JPS6360269A - Heat-treatment of metallic titanium - Google Patents
Heat-treatment of metallic titaniumInfo
- Publication number
- JPS6360269A JPS6360269A JP20379986A JP20379986A JPS6360269A JP S6360269 A JPS6360269 A JP S6360269A JP 20379986 A JP20379986 A JP 20379986A JP 20379986 A JP20379986 A JP 20379986A JP S6360269 A JPS6360269 A JP S6360269A
- Authority
- JP
- Japan
- Prior art keywords
- metallic
- dew point
- atmosphere
- titanium
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims description 33
- 239000010936 titanium Substances 0.000 title claims description 33
- 229910052719 titanium Inorganic materials 0.000 title claims description 33
- 238000010438 heat treatment Methods 0.000 title claims description 20
- 239000012299 nitrogen atmosphere Substances 0.000 claims abstract description 9
- 238000001816 cooling Methods 0.000 claims abstract description 4
- 229910052751 metal Inorganic materials 0.000 claims description 26
- 239000002184 metal Substances 0.000 claims description 26
- 239000012298 atmosphere Substances 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 6
- 239000007789 gas Substances 0.000 abstract description 8
- 239000002932 luster Substances 0.000 abstract description 6
- 229910000831 Steel Inorganic materials 0.000 abstract description 5
- 238000000137 annealing Methods 0.000 abstract description 5
- 239000010959 steel Substances 0.000 abstract description 5
- 238000005482 strain hardening Methods 0.000 abstract description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- 229910052786 argon Inorganic materials 0.000 description 5
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Abstract
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は金属チタンの熱処理に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to heat treatment of titanium metal.
[従来の技術]
冷間加工された金属チタンは通常600〜800℃で熱
処理されるが、金属チタンは活性の高い金属であるため
、300℃以上の高温においては、酸化物、窒化物、水
素化物等を生成し、変色や脆化が起り易い、従って従来
金属チタンの熱処理は高真空中またはアルゴンガス雰囲
気で行われていたが、専用の設備を要したり、高真空や
アルゴンガス雰囲気とするためにコストアップとなった
り。[Prior art] Cold-worked titanium metal is usually heat treated at 600 to 800°C, but since titanium metal is a highly active metal, at high temperatures of 300°C or higher, it is susceptible to oxides, nitrides, and hydrogen. Therefore, heat treatment of titanium metal has traditionally been carried out in a high vacuum or in an argon gas atmosphere, but it requires special equipment and is difficult to handle in a high vacuum or argon gas atmosphere. This may result in increased costs.
あるいは例えば鉄鋼用の光輝焼鈍炉のごとき既設設備を
用いる場合は炉内雰囲気をアルゴンガスに替えるための
長時間に亘る煩瑣な作業が必要で、よりコストが安く且
つ簡易な熱処理方法が望まれていた。Alternatively, when using existing equipment such as a bright annealing furnace for steel, a long and complicated process is required to change the atmosphere inside the furnace to argon gas, and a cheaper and simpler heat treatment method is desired. Ta.
[発明が解決しようとする問題点]
本発明は、金属チタンの熱処理を高純度窒素の雰囲気で
行い、表面の光沢がよく且つ優れた機械的性質を有する
金属チタンを製造することを目的とし又、これにより鉄
鋼用光輝焼鈍炉等の既存設備を使用して優れた金属チタ
ンを安価に且つ簡易に製造することを目的としている。[Problems to be Solved by the Invention] The object of the present invention is to heat-treat titanium metal in an atmosphere of high-purity nitrogen to produce titanium metal that has a glossy surface and excellent mechanical properties. The purpose of this is to inexpensively and easily produce superior titanium metal using existing equipment such as bright annealing furnaces for steel.
[問題点を解決するための手段] 本発明は、金属チタンを、露点:−30℃以F。[Means for solving problems] The present invention uses titanium metal at a dew point of -30°C or lower.
酸素700ppm以下の窒素雰囲気で、600〜800
℃の炉内に5分以下の所要時間保持した後、300℃以
下まで該雰囲気で冷却することを特徴とする金属チタン
の熱処理方法である。600 to 800 in a nitrogen atmosphere with less than 700 ppm of oxygen
This is a heat treatment method for titanium metal, which is characterized in that the titanium metal is kept in a furnace at a temperature of 5 minutes or less for a required time of 5 minutes or less, and then cooled to 300°C or less in the atmosphere.
[作用、実施例]
本発明者等は、第1表に示した金属チタンの薄板に、各
種の窒素雰囲気中に800℃×5分間保持し、以後同じ
雰囲気下で300℃迄冷却する熱処理を行い、金属チタ
ンの薄板表面の酸化膜厚みと光沢を調査した。[Function, Examples] The present inventors performed a heat treatment on the metal titanium thin plates shown in Table 1 by holding them in various nitrogen atmospheres at 800°C for 5 minutes, and then cooling them to 300°C in the same atmosphere. The thickness and gloss of the oxide film on the surface of thin metal titanium plates were investigated.
第1図は熱処理後の金属チタン表面膜厚と窒素雰囲気ガ
ス組成の関係を示した図である。第1図で1は窒素雰囲
気ガスの露点が一12℃、2は露点が一20℃、3は露
点が一30℃、4は露点が一58℃の場合を示している
。又図中鎖MA−Aは金属チタン表面の酸化膜厚みをG
、D、S (グロー放電発光分光分析:独RFV社製)
で測定して500人の場合を示している。本発明者等は
金属チタンのこの表面の酸化膜厚みが500人よりも薄
い場合は金属チタンの表面には着色がなく、優れた金属
光沢が保たれるとの知見を得た。即ち第1図で酸化膜厚
みがA−A以下の範囲では、常に金属光沢が保たれる。FIG. 1 is a diagram showing the relationship between the surface film thickness of metallic titanium and the nitrogen atmosphere gas composition after heat treatment. In FIG. 1, 1 shows the case where the dew point of the nitrogen atmosphere gas is 112°C, 2 shows the case where the dew point is 120°C, 3 shows the dew point of 130°C, and 4 shows the case where the dew point is 158°C. In addition, chain MA-A in the figure indicates the thickness of the oxide film on the surface of metallic titanium.
, D, S (Glow discharge emission spectrometry: manufactured by RFV, Germany)
The figure shows the case of 500 people. The present inventors have found that when the thickness of the oxide film on the surface of metallic titanium is less than 500 mm, the surface of metallic titanium is not colored and excellent metallic luster is maintained. That is, in the range where the oxide film thickness is below A-A in FIG. 1, metallic luster is always maintained.
金属チタンの表面の酸化膜厚みを500Å以下とするた
めには、第1図のごとく例えば露点が一20℃の窒素ガ
スでは酸素濃度を約350ppm以下(図中B点)に、
露点が一30℃の窒素ガスでは約700ppm以下(図
中C点)に、又露点が一58℃の場合は約800ppm
以下に酸素濃度を管理すればよい。In order to reduce the thickness of the oxide film on the surface of metallic titanium to 500 Å or less, as shown in Fig. 1, for example, in nitrogen gas with a dew point of 120°C, the oxygen concentration should be reduced to about 350 ppm or less (point B in the figure).
For nitrogen gas with a dew point of 130°C, it is approximately 700 ppm or less (point C in the diagram), and when the dew point is 158°C, it is approximately 800 ppm.
The oxygen concentration can be managed as follows.
次に本発明を具体的に説明する。Next, the present invention will be specifically explained.
本発明で金属チタンとは、例えば薄板や線のごとく、冷
間加工後に熱処理を行うもので、熱処理後に優れた材質
と美麗な表面性状が望まれるチタン材料をいう。本発明
では露点が一30℃以下で酸素濃度が700ppm以下
の窒素ガスを用いるが、この窒素ガスの条件は例えば鉄
鋼用の光輝焼鈍炉のごとき既存設備で操業管理が容易な
範囲であり、且つ前述のごとく優れた金属光沢の金属チ
タンが得られる範囲である。熱処理は600〜800℃
で5分以内で行うこととしたが、600℃以下の温度で
は熱処理後の靭性が不十分であり、又薄板や線の場合に
は800℃×5分間以上加熱しても特に材質の向上はな
い。In the present invention, metallic titanium refers to a titanium material that is heat treated after cold working, such as a thin plate or wire, and is desired to have excellent material quality and beautiful surface properties after heat treatment. In the present invention, nitrogen gas with a dew point of 130° C. or less and an oxygen concentration of 700 ppm or less is used, but the conditions for this nitrogen gas are within a range that can be easily managed with existing equipment, such as a bright annealing furnace for steel, and As mentioned above, this is the range in which titanium metal with excellent metallic luster can be obtained. Heat treatment is 600-800℃
However, if the temperature is below 600°C, the toughness after heat treatment will be insufficient, and in the case of thin plates or wires, heating at 800°C for more than 5 minutes will not improve the quality of the material. do not have.
尚第1図は800℃×5分間の加熱の例であるが、加熱
温度がこれよりも低い場合や、加熱時間がこれよりも短
かい場合には、金属チタン表面の酸化膜の厚みは第1図
の3よりも更に薄くなり優れた金属光沢が得られる事は
明らかである。本発明では、加熱後チタン金属は300
℃以下迄、同じ窒素雰囲気中で冷却するが、これは冷却
時の変色を防止するためである。Although Fig. 1 shows an example of heating at 800°C for 5 minutes, if the heating temperature is lower than this or the heating time is shorter than this, the thickness of the oxide film on the surface of titanium metal will be It is clear that it is even thinner than 3 in Figure 1 and provides excellent metallic luster. In the present invention, the titanium metal after heating is 300
The sample is cooled in the same nitrogen atmosphere to a temperature below 0.degree. C., in order to prevent discoloration during cooling.
第2表は第1表と同じ金属チタンの薄板を1本発明の方
法で熱処理した場合Aと、従来のアルゴンガス雰囲気で
熱処理した場合Bの、熱処理条件と熱処理後の金属チタ
ンの性質の比較である。第2表Aにみられるごとく5本
発明の方法で熱処理した金属チタンは、標準的な機械的
性質を備え、その表面も銀白色の優れた金属光沢であり
、従来のコストの高いアルゴンガス雰囲気での熱処理材
Bと同等の性質を有している。Table 2 shows a comparison of the heat treatment conditions and the properties of titanium metal after heat treatment of the same thin plates of titanium metal as in Table 1, A when heat treated by the method of the present invention, and B when heat treated in a conventional argon gas atmosphere. It is. As shown in Table 2 A, titanium metal heat-treated by the method of the present invention has standard mechanical properties, and its surface has a silvery white and excellent metallic luster. It has the same properties as heat-treated material B.
第 2 表
* GLO5S肚T[ミ1セ、GM−3M 、村上色彩
(株)、による。Table 2 * GLO5S 肚T [MI1SE, GM-3M, Murakami Color Co., Ltd.].
[発明の効果]
本発明により、金属チタンの熱処理を、高価なアルゴン
ガスや高真空焼鈍炉を用いる事なく、安価に且つ簡易に
行い、従来品に遜色のない優れた金属チタンを製造する
事が可能となった。又本発明の窒素ガスの露点や酸素1
度は、鉄鋼等の既存設備で十分管理制御が可能な範囲内
であり、従って専用設備を設置することなく、既存の設
備で金属チタンの熱処理を簡易に行う事が可能となった
もので、その効果は大きい。[Effects of the Invention] According to the present invention, it is possible to heat-treat titanium metal inexpensively and easily without using expensive argon gas or a high-vacuum annealing furnace, and to produce excellent titanium metal that is comparable to conventional products. became possible. In addition, the dew point of nitrogen gas and oxygen 1 of the present invention
The degree of heat treatment of titanium metal is within the range that can be sufficiently controlled using existing equipment such as steel, so it is now possible to easily heat treat titanium metal with existing equipment without installing special equipment. The effect is great.
第1図は、窒素雰囲気の露点、酸素濃度と、熱処理後の
金属チタン表面の酸化膜厚みの関係を示す図である。
1:露点−12℃、2:露点−20℃、3:露点−30
℃、4:露点−58℃。FIG. 1 is a diagram showing the relationship between the dew point of a nitrogen atmosphere, the oxygen concentration, and the oxide film thickness on the surface of metal titanium after heat treatment. 1: Dew point -12℃, 2: Dew point -20℃, 3: Dew point -30
℃, 4: Dew point -58℃.
Claims (1)
m以下の窒素雰囲気で、600〜800℃の炉内に5分
以下の所要時間保持した後、300℃以下まで該雰囲気
で冷却することを特徴とする金属チタンの熱処理方法Metal titanium, dew point: -30℃ or less, oxygen: 700pp
A method for heat treatment of titanium metal, characterized by holding it in a furnace at 600 to 800°C for a time of 5 minutes or less in a nitrogen atmosphere of 300°C or less, and then cooling it in the atmosphere to 300°C or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20379986A JPS6360269A (en) | 1986-09-01 | 1986-09-01 | Heat-treatment of metallic titanium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20379986A JPS6360269A (en) | 1986-09-01 | 1986-09-01 | Heat-treatment of metallic titanium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6360269A true JPS6360269A (en) | 1988-03-16 |
JPH0343338B2 JPH0343338B2 (en) | 1991-07-02 |
Family
ID=16479931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20379986A Granted JPS6360269A (en) | 1986-09-01 | 1986-09-01 | Heat-treatment of metallic titanium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6360269A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5254183A (en) * | 1991-12-20 | 1993-10-19 | United Techynologies Corporation | Gas turbine elements with coke resistant surfaces |
US5298091A (en) * | 1991-12-20 | 1994-03-29 | United Technologies Corporation | Inhibiting coke formation by heat treating in nitrogen atmosphere |
JP2000502150A (en) * | 1995-11-24 | 2000-02-22 | エスシーエー ハイジーン ペーパー アーベー | Soft, bulky absorbent paper containing chemi-thermomechanical pulp |
WO2002072344A3 (en) * | 2001-03-08 | 2002-12-12 | Deutsche Titan Gmbh | Method for producing a titanium film comprising a nitride surface coating |
US7047781B1 (en) | 1995-01-27 | 2006-05-23 | Kabushiki Kaisha Kanemitsu | Sheet metal member having an annular peripheral wall and a method of thickening an annular peripheral wall of the sheet metal member |
WO2015111361A1 (en) * | 2014-01-24 | 2015-07-30 | 勝義 近藤 | Powder material of solid solution of nitrogen in titanium, titanium material, and process for producing powder material of solid solution of nitrogen in titanium |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56116863A (en) * | 1980-02-18 | 1981-09-12 | Sumitomo Metal Ind Ltd | Continuous annealing of titanium and titanium alloy strip |
-
1986
- 1986-09-01 JP JP20379986A patent/JPS6360269A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56116863A (en) * | 1980-02-18 | 1981-09-12 | Sumitomo Metal Ind Ltd | Continuous annealing of titanium and titanium alloy strip |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5254183A (en) * | 1991-12-20 | 1993-10-19 | United Techynologies Corporation | Gas turbine elements with coke resistant surfaces |
US5298091A (en) * | 1991-12-20 | 1994-03-29 | United Technologies Corporation | Inhibiting coke formation by heat treating in nitrogen atmosphere |
US7047781B1 (en) | 1995-01-27 | 2006-05-23 | Kabushiki Kaisha Kanemitsu | Sheet metal member having an annular peripheral wall and a method of thickening an annular peripheral wall of the sheet metal member |
JP2000502150A (en) * | 1995-11-24 | 2000-02-22 | エスシーエー ハイジーン ペーパー アーベー | Soft, bulky absorbent paper containing chemi-thermomechanical pulp |
WO2002072344A3 (en) * | 2001-03-08 | 2002-12-12 | Deutsche Titan Gmbh | Method for producing a titanium film comprising a nitride surface coating |
WO2015111361A1 (en) * | 2014-01-24 | 2015-07-30 | 勝義 近藤 | Powder material of solid solution of nitrogen in titanium, titanium material, and process for producing powder material of solid solution of nitrogen in titanium |
Also Published As
Publication number | Publication date |
---|---|
JPH0343338B2 (en) | 1991-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6360269A (en) | Heat-treatment of metallic titanium | |
JPH0548293B2 (en) | ||
US3954521A (en) | Method of producing grain oriented silicon steel | |
CN107245564B (en) | A kind of control method of non-orientation silicon steel internal oxidation layer | |
JPH059703A (en) | Surface hardening treatment of titanium material | |
JP2003286561A (en) | Method for nitriding steel plate and steel product | |
JPH02200758A (en) | Method for annealing extra thin titanium alloy coil | |
CN113073177B (en) | Control method for improving components of oxidation layer of oriented steel | |
JPS6360267A (en) | Heat-treatment of metallic titanium | |
KR100515939B1 (en) | Manufacturing process to improve the oxidation property of ferritic stainless steel bright annealing plates | |
JPH0730389B2 (en) | Annealing method | |
JPS63176423A (en) | Heat treatment furnace | |
JPS61288021A (en) | Manufacture of ferritic stainless cold rolled steel strip superior in surface gloss | |
KR100321047B1 (en) | Annealing method of ferrite stainless steel strip for surface hardening | |
JPH03219052A (en) | Stainless steel excellent in thermal discoloration resistance and its production | |
JP2803108B2 (en) | Heat treatment method for steel | |
JPS62174364A (en) | Manufacture of high purity iron-carbon alloy | |
JPS60255919A (en) | Method for preventing nitriding in annealing stainless steel | |
JPS63130715A (en) | Decarburized annealing method for steel sheet for shadow mask | |
JP2004315907A (en) | Heat treatment equipment line and heat treatment method for titanium material | |
JPS63109153A (en) | Method for blackening stainless steel | |
JPS62253731A (en) | Method for preventing deterioration of hot-treating roll | |
CN115181843A (en) | Heat treatment method of heat-resistant steel chuck | |
JPH07252534A (en) | Heat treatment method of austenitic stainless steel sheet | |
JP2002294335A (en) | Annealing method for bell-type annealing furnace with suppressed decarburizing reaction |