primary recrystallization annealing is performed, then an annealing separator is applied, and finish annealing is applied. In the method for producing a grain-oriented electrical steel sheet, after which a nitriding treatment of the steel sheet is performed before the secondary recrystallization starts in the finish annealing, and an inhibitor necessary for the secondary recrystallization is formed.
Divided primary recrystallization oxidation of the annealing atmosphere (PH 2 O / PH 2) to the heated stage and soaking stage, the degree of oxidation of atmosphere in the soaking step (PH 2 O
/ PH 2 ): x in a temperature range of 650 to 800 ° C in the temperature rising stage for at least 5 seconds in an atmosphere having an oxidation degree (PH 2 O / PH 2 ): y within the region defined by the following inequality. It is a method of manufacturing a grain-oriented electrical steel sheet having excellent magnetic properties, which is characterized by annealing.

0.15≦x≦0.80 0.15≦y≦0.80 0.16x+0.11≦y≦−0.41x+0.78 以下、本発明を詳細に説明する。0.15 ≦ x ≦ 0.80 0.15 ≦ y ≦ 0.80 0.16x + 0.11 ≦ y ≦ −0.41x + 0.78 Hereinafter, the present invention will be described in detail.

本発明者等は、鋼板の窒化に対する一次再結晶焼鈍条件
の影響に関する広汎な研究の結果、一次再結晶焼鈍時の
雰囲気の酸化度(PH2O/PH2)を規定することにより、窒
化能の優れた表面酸化層をつくることができることを見
出した。
As a result of extensive research on the influence of primary recrystallization annealing conditions on the nitriding of steel sheets, the present inventors have defined the nitriding ability by defining the degree of oxidation (PH 2 O / PH 2 ) of the atmosphere during primary recrystallization annealing. It has been found that an excellent surface oxide layer can be formed.

かかる知見は、次の実験によるものである。Such knowledge is based on the following experiment.

重量で、Si:3.3%、酸可溶性Al:0.027%、N:0.008%、M
n:0.14%を含有し、残部Fe及び不可避的不純物からなる
鋼熱延板を1100℃で2分間焼鈍した後、冷間圧延により
0.20mmの最終板厚とした。この材料に酸化度(PH2O/P
H2)を0.02〜1.0の範囲で変化させた雰囲気中で一次再
結晶焼鈍を施した。次いで、MgOを主成分とする焼鈍分
離剤を塗布し、仕上焼鈍した。仕上焼鈍は、N2:25%+H
2:75%の雰囲気中で120℃まで昇温した後、H2:100%の
雰囲気に切り換え、20時間純化焼鈍を行い、昇温過程で
の鋼板(ストリップコイル)の窒化挙動と製品の特性を
調べた。
By weight, Si: 3.3%, acid-soluble Al: 0.027%, N: 0.008%, M
Steel hot-rolled steel sheet containing n: 0.14% and the balance Fe and unavoidable impurities was annealed at 1100 ° C for 2 minutes and then cold-rolled.
The final plate thickness was 0.20 mm. The degree of oxidation (PH 2 O / P
Primary recrystallization annealing was performed in an atmosphere in which H 2 ) was changed in the range of 0.02 to 1.0. Then, an annealing separator containing MgO as a main component was applied and finish annealing was performed. Finish annealing is N 2 : 25% + H
2: After raising the temperature in 75% atmosphere until 120 ° C., H 2: switching to 100% of the atmosphere, for 20 hours purification annealing, nitriding behavior and product steel sheet in the temperature raising process (strip coil) properties I checked.

第2図に、鋼板における窒素量が最大となる850℃での
増窒素量と一次再結晶焼鈍時の雰囲気の酸化度(PH2O/P
H2)の関係を示す。
Figure 2 shows the amount of nitrogen increase at 850 ° C, which is the maximum nitrogen content in the steel sheet, and the degree of oxidation (PH 2 O / P) in the atmosphere during primary recrystallization annealing.
H 2 ).

第2図から明らかなように、雰囲気の酸化度(PH2O/P
H2)が0.15〜0.80、好ましくは0.25〜0.70の範囲で安定
して鋼板が窒化しており、第3図に示す製品の磁束密度
(B8値)もそれに対応して増窒素量が多い場合に高くな
っている。処が、雰囲気の酸化度(PH2O/PH2)を高くす
ると、フォルステライト皮膜に点状の欠陥が生じたり、
フォルステライト皮膜直下の鋼中に残留酸化物、即ち、
Al2O3が残存し、鉄損特性の劣化する等の問題を生じ、
窒化とフォルステライト皮膜形成を両立させることが極
めて困難であることが分かった。
As is clear from Fig. 2, the degree of oxidation of the atmosphere (PH 2 O / P
H 2) is from 0.15 to 0.80, preferably has nitride stable steel in the range of 0.25 to 0.70, often increasing the nitrogen content and correspondingly also the magnetic flux density of the product (8 value B) shown in FIG. 3 If it is higher. However, if the degree of oxidation (PH 2 O / PH 2 ) in the atmosphere is increased, dot-like defects may occur in the forsterite film,
Residual oxides in the steel directly under the forsterite film, that is,
Al 2 O 3 remains, causing problems such as deterioration of iron loss characteristics,
It has been found that it is extremely difficult to achieve both nitriding and forsterite film formation.

このフォルステライト皮膜形成に関する問題を調査した
結果、一次再結晶焼鈍後の鋼板の酸素量と密接な関係が
あり、酸素量が多くなると上記問題が発生することが分
かった。
As a result of investigating the problem related to the formation of the forsterite film, it was found that there is a close relationship with the oxygen content of the steel sheet after the primary recrystallization annealing, and the above problem occurs when the oxygen content increases.

この理由については、MgOと反応してフォルステライト
皮膜を形成するのに必要な量以上の過剰な酸素が仕上焼
鈍中に鋼中の欠陥を起点としてガス化したり、鋼中のAl
と反応してAl2O3となるためであると考えられる。
The reason for this is that excess oxygen in excess of the amount necessary to react with MgO to form a forsterite film is gasified from defects in the steel during finish annealing, or Al in the steel is oxidized.
It is believed that this is because it reacts with Al 2 O 3 to form Al 2 O 3 .

従って、一次再結晶焼鈍後の鋼板の酸素量を一定レベル
以下に制御した中で窒化能の優れた酸化層をつくる必要
がある。本発明者等は、種々検討の結果、一次再結晶焼
鈍の昇温過程での鋼板の酸化挙動が重要な役割を果たし
ており、昇温時の昇温サイクルと雰囲気の酸化度(PH2O
/PH2)および均熱時の雰囲気の酸化度(PH2O/PH2)を分
離して制御することにより、窒化とフォルステライト皮
膜形成を両立させ得る表面酸化層をつくることができる
ことを見出した。
Therefore, it is necessary to form an oxide layer having excellent nitriding ability while controlling the oxygen content of the steel sheet after the primary recrystallization annealing to a certain level or less. As a result of various studies, the inventors of the present invention have found that the oxidation behavior of the steel sheet during the temperature rise process of primary recrystallization annealing plays an important role, and the temperature rise cycle during temperature rise and the degree of oxidation of the atmosphere (PH 2 O
/ PH 2 ) and the degree of oxidation (PH 2 O / PH 2 ) in the atmosphere during soaking are controlled separately to find that a surface oxide layer that can achieve both nitriding and forsterite film formation can be created. It was

かかる知見は、次の実験によるものである。Such knowledge is based on the following experiment.

先ず、一次再結晶焼鈍の昇温過程において重要な温度域
を知るために、前述の冷間圧延板を用いて、酸化度(PH
2O/PH2):0.25の雰囲気中で500〜850℃の温度域の所定
の温度まで鋼板を100℃/sの昇温速度で急熱し、その温
度に5秒間保持し、次いで、100℃/sの昇温速度で再度
急熱し、850℃で焼鈍した。
First, in order to know the important temperature range in the temperature rising process of primary recrystallization annealing, the above-mentioned cold-rolled sheet was used to measure the degree of oxidation (PH
2 O / PH 2 ): A steel plate is rapidly heated in an atmosphere of 0.25 to a predetermined temperature in the temperature range of 500 to 850 ° C. at a temperature rising rate of 100 ° C./s, held at that temperature for 5 seconds, and then 100 ° C. It was rapidly heated again at a heating rate of / s and annealed at 850 ° C.

その後、鋼板に焼鈍分離剤を塗布し、仕上焼鈍を施し
た。
After that, an annealing separator was applied to the steel sheet and finish annealing was performed.

第4図は、鋼板の保持温度と一次再結晶焼鈍後の酸素
量、仕上焼鈍過程での850℃点での増窒素量の関係を示
す図である。この図から、昇温時の650〜800℃の温度域
に鋼板を少なくとも5秒間保持して一次酸化層をつくる
ことにより、その後の均熱過程での酸化が抑制され、結
果として一次再結晶焼鈍後の酸素量は減少するが、一
方、窒化量はほぼ一定で劣化しないことが分る。
FIG. 4 is a diagram showing the relationship between the holding temperature of the steel sheet, the amount of oxygen after the primary recrystallization annealing, and the amount of nitrogen increase at the 850 ° C. point during the finish annealing process. From this figure, by holding the steel plate in the temperature range of 650 to 800 ° C for at least 5 seconds at the time of temperature rise to form the primary oxide layer, the oxidation in the subsequent soaking process is suppressed, resulting in the primary recrystallization annealing. Although the amount of oxygen afterward decreases, on the other hand, it can be seen that the amount of nitriding is almost constant and does not deteriorate.

そこで次に、上記加熱条件を満たすように、昇温速度25
℃/sで850℃まで鋼板を加熱し焼鈍するという温度・時
間サイクルで昇温時の均熱時それぞれの雰囲気の酸化度
(PH2O/PH2)の影響を調べた。
Therefore, next, the heating rate is set to 25 so that the above heating conditions are satisfied.
The effect of the degree of oxidation (PH 2 O / PH 2 ) in each atmosphere during temperature soaking was investigated in a temperature-time cycle of heating and annealing the steel sheet to 850 ° C at ℃ / s.

第1図に、昇温時の雰囲気の酸化度(PH2O/PH2):y、均
熱時の雰囲気の酸化度(PH2O/PH2):xと製品のフォルス
テライト皮膜の性状の関係を示す。第1図から、下記不
等式の範囲内で窒化とフォルステライト皮膜形成が両立
していることが分かる。
Figure 1 shows the degree of oxidation (PH 2 O / PH 2 ) in the atmosphere during temperature rise: y, the degree of oxidation in the atmosphere during soaking (PH 2 O / PH 2 ): x, and the properties of the product forsterite film. Shows the relationship. From FIG. 1, it can be seen that nitriding and forsterite film formation are compatible within the range of the following inequality.

0.15≦x≦0.80 0.15≦y≦0.80 0.16x+0.11≦y≦−0.41x+0.78 鋼板の昇温速度と昇温時の雰囲気の酸化度(PH2O/PH2
について検討した結果、昇温速度が高い場合には、雰囲
気の酸化度(PH2O/PH2)を高くする必要があり、昇温速
度が低い場合には、雰囲気の酸化度(PH2O/PH2)が低く
てもよいことが分った。即ち、鋼板の酸化量は、雰囲気
の酸化度(PH2O/PH2)を高くすると増加するので、昇温
過程の650〜800℃の温度域で、あるレベル以上の厚さの
酸化層をつくれば良いと考えられる。
0.15 ≤ x ≤ 0.80 0.15 ≤ y ≤ 0.80 0.16x + 0.11 ≤ y ≤ -0.41x + 0.78 Steel plate heating rate and degree of oxidation of the atmosphere during heating (PH 2 O / PH 2 )
Results of investigation of the case heating rate is high, it is necessary to increase the degree of oxidation of atmosphere (PH 2 O / PH 2) , when the heating rate is low, the degree of oxidation of atmosphere (PH 2 O I found that / PH 2 ) can be low. That is, the oxidation amount of the steel sheet increases as the degree of oxidation (PH 2 O / PH 2 ) in the atmosphere increases, so that an oxidation layer having a certain thickness or more is formed in the temperature range of 650 to 800 ° C during the temperature rising process. It is thought that it should be made.

これらに関する理論的根拠については、必ずしも明確に
なっているわけではないが、本発明者等は、鋼板表面酸
化層の最外層のシリカ(SiO2)とファイアライト(Fe2S
iO4)の構造に起因するものではないかと推定してい
る。
Although the theoretical basis for these is not always clear, the present inventors have found that the outermost layer of the steel sheet surface oxide layer, which is silica (SiO 2 ) and firelite (Fe 2 S).
It is presumed that this is due to the structure of iO 4 ).

即ち、第5図に、酸化物の平衡状態図を示すが、本発明
の限定範囲は、ほぼファイアライトの形成領域と一致し
ている。処が、実際に赤外分光分析、CDS等の解析手法
によって調査した結果、シリカとファイアライトが共存
し、実質的には平衡状態に到達していない不均一な構造
となっていることが分った。
That is, FIG. 5 shows an equilibrium diagram of oxides, and the limited range of the present invention substantially corresponds to the formation region of firelite. However, as a result of actually investigating by infrared spectroscopy, CDS, and other analysis methods, it was found that silica and firelite coexist, and that the structure is non-uniform, which does not actually reach an equilibrium state. It was.

鋼板の窒化挙動に対して、雰囲気の酸化度(PH2O/PH2
が0.15未満で窒化が抑制されるのは、第5図の平衡状態
図からも推測できるように、最外層がシリカの均一なも
のとなるためであると考えられる。また、雰囲気の酸化
度(PH2O/PH2)が0.80超で鋼板の窒化能が劣化するの
は、雰囲気の酸化度(PH2O/PH2)が高くなると、最外層
のファイアライトの比率が高くなって酸化が促進され、
酸化層が厚くなり過ぎるためであると考えられる。従っ
て、雰囲気酸化度(PH2O/PH2)の上限は、一次再結晶焼
鈍の時間によって変動するものと考えられるが、一次再
結晶を完了させるに十分な時間を勘案し、0.80を上限と
した。
Oxidation degree of atmosphere (PH 2 O / PH 2 ) for nitriding behavior of steel sheet
It is considered that the reason why the nitriding is suppressed when is less than 0.15 is that the outermost layer is made of uniform silica as can be inferred from the equilibrium diagram of FIG. Further, the oxidation degree of the atmosphere (PH 2 O / PH 2) is deteriorated nitriding ability of the steel sheet at 0.80 greater, when the degree of oxidation of atmosphere (PH 2 O / PH 2) is high, the outermost layer of fayalite The higher the ratio, the faster the oxidation,
It is considered that this is because the oxide layer becomes too thick. Therefore, the upper limit of the atmospheric oxidation degree (PH 2 O / PH 2 ) is considered to vary depending on the time of the primary recrystallization annealing, but considering the time sufficient to complete the primary recrystallization, the upper limit is 0.80. did.

上記最外層は、一次再結晶焼鈍の昇温時に形成されてい
る。酸化層を形成するFe、Si、O等の拡散速度は、温度
によって大きく変わり、酸化層の構造は、これらの元素
の動きに大きく影響される。従って、一次再結晶焼鈍に
おける昇温過程での鋼板の酸化挙動は、最外層の酸化層
の構造形成に対し大きな影響を与え、その後の均熱過程
での酸化挙動を支配しているものと考えられる。
The outermost layer is formed when the temperature of the primary recrystallization annealing is increased. The diffusion rate of Fe, Si, O, etc. forming the oxide layer largely changes depending on the temperature, and the structure of the oxide layer is greatly affected by the movement of these elements. Therefore, it is considered that the oxidation behavior of the steel sheet during the temperature rising process in the primary recrystallization annealing has a great influence on the structure formation of the outermost oxide layer and controls the oxidation behavior during the subsequent soaking process. To be

叙上のように、一次再結晶焼鈍において、昇温過程と均
熱過程を分離して管理すること、即ち、昇温過程におい
ては650〜800℃の昇温温度域での滞在時間および雰囲気
の酸化度(PH2O/PH2)を規定して一次酸化層を制御し、
均熱過程においては、昇温時につくられた一次酸化層に
対して雰囲気の酸化度(PH2O/PH2)を規定することによ
り酸化層の成長を制御し、総合的に窒化を安定に進行せ
しめかつ、フォルステライト皮膜形成を良好ならしめる
表面酸化層をつくることが、本発明の主眼とする処であ
る。
As described above, in the primary recrystallization annealing, the temperature rising process and the soaking process are separately controlled, that is, in the temperature rising process, the residence time and the atmosphere of the temperature rising range of 650 to 800 ° C. The degree of oxidation (PH 2 O / PH 2 ) is specified to control the primary oxide layer,
In the soaking process, the growth of the oxide layer is controlled by defining the degree of oxidation (PH 2 O / PH 2 ) of the atmosphere with respect to the primary oxide layer created at the time of temperature rise, thus stabilizing nitriding overall. The main purpose of the present invention is to form a surface oxide layer that allows the forsterite film formation to proceed well and to progress.

次に、本発明の実施形態を説明する。Next, an embodiment of the present invention will be described.

本発明において、出発材であるスラブの成分組成は、重
量で、Si:0.8〜6.8%、酸可溶性Al:0.008〜0.048%、残
部Feおよび不可避的不純物であり、これらを必須成分と
してそれ以外は特に限定しない。
In the present invention, the component composition of the slab as the starting material is, by weight, Si: 0.8 to 6.8%, acid-soluble Al: 0.008 to 0.048%, the balance Fe and inevitable impurities, and these as essential components There is no particular limitation.

Siは、製品の電気抵抗を高め鉄損を下げることで特性を
高めるのに有効であるが、含有量が4.8%を超えると冷
間圧延が不可能となり、さらに、6.8%を超えると温間
圧延によってさえも材料に割れを生じ易くなり、圧延不
可能となる。
Si is effective for improving the properties by increasing the electrical resistance of the product and reducing the iron loss, but if the content exceeds 4.8%, cold rolling becomes impossible, and if it exceeds 6.8%, the warm rolling is impossible. Even rolling causes the material to crack easily, making rolling impossible.

一方、Si含有量を低くすると、仕上焼鈍時にα→γ変態
を生じ、結晶の方向性が破壊されてしまう。そこで、二
次再結晶温度の下限と考えられる950℃でα→γ変態を
起こさない0.8%以上をSi含有量の限定範囲とする。
On the other hand, if the Si content is low, the α → γ transformation occurs during finish annealing, and the crystal orientation is destroyed. Therefore, 0.8% or more, which does not cause α → γ transformation at 950 ° C., which is considered to be the lower limit of the secondary recrystallization temperature, is set as the limited range of Si content.

酸可溶性Alは、Nと結合してAlN若しくは(Al,Si)Nと
なり、インヒビターとして機能する。特に、一次再結晶
焼鈍後の鋼板の窒化によるインヒビター形成のために、
フリーのAlとして存在させておくことが必要である。酸
可溶性Alの含有量範囲は、本発明のプロセスによって製
品の磁束密度が高くなる0.008〜0.04%とする。
Acid-soluble Al combines with N to become AlN or (Al, Si) N, and functions as an inhibitor. In particular, for inhibitor formation by nitriding the steel sheet after primary recrystallization annealing,
It is necessary to exist as free Al. The content range of the acid-soluble Al is set to 0.008 to 0.04% at which the magnetic flux density of the product is increased by the process of the present invention.

その他、インヒビター形成元素としてMn,S,Se,B,Bi,Nb,
Sn,Ti等を添加することもできる。
In addition, Mn, S, Se, B, Bi, Nb,
Sn, Ti, etc. can also be added.

スラブの加熱温度は、特公昭62-45285号公報に記載され
ているように、鋼板の窒化処理によるインヒビター形成
という観点からは、AlとNが完全には溶体化しない温度
域が良い。しかしながら、1000℃未満になると、熱間圧
延工程で鋼板(ストリップ)の形状(平坦さ)を確保し
難くなる。一方、1270℃を超えると、先に述べたノロ発
生等の問題を惹起する。従って、1000〜1270℃の範囲が
好ましい。
As described in Japanese Patent Publication No. 62-45285, the heating temperature of the slab is preferably a temperature range in which Al and N are not completely dissolved from the viewpoint of inhibitor formation by the nitriding treatment of the steel sheet. However, if the temperature is lower than 1000 ° C, it becomes difficult to secure the shape (flatness) of the steel sheet (strip) in the hot rolling process. On the other hand, when the temperature exceeds 1270 ° C, the above-mentioned problems such as slag formation occur. Therefore, the range of 1000 to 1270 ° C is preferable.

加熱されたスラブは、引き続き熱間圧延される。得られ
た熱延板は必要に応じて750〜1200℃の温度域で30秒〜3
0分間焼鈍される。
The heated slab is subsequently hot rolled. The obtained hot-rolled sheet may be heated in the temperature range of 750 to 1200 ° C for 30 seconds to 3
Anneal for 0 minutes.

次いで、所定の最終板厚、集合組織を得るために、1回
或は中間焼鈍を挟む2回以上の冷間圧延を施される。
Then, in order to obtain a predetermined final thickness and texture, cold rolling is performed once or twice or more with intermediate annealing.

一方向性電磁鋼板に対しては、基本的には、特公昭40-1
5644号公報に開示されているように、最終冷間圧延率を
80%以上とすること、また、二方向性電磁鋼板に対して
は、特公昭35-2657号公報或は特公昭38-8218号公報に開
示されているように、40〜80%という圧下率を適用する
交叉冷間圧延を施す。
For unidirectional electrical steel, basically
As disclosed in the 5644 publication, the final cold rolling rate
80% or more, and for bi-directional electrical steel sheets, as disclosed in JP-B-35-2657 or JP-B-38-8218, a reduction rate of 40-80%. Cross cold rolling is applied.

その後、鋼中に炭素が含まれているならば脱炭を兼ね、
一次再結晶焼鈍を行う。
After that, if carbon is contained in the steel, double as decarburization,
Perform primary recrystallization annealing.

ここで、一次再結晶焼鈍における昇温時の熱サイクルと
雰囲気の酸化度(PH2O/PH2)および均熱の雰囲気の酸化
度(PH2O/PH2)を規定することにより、一次再結晶焼鈍
後の鋼板における酸素量を制御し、かつ、一次再結晶焼
鈍後から仕上焼鈍における二次再結晶開始前までの間に
行う鋼板の窒化処理を安定確実ならしめる表面酸化層を
つくる。このようにして得られた材料に、MgOを主成分
とする焼鈍分離剤を塗布した後、二次再結晶と鈍化を目
的とした仕上焼鈍を施す。
Here, by defining the thermal cycle at the time of temperature rise in primary recrystallization annealing, the degree of oxidation of the atmosphere (PH 2 O / PH 2 ) and the degree of oxidation of the soaking atmosphere (PH 2 O / PH 2 ), A surface oxide layer is formed to control the amount of oxygen in a steel sheet after recrystallization annealing and to stably and reliably perform the nitriding treatment of the steel sheet performed after the primary recrystallization annealing and before the start of secondary recrystallization in finish annealing. The material thus obtained is coated with an annealing separator containing MgO as a main component, and then subjected to secondary recrystallization and finish annealing for the purpose of blunting.

ここで、一次再結晶焼鈍後から仕上焼鈍における二次再
結晶開始前までの間に行う鋼板の窒化処理については、
何等限定するものではない。たとえば、仕上焼鈍時の雰
囲気中の窒素分圧を高くする方法、アンモニアガス等窒
化能のあるガスを雰囲気に添加する方法、窒化マンガ
ン、窒化クロム等窒化能のある金属窒化物を焼鈍分離剤
に添加する方法等を用いることができる。
Here, for the nitriding treatment of the steel sheet performed after the primary recrystallization annealing and before the start of the secondary recrystallization in the finish annealing,
It is not limited in any way. For example, a method of increasing the nitrogen partial pressure in the atmosphere during finish annealing, a method of adding a gas having a nitriding ability such as ammonia gas to the atmosphere, and a metal nitride having a nitriding ability such as manganese nitride and chromium nitride as an annealing separator. A method of adding or the like can be used.

(実施例) 実施例1 重量で、Si:3.2%、酸可溶性Al:0.027%、N:0.007%、M
n:0.13%、S:0.007%、C:0.05%、残部Feおよび不可避
的不純物からなるスラブを、1150℃に加熱した後熱間圧
延して1.8mm厚さの熱延板とした。
(Example) Example 1 By weight, Si: 3.2%, acid-soluble Al: 0.027%, N: 0.007%, M
A slab consisting of n: 0.13%, S: 0.007%, C: 0.05%, the balance Fe and unavoidable impurities was heated to 1150 ° C. and then hot rolled to obtain a hot rolled sheet having a thickness of 1.8 mm.

この熱延板を1120℃で2分間、次いで900℃で2分間焼
鈍(2段階焼鈍)した後、0.20mmの最終板厚へ冷間圧延
した。この冷延板に、酸化度(PH2O/PH2):0.35の雰囲
気中で昇温速度10℃/s、20℃/s、30℃/s、40℃/sで830
℃まで加熱し、830℃で90秒間保持する一次再結晶焼鈍
を施した。
The hot-rolled sheet was annealed at 1120 ° C. for 2 minutes and then at 900 ° C. for 2 minutes (two-step annealing), and then cold-rolled to a final sheet thickness of 0.20 mm. This cold-rolled sheet was heated to 830 at a heating rate of 10 ℃ / s, 20 ℃ / s, 30 ℃ / s, 40 ℃ / s in an atmosphere with an oxidation degree (PH 2 O / PH 2 ) of 0.35.
Primary recrystallization annealing was performed by heating to 830 ° C and holding at 830 ° C for 90 seconds.

次いで、窒化を目的に5%フェロ窒化マンガンを添加し
たMgOを主成分とする焼鈍分離剤を塗布した後、仕上焼
鈍を行った。
Then, after applying an annealing separator having MgO as a main component to which 5% ferromanganese nitride was added for the purpose of nitriding, finish annealing was performed.

一次再結晶焼鈍における昇温速度、一次再結晶焼鈍後の
鋼板の酸素量および製品の磁気特性(磁束密度および製
品にレーザを5mm間隔で照射し磁区細分化処理を行った
後の鉄損値)を第1表に示す。
Temperature rising rate in primary recrystallization annealing, oxygen content of steel sheet after primary recrystallization annealing, and magnetic properties of products (magnetic flux density and iron loss value after magnetic domain refinement treatment by irradiating product with laser at 5 mm intervals) Is shown in Table 1.

実施例2 実施例1におけると同一の冷延板を用いて、一次再結晶
焼鈍における雰囲気の酸化度(PH2O/PH2)を0.15〜0.8
の範囲の種々の条件で、昇温速度20℃/sで830℃まで昇
温し、830℃で雰囲気の酸化度(PH2O/PH2)を0.35に切
り換え90秒間保持する一次再結晶焼鈍を施した。
Example 2 Using the same cold-rolled sheet as in Example 1, the degree of oxidation (PH 2 O / PH 2 ) in the atmosphere during primary recrystallization annealing was 0.15 to 0.8.
Under various conditions in the range, the temperature is raised to 830 ° C at a heating rate of 20 ° C / s, and the oxidization degree (PH 2 O / PH 2 ) of the atmosphere is changed to 0.35 at 830 ° C and held for 90 seconds. Was applied.

次いで、アンモニアを含む雰囲気ガス中で鋼板の増窒素
量が0.012%となるような窒化処理を行った後、MgOを主
成分とする焼鈍分離剤を塗布し、仕上焼鈍を行った。
Next, after performing a nitriding treatment in the atmosphere gas containing ammonia such that the amount of nitrogen increase of the steel sheet was 0.012%, an annealing separator having MgO as a main component was applied and finish annealing was performed.

一次再結晶焼鈍における昇温時の雰囲気の酸化度(PH2O
/PH2)、一次再結晶焼鈍後の鋼板の酸素量および製品の
磁気特性を、第2表に示す(鉄損はレーザ照射後)。
Oxidation degree of atmosphere (PH 2 O
/ PH 2 ), oxygen content of the steel sheet after primary recrystallization annealing and magnetic properties of the product are shown in Table 2 (iron loss after laser irradiation).

(発明の効果) 本発明は、以上述べたように、一次再結晶後の鋼板への
窒化処理により二次再結晶に必要なインヒビターを形成
する方向性電磁鋼板の製造方法において、一次再結晶焼
鈍における昇温過程と均熱過程を分離して雰囲気の酸化
度を管理し鋼板の表面酸化層を制御することにより、磁
気特性の優れた方向性電磁鋼板を安定して製造すること
ができる。
(Effects of the Invention) As described above, the present invention provides a method for producing a grain-oriented electrical steel sheet in which an inhibitor required for secondary recrystallization is formed by nitriding the steel sheet after primary recrystallization. By controlling the temperature oxidation process of the atmosphere and controlling the surface oxidation layer of the steel sheet by separating the temperature increasing process and the soaking process in (1), it is possible to stably manufacture the grain-oriented electrical steel sheet having excellent magnetic properties.

【図面の簡単な説明】[Brief description of drawings]

第1図は、一次再結晶焼鈍の昇温過程における雰囲気の
酸化度(PH2O/PH2)y、均熱過程における雰囲気の酸化
度(PH2O/PH2)xとフォルステライト皮膜の性状の関係
を示す図、第2図は、一次再結晶焼鈍時の雰囲気の酸化
度(PH2O/PH2)と仕上焼鈍時の850℃での鋼板の増窒素
量の関係を示す図、第3図は、一次再結晶焼鈍時の雰囲
気の酸化度(PH2O/PH2)と製品の磁気特性の関係を示す
図、第4図は、一次再結晶焼鈍の昇温過程における保持
温度と一次再結晶焼鈍後の鋼板の酸素量および仕上焼鈍
での鋼板の増窒素量の関係を示す図、第5図は、酸化物
(FeO,Fe2SiO4,SiO2)の平衡状態図である。
Figure 1 is a degree of oxidation of atmosphere in the Atsushi Nobori process of the primary recrystallization annealing (PH 2 O / PH 2) y, the degree of oxidation of atmosphere in the soaking process (PH 2 O / PH 2) of the x and forsterite coating FIG. 2 is a diagram showing the relationship of properties, and FIG. 2 is a diagram showing the relationship between the degree of oxidation (PH 2 O / PH 2 ) in the atmosphere during primary recrystallization annealing and the amount of nitrogen increase in the steel sheet at 850 ° C. during finish annealing, Figure 3 shows the relationship between the degree of oxidation (PH 2 O / PH 2 ) in the atmosphere during primary recrystallization annealing and the magnetic properties of the product. Figure 4 shows the holding temperature during the temperature rise process of primary recrystallization annealing. And Fig. 5 is a diagram showing the relationship between the oxygen content of the steel sheet after primary recrystallization annealing and the nitrogen content of the steel sheet during finish annealing. Fig. 5 is an equilibrium diagram of oxides (FeO, Fe 2 SiO 4 , SiO 2 ). is there.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西山 敏夫 兵庫県姫路市広畑区富士町1番地 新日本 製鐵株式會社広畑製鐵所内 (56)参考文献 特開 平2−274813(JP,A) 特公 昭57−1575(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Toshio Nishiyama Inventor Toshio Nishiyama 1 Fuji-machi, Hirohata-ku, Himeji-shi, Hyogo Nippon Steel Stock Company, Hirohata Works (56) Reference JP-A-2-274813 (JP, A) Japanese Patent Publication Sho 57-1575 (JP, B2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量で、Si:0.8〜6.8%、酸可溶性Al:0.00
8〜0.048%、残部Feおよび不可避的不純物からなるスラ
ブを、熱間圧延、冷間圧延、一次再結晶焼鈍、焼鈍分離
剤塗布、仕上焼鈍の各工程で処理するプロセスにあっ
て、前記一次再結晶焼鈍後から仕上焼鈍における二次再
結晶開始までの間に鋼板を窒化処理する方向性電磁鋼板
の製造方法において、一次再結晶焼鈍工程の均熱過程に
おける雰囲気の酸化度(PH2O/PH2):xに対して、昇温過
程における650〜800℃の温度域を少なくとも5秒間、下
記不等式で規定する領域内の酸化度(PH2O/PH2):yを有
する雰囲気中で焼鈍することを特徴とする磁気特性の優
れた方向性電磁鋼板の製造方法。 0.15≦x≦0.80 0.15≦y≦0.80 0.16x+0.11≦y≦−0.41x+0.78
1. Si: 0.8-6.8% by weight, acid-soluble Al: 0.00
A slab consisting of 8 to 0.048% and the balance Fe and unavoidable impurities is treated in each step of hot rolling, cold rolling, primary recrystallization annealing, annealing separator application, and finish annealing. In the method for producing a grain-oriented electrical steel sheet in which the steel sheet is nitrided between the time of crystal annealing and the start of secondary recrystallization in finish annealing, the degree of oxidation (PH 2 O / PH) in the atmosphere during the soaking process of the primary recrystallization annealing step is used. 2 ): For x, 650 to 800 ℃ in the temperature rising process for at least 5 seconds, in an atmosphere having an oxidation degree (PH 2 O / PH 2 ): y within the region defined by the following inequality: A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, the method comprising: 0.15 ≤ x ≤ 0.80 0.15 ≤ y ≤ 0.80 0.16x + 0.11 ≤ y ≤ -0.41x + 0.78
JP1128423A 1989-04-14 1989-05-22 Method for producing grain-oriented electrical steel sheet with excellent magnetic properties Expired - Lifetime JPH0756047B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1128423A JPH0756047B2 (en) 1989-05-22 1989-05-22 Method for producing grain-oriented electrical steel sheet with excellent magnetic properties
EP90107029A EP0392534B1 (en) 1989-04-14 1990-04-12 Method of producing oriented electrical steel sheet having superior magnetic properties
DE69032461T DE69032461T2 (en) 1989-04-14 1990-04-12 Process for the production of grain-oriented electrical steel sheets with excellent magnetic properties
US07/508,772 US5082509A (en) 1989-04-14 1990-04-12 Method of producing oriented electrical steel sheet having superior magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1128423A JPH0756047B2 (en) 1989-05-22 1989-05-22 Method for producing grain-oriented electrical steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH02305921A JPH02305921A (en) 1990-12-19
JPH0756047B2 true JPH0756047B2 (en) 1995-06-14

Family

ID=14984392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1128423A Expired - Lifetime JPH0756047B2 (en) 1989-04-14 1989-05-22 Method for producing grain-oriented electrical steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JPH0756047B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4044739B2 (en) * 2001-05-22 2008-02-06 新日本製鐵株式会社 Unidirectional silicon steel sheet excellent in film adhesion of tension imparting insulating film and method for producing the same
KR101919521B1 (en) 2016-12-22 2018-11-16 주식회사 포스코 Grain oriented electrical steel sheet and method for manufacturing the same
KR102613412B1 (en) * 2019-01-16 2023-12-15 닛폰세이테츠 가부시키가이샤 Manufacturing method of unidirectional electrical steel sheet
EP3913089B1 (en) * 2019-01-16 2024-04-24 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02274813A (en) * 1989-04-14 1990-11-09 Nippon Steel Corp Primary recrystallizing annealing method for forming oxide layer having excellent nitriding ability

Also Published As

Publication number Publication date
JPH02305921A (en) 1990-12-19

Similar Documents

Publication Publication Date Title
EP0392534B1 (en) Method of producing oriented electrical steel sheet having superior magnetic properties
KR100442101B1 (en) The method for producing an electromagnetic steel sheet having high magnetic flux density
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH05112827A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic property and coating film pr0perty
JP3456862B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2679944B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP2653638B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP3474837B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet having B8 of 1.91 T or more
JP2680987B2 (en) Method for producing grain-oriented silicon steel sheet with low iron loss
JPH0756047B2 (en) Method for producing grain-oriented electrical steel sheet with excellent magnetic properties
JP4331886B2 (en) Method for producing grain-oriented silicon steel sheet
JPH0762440A (en) Manufacture of grain-oriented silicon steel sheet with highly tensile and uniform glass coating film and excellent in magnetic property
JP2826903B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with good glass coating
JP2001049351A (en) Production of grain-oriented silicon steel sheet high in magnetic flux density
JP4422384B2 (en) Method for producing grain-oriented electrical steel sheet
JP3148096B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH11241120A (en) Production of grain-oriented silicon steel sheet having uniform forsterite film
JP4585141B2 (en) Method for producing grain-oriented silicon steel sheet and decarburization annealing furnace
JP4427225B2 (en) Method for producing grain-oriented electrical steel sheet
JP3154935B2 (en) Manufacturing method of low iron loss mirror-oriented unidirectional electrical steel sheet with high magnetic flux density
JP3148094B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JP3314844B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties and coating properties
JP2779696B2 (en) Manufacturing method of grain-oriented high silicon steel sheet
JP3148093B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 14

EXPY Cancellation because of completion of term