JPH0343338B2 - - Google Patents

Info

Publication number
JPH0343338B2
JPH0343338B2 JP61203799A JP20379986A JPH0343338B2 JP H0343338 B2 JPH0343338 B2 JP H0343338B2 JP 61203799 A JP61203799 A JP 61203799A JP 20379986 A JP20379986 A JP 20379986A JP H0343338 B2 JPH0343338 B2 JP H0343338B2
Authority
JP
Japan
Prior art keywords
titanium
titanium metal
dew point
less
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61203799A
Other languages
Japanese (ja)
Other versions
JPS6360269A (en
Inventor
Masayoshi Kondo
Seiichi Soeda
Hiromitsu Naito
Kenichi Suzuki
Masayuki Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20379986A priority Critical patent/JPS6360269A/en
Publication of JPS6360269A publication Critical patent/JPS6360269A/en
Publication of JPH0343338B2 publication Critical patent/JPH0343338B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は金属チタンの熱処理に関する。 [従来の技術] 冷間加工された金属チタンは通常600〜800℃で
熱処理されるが、金属チタンは活性の高い金属で
あるため、300℃以上の高温においては、酸化物、
窒化物、水素化物等を生成し、変色や脆化が起り
易い。従つて従来金属チタンの熱処理は高真空中
またはアルゴンガス雰囲気で行われていたが、専
用の設備を要したり、高真空やアルゴンガス雰囲
気とするためにコストアツプとなつたり、あるい
は例えば鉄鋼用の光輝焼鈍炉のごとき既設設備を
用いる場合は炉内雰囲気をアルゴンガスに替える
ための長時間に亘る煩瑣な作業が必要で、よりコ
ストが安く且つ簡易な熱処理方法が望まれてい
た。 [発明が解決しようとする問題点] 本発明は、金属チタンの熱処理を高純度窒素の
雰囲気で行い、表面の光沢がよく且つ優れた機械
的性質を有する金属チタンを製造することを目的
とし又、これにより鉄鋼用光輝焼鈍炉等の既存設
備を使用して優れた金属チタンを安価に且つ簡易
に製造することを目的としている。 [問題点を解決するための手段] 本発明は、金属チタンを、露点:−30℃以下、
酸素700ppm以下の窒素雰囲気で、600〜800℃の
炉内に5分以下の所要時間保持した後、300℃以
下まで該雰囲気で冷却することを特徴とする金属
チタンの熱処理方法である。 [作用、実施例] 本発明者等は、第1表に示した金属チタンの薄
板に、各種の窒素雰囲気中に800℃×5分間保持
し、以後同じ雰囲気下で、300℃迄冷却する熱処
理を行い、金属チタンの薄板表面の酸化膜厚みと
光沢を調査した。
[Industrial Field of Application] The present invention relates to heat treatment of titanium metal. [Prior art] Cold-worked titanium metal is usually heat treated at 600 to 800°C, but since titanium metal is a highly active metal, at high temperatures of 300°C or higher, oxides,
Generates nitrides, hydrides, etc., which can easily cause discoloration and embrittlement. Conventionally, heat treatment of titanium metal has been carried out in a high vacuum or in an argon gas atmosphere, but this requires specialized equipment, increases costs due to the high vacuum or argon gas atmosphere, or, for example, When using existing equipment such as a bright annealing furnace, a long and cumbersome operation is required to change the atmosphere in the furnace to argon gas, so a cheaper and simpler heat treatment method has been desired. [Problems to be Solved by the Invention] The object of the present invention is to heat-treat titanium metal in an atmosphere of high-purity nitrogen to produce titanium metal that has a glossy surface and excellent mechanical properties. The purpose of this is to inexpensively and easily produce superior titanium metal using existing equipment such as bright annealing furnaces for steel. [Means for solving the problems] The present invention provides metallic titanium with a dew point of -30°C or less,
This is a heat treatment method for titanium metal, which is characterized by holding the titanium metal in a nitrogen atmosphere containing 700 ppm or less of oxygen in a furnace at 600 to 800°C for a required time of 5 minutes or less, and then cooling to 300°C or less in the atmosphere. [Function, Examples] The present inventors conducted a heat treatment on the metal titanium thin plates shown in Table 1 by holding them in various nitrogen atmospheres at 800°C for 5 minutes, and then cooling them to 300°C in the same atmosphere. The thickness and gloss of the oxide film on the surface of thin metal titanium plates were investigated.

【表】 第1図は熱処理後の金属チタン表面膜厚と窒素
雰囲気ガス組成の関係を示した図である。第1図
で1は窒素雰囲気ガスの露点が−12℃、2は露点
が−20℃、3が露点が−30℃、4は露点が−58℃
の場合を示している。又図中鎖線A−Aは金属チ
タン表面の酸化膜厚みをG.D.S(グロー放電発光
分光分析:独RFV社製)で測定して500Åの場合
を示している。本発明者等は金属チタンのこの表
面の酸化膜厚みが500Åよりも薄い場合は金属チ
タンの表面には着色がなく、優れた金属光沢が保
たれるとの知見を得た。即ち第1図で酸化膜厚み
がA−A以下の範囲では、常に金属光沢が保たれ
る。 金属チタンの表面の酸化膜厚みを500Å以下と
するためには、第1図のごとく例えば露点が−20
℃の窒素ガスでは酸素濃度を約350ppm以下(図
中B点)に、露点が−30℃の窒素ガスでは約
700ppm以下(図中C点)に、又露点が−58℃の
場合は約800ppm以下に酸素濃度を管理すればよ
い。 次に本発明を具体的に説明する。 本発明で金属チタンとは、例えば薄板や線のご
とく、冷間加工後に熱処理を行うもので、熱処理
後に優れた材質と美麗な表面性状が望まれるチタ
ン材料をいう。本発明では露点が−30℃以下で酸
素濃度が700ppm以下の窒素ガスを用いるが、こ
の窒素ガスの条件は例えば鉄鋼用の光輝焼鈍炉の
ごとき既存設備で操業管理が容易な範囲であり、
且つ前述のごとく優れた金属光沢の金属チタンが
得られる範囲である。熱処理は600〜800℃で5分
以内で行うこととしたが、600℃以下の温度では
熱処理後の靭性が不十分であり、又薄板や線の場
合には800℃×5分間以上加熱しても特に材質の
向上はない。 尚第1図は800℃×5分間の加熱の例であるが、
加熱温度がこれによりも低い場合や、加熱時間が
これによりも短かい場合には、金属チタン表面の
酸化膜の厚みは第1図の3よりも更に薄くなり優
れた金属光沢が得られる事は明らかである。本発
明では、加熱後チタン金属は300℃以下迄、同じ
窒素雰囲気中で冷却するが、これは冷却時の変色
を防止するためである。 第2表は第1表と同じ金属チタンの薄板を、本
発明の方法で熱処理した場合Aと、従来のアルゴ
ンガス雰囲気で熱処理した場合Bの、熱処理条件
と熱処理後の金属チタンの性質の比較である。第
2表Aにみられるごとく、本発明の方法で熱処理
した金属チタンは、標準的な機械的性質を備え、
その表面も銀白色の優れた金属光沢であり、従来
のコストの高いアルゴンガス雰囲気での熱処理材
Bと同等の性質を有している。
[Table] FIG. 1 is a diagram showing the relationship between the surface film thickness of metallic titanium and the nitrogen atmosphere gas composition after heat treatment. In Figure 1, 1 has a dew point of nitrogen atmosphere gas of -12°C, 2 has a dew point of -20°C, 3 has a dew point of -30°C, and 4 has a dew point of -58°C.
The case is shown below. In addition, the chain line A-A in the figure indicates the case where the thickness of the oxide film on the surface of metallic titanium is 500 Å as measured by GDS (Glow Discharge Emission Spectroscopy: manufactured by RFV, Germany). The present inventors have found that when the thickness of the oxide film on the surface of metallic titanium is less than 500 Å, the surface of metallic titanium is not colored and excellent metallic luster is maintained. That is, in the range where the oxide film thickness is below A-A in FIG. 1, metallic luster is always maintained. In order to keep the oxide film thickness on the surface of metallic titanium to 500 Å or less, the dew point must be -20 Å as shown in Figure 1.
For nitrogen gas at ℃, the oxygen concentration should be kept below about 350 ppm (point B in the diagram), and for nitrogen gas with a dew point of -30℃, the oxygen concentration should be about 350 ppm or less (point B in the diagram).
The oxygen concentration should be controlled to 700 ppm or less (point C in the figure), or about 800 ppm or less if the dew point is -58°C. Next, the present invention will be specifically explained. In the present invention, metallic titanium refers to a titanium material that is heat treated after cold working, such as a thin plate or wire, and is desired to have excellent material quality and beautiful surface properties after heat treatment. In the present invention, nitrogen gas with a dew point of -30°C or lower and an oxygen concentration of 700 ppm or lower is used, but the nitrogen gas conditions are within a range that can be easily managed using existing equipment, such as bright annealing furnaces for steel.
Moreover, as mentioned above, it is within the range in which metallic titanium with excellent metallic luster can be obtained. Heat treatment was to be carried out at 600 to 800℃ for 5 minutes or less, but if the temperature is below 600℃, the toughness after heat treatment is insufficient, and in the case of thin plates or wires, heating at 800℃ for more than 5 minutes is recommended. There is no particular improvement in material quality. Figure 1 shows an example of heating at 800°C for 5 minutes.
If the heating temperature is lower than this or if the heating time is shorter than this, the thickness of the oxide film on the surface of metallic titanium will be even thinner than 3 in Figure 1, and excellent metallic luster will not be obtained. it is obvious. In the present invention, after heating, the titanium metal is cooled to 300° C. or lower in the same nitrogen atmosphere, and this is to prevent discoloration during cooling. Table 2 shows a comparison of the heat treatment conditions and the properties of titanium metal after heat treatment for the same thin plates of titanium metal as in Table 1: A when heat treated by the method of the present invention and B when heat treated in a conventional argon gas atmosphere. It is. As seen in Table 2 A, titanium metal heat treated by the method of the present invention has standard mechanical properties,
Its surface also has a silvery white and excellent metallic luster, and has properties equivalent to those of material B, which is conventionally heat-treated in an argon gas atmosphere and is expensive.

【表】 [発明の効果] 本発明により、金属チタンの熱処理を、高価な
アルゴンガスや高真空焼鈍炉を用いる事なく、安
価に且つ簡易に行い、従来品に遜色のない優れた
金属チタンを製造する事が可能となつた。又本発
明の窒素ガスの露点や酸素濃度は、鉄鋼等の既存
設備で十分管理制御が可能な範囲内であり、従つ
て専用設備を設置することなく、既存の設備で金
属チタンの熱処理を簡易に行う事が可能となつた
もので、その効果は大きい。
[Table] [Effects of the invention] According to the present invention, titanium metal can be heat-treated easily and inexpensively without using expensive argon gas or high-vacuum annealing furnaces, and titanium metal can be produced with excellent quality comparable to conventional products. It became possible to manufacture it. In addition, the dew point and oxygen concentration of the nitrogen gas of the present invention are within a range that can be sufficiently managed and controlled using existing equipment such as iron and steel. It has become possible to do this, and the effects are great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、窒素雰囲気の露点、酸素濃度と、熱
処理後の金属チタン表面の酸化膜厚みの関係を示
す図である。 1:露点−12℃、2:露点−20℃、3:露点−
30℃、4:露点−58℃。
FIG. 1 is a diagram showing the relationship between the dew point of a nitrogen atmosphere, the oxygen concentration, and the oxide film thickness on the surface of metal titanium after heat treatment. 1: Dew point -12℃, 2: Dew point -20℃, 3: Dew point -
30℃, 4: Dew point -58℃.

Claims (1)

【特許請求の範囲】[Claims] 1 鉄鋼用の光輝焼鈍炉を用いて、金属チタン
を、露点:−30℃以下で酸素:350〜700ppmの窒
素雰囲気で、600〜800℃の炉内に5分以下の所要
時間保持した後、300℃以下まで該雰囲気で冷却
して、表面の膜厚が500Åよりも薄い金属チタン
を製造することを特徴とする金属チタンの熱処理
方法。
1 Using a bright annealing furnace for steel, titanium metal is kept in a furnace at 600 to 800 °C for a time of 5 minutes or less in a nitrogen atmosphere with a dew point of -30 °C or less and oxygen of 350 to 700 ppm, and then 1. A method for heat treatment of titanium metal, comprising cooling titanium metal to 300° C. or lower in the atmosphere to produce titanium metal having a surface film thickness of less than 500 Å.
JP20379986A 1986-09-01 1986-09-01 Heat-treatment of metallic titanium Granted JPS6360269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20379986A JPS6360269A (en) 1986-09-01 1986-09-01 Heat-treatment of metallic titanium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20379986A JPS6360269A (en) 1986-09-01 1986-09-01 Heat-treatment of metallic titanium

Publications (2)

Publication Number Publication Date
JPS6360269A JPS6360269A (en) 1988-03-16
JPH0343338B2 true JPH0343338B2 (en) 1991-07-02

Family

ID=16479931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20379986A Granted JPS6360269A (en) 1986-09-01 1986-09-01 Heat-treatment of metallic titanium

Country Status (1)

Country Link
JP (1) JPS6360269A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298091A (en) * 1991-12-20 1994-03-29 United Technologies Corporation Inhibiting coke formation by heat treating in nitrogen atmosphere
US5254183A (en) * 1991-12-20 1993-10-19 United Techynologies Corporation Gas turbine elements with coke resistant surfaces
WO1996022847A1 (en) 1995-01-27 1996-08-01 Kabushiki Kaisha Kanemitsu Metal sheet having annular peripheral wall and method of thickening annular peripheral wall
SE505388C2 (en) * 1995-11-24 1997-08-18 Sca Hygiene Paper Ab Soft, bulky, absorbent paper containing chemitermomechanical pulp
DE10111109A1 (en) * 2001-03-08 2002-10-31 Deutsche Titan Gmbh Process for producing a titanium foil with a nitrided surface coating
JP6261618B2 (en) * 2014-01-24 2018-01-17 勝義 近藤 Method for producing titanium material and nitrogen solid solution titanium powder material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116863A (en) * 1980-02-18 1981-09-12 Sumitomo Metal Ind Ltd Continuous annealing of titanium and titanium alloy strip

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116863A (en) * 1980-02-18 1981-09-12 Sumitomo Metal Ind Ltd Continuous annealing of titanium and titanium alloy strip

Also Published As

Publication number Publication date
JPS6360269A (en) 1988-03-16

Similar Documents

Publication Publication Date Title
EP0400549B1 (en) Process for producing grainoriented electrical steel sheet having superior magnetic and surface film characteristics
ES459891A1 (en) Process for cube-on-edge oriented boron-bearing silicon steel including normalizing
US3333987A (en) Carbon-stabilized steel products and method of making the same
JPH0343338B2 (en)
US3954521A (en) Method of producing grain oriented silicon steel
RU96121981A (en) Iron-Super alloy
ES459888A1 (en) Processing for cube-on-edge oriented silicon steel
US2050305A (en) Process of heat treating steel
US1901039A (en) Process of bright annealing steels and alloys
US3115430A (en) Production of cube-on-edge oriented silicon iron
US1787977A (en) Process of heat-treating steel
JP2003286561A (en) Method for nitriding steel plate and steel product
JPH02200758A (en) Method for annealing extra thin titanium alloy coil
US2290552A (en) Heat treating furnace
US3201293A (en) Coated silicon iron sheet stock
JPS5926647B2 (en) Method for manufacturing non-magnetic steel with excellent mechanical properties
SU945244A1 (en) Method for nitriding
US3265541A (en) Elimination of enamel fishscaling in iron and steel sheets
CN113073177B (en) Control method for improving components of oxidation layer of oriented steel
US2307522A (en) Bright-finish metal-treating furnace
JPS61163254A (en) Production of strip made of zirconium alloy
JPS6360267A (en) Heat-treatment of metallic titanium
JPS5920744B2 (en) Manufacturing method of silicon steel for electromagnetic use and the silicon steel
SU1749261A1 (en) Process for producing electrical steel
JP2788087B2 (en) Stainless steel excellent in heat discoloration resistance and method for producing the same