JPS6025573A - Powder coating method - Google Patents

Powder coating method

Info

Publication number
JPS6025573A
JPS6025573A JP13388383A JP13388383A JPS6025573A JP S6025573 A JPS6025573 A JP S6025573A JP 13388383 A JP13388383 A JP 13388383A JP 13388383 A JP13388383 A JP 13388383A JP S6025573 A JPS6025573 A JP S6025573A
Authority
JP
Japan
Prior art keywords
temperature
coating
heating
powder
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13388383A
Other languages
Japanese (ja)
Inventor
Kazuhiko Miura
美浦 一彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13388383A priority Critical patent/JPS6025573A/en
Publication of JPS6025573A publication Critical patent/JPS6025573A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PURPOSE:To prevent bubbles from being incorporated in a coated film and enhance appearance and mechanical properties, by performing powder coating by heating in two stages, namely, heating to such an extent as to melt a particulate coating material and heating to such an extent as to harden the melted coating material. CONSTITUTION:A steel pipe 4 as an object to be coated is passed sequentially through the first heating furnace 2, a coating booth 1 and the second heating furnace 3 while being supported by skew rollers 5. In the first heating furnace 2, the pipe 4 is heated to a temperature of 120-200% of the substantial melting temperature of a thermosetting particulate resin such as an epoxy resin. In the coating booth 1, a predetermined amount of the particulate coating material is applied to the steel pipe 4 thus heated, and is melted to form a coated film, which starts to be hardened, and is fed into the second heating surface 3 together with the pipe 4. In the second heating furnace 3 the temperature in which is higher than the coated film forming temperature, the coated film is sufficiently cured while being supplied with an amount of heat required for not only hardening but also obtaining various characteristics.

Description

【発明の詳細な説明】 この発明は粉体塗装方法に関し、特にエポキシ樹脂等の
熱硬化性粉体樹脂を用βる粉体塗装方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a powder coating method, and more particularly to a powder coating method using a thermosetting powder resin such as an epoxy resin.

従来から、エポキシ粉体塗装は、被塗装物を高温に加熱
し、その高温に加熱された被塗装物をエポキシ粉体で被
覆するか、あるいは常温の被塗装物をエポキシ粉体で被
覆し、その状態で高温に加熱することによって行なわれ
ていた。
Traditionally, epoxy powder coating involves heating the object to be coated to a high temperature and coating the heated object with epoxy powder, or coating the object to be coated at room temperature with epoxy powder. This was done by heating it to a high temperature.

しかし、いずれにしろ従来のエポキシ粉体塗装にあって
はエポキシ粉体に対する加熱は一時的に行なわれ、エポ
キシ粉体には溶融と同時に急速な硬化反応が生じること
から、被塗物上に形成される塗膜にはエポキシ粉体塗料
が粉体時に含有していた空気や硬化反応時に発生するガ
スが十分ぬけきらなりまま封じ込められてしまい、その
結果、被塗装物上に形成された塗膜は多くの気泡を含み
、そのような気泡の存在が耐衝撃性や耐曲げ性等の機械
的性能をさらに向上するためには障害となっていた。ま
た、エポキシ粉体の溶融と硬化が同時に生じるため被塗
装物′上の塗膜は平滑で均一なものとはならず、肌あれ
が生じやすいという欠点があった。
However, in any case, in conventional epoxy powder coating, the heating of the epoxy powder is done temporarily, and as the epoxy powder undergoes a rapid curing reaction at the same time as it melts, it forms on the coated object. The air contained in the epoxy powder coating when it was powdered and the gas generated during the curing reaction are trapped in the coating film without being sufficiently removed, and as a result, the coating film formed on the object is contains many bubbles, and the presence of such bubbles has been an obstacle to further improving mechanical properties such as impact resistance and bending resistance. Furthermore, since the epoxy powder melts and hardens at the same time, the coating film on the object to be coated is not smooth and uniform, and there is a drawback that roughness tends to occur.

この発明は以上の従来の事情に鑑みてなされたものであ
って、粉体塗装塗膜における気泡の内包を防止して機械
的性質が良好でかつ外観も良好な塗膜を得ることができ
る粉体塗装方法を提供することを目自りとする。
This invention has been made in view of the above-mentioned conventional circumstances, and is a powder that can prevent the inclusion of air bubbles in a powder coating film and provide a coating film with good mechanical properties and a good appearance. The purpose is to provide a body painting method.

すなわちこの発明の粉体塗装方法は、被塗装物上で熱硬
化性粉体樹脂をその粉体樹脂の実質的溶融温度の120
〜200チの温度で溶融させ、それによって被塗装物に
粉体樹脂の溶融塗膜を形成し、次いでその浴融塗膜を昇
温して塗膜を十分にキーアーさせることを特徴とするも
のである。
That is, in the powder coating method of the present invention, a thermosetting powder resin is coated on an object to be coated at a temperature of 120% above the substantial melting temperature of the powder resin.
It is characterized by melting at a temperature of ~200°C, thereby forming a molten coating film of powder resin on the object to be coated, and then raising the temperature of the bath-melted coating film to sufficiently key the coating film. It is.

以下にこの発明をさらに具体的に説明する。This invention will be explained in more detail below.

第1図はこの発明の一実施例に供される塗装ラインを示
す。図に示す塗装ラインにおいては、塗装ブース1の前
に第1の加熱炉2が設けられ、塗装ブース1の後方に第
2の加熱炉3が設けられている。被塗装物たる鋼管4は
スキューローラ5に支持されて第1の加熱炉2、塗装ブ
ース1、第2の加熱炉3をその順に通過する。
FIG. 1 shows a painting line used in one embodiment of the present invention. In the painting line shown in the figure, a first heating furnace 2 is provided in front of a coating booth 1, and a second heating furnace 3 is provided behind the coating booth 1. A steel pipe 4, which is an object to be coated, is supported by skew rollers 5 and passes through a first heating furnace 2, a coating booth 1, and a second heating furnace 3 in that order.

この発明では、第1図に示す塗装ラインで次のようにし
て鋼管4の塗装を行なう。先ず、鋼α4は第1の加熱炉
2において熱硬化性粉体樹脂の実質的溶融温度の120
〜200チの温度で溶融させる。
In this invention, the steel pipe 4 is coated in the following manner on the coating line shown in FIG. First, the steel α4 is heated to 120°C, which is the substantial melting temperature of the thermosetting powder resin, in the first heating furnace 2.
Melt at a temperature of ~200 degrees.

ここで熱硬化性粉体樹脂の実質的浴融温rtLとは、そ
の熱硬化性粉体樹脂を加熱した場合に粉体状態がくずれ
外観上溶融が生じる温度をいう。その点について後述す
る実施例に用いた市販のエポキシ樹脂粉体塗料を例とし
て更に詳細に説明する。第2図はそのエポキシ樹脂粉体
塗料の溶融温度を差動熱量計によって測定したものであ
る。第2図に示すように、63℃で急激な吸熱反応が生
じておシ、その温度でミクロ的な溶融が開始しているこ
とがわかる。さらに温度を上げると80〜90 ’Cの
範囲で吸熱量と発熱量が平衡し、90℃を越えると発熱
反応が強くなって硬化が進行していくことがわかる。以
上が塗料の溶融および硬化のミクロ的な過程であるが、
マクロ的には鋼板に350μの厚みで上述の塗料を実際
に塗布して、その溶融・硬化の過程を観察してみると、
63℃では塗料は全く溶融しているようには見えず、8
0〜90℃の範囲で粉体状態がくずれ、90℃に達して
初めて溶融が生じ塗膜が形成されはじめた。そこで、こ
の塗料の溶融温度は63℃であるが、その塗料を取扱う
上では被塗装物を被覆した粉体塗料が浴融して塗ノ莫を
形成する実質的意味での溶融温度が問題となシ、その意
味で、上述の塗料の実質的溶融温度は90℃でおる。
Here, the effective bath melting temperature rtL of the thermosetting powder resin refers to the temperature at which, when the thermosetting powder resin is heated, the powder state collapses and melting occurs in appearance. This point will be explained in more detail by taking as an example a commercially available epoxy resin powder coating used in Examples described later. FIG. 2 shows the melting temperature of the epoxy resin powder coating measured by a differential calorimeter. As shown in FIG. 2, it can be seen that a rapid endothermic reaction occurs at 63° C., and microscopic melting begins at that temperature. It can be seen that when the temperature is further increased, the endothermic amount and the calorific value are balanced in the range of 80 to 90'C, and when the temperature exceeds 90°C, the exothermic reaction becomes stronger and the curing progresses. The above is the microscopic process of melting and curing of paint.
Macroscopically, when we actually applied the above paint to a thickness of 350μ on a steel plate and observed the melting and hardening process, we found that:
At 63°C, the paint does not appear to be melting at all;
The powder state deteriorated in the range of 0 to 90°C, and melting occurred only when the temperature reached 90°C, and a coating film began to be formed. Therefore, the melting temperature of this paint is 63°C, but when handling this paint, the actual melting temperature at which the powder paint coating the object to be coated melts in the bath and forms the coating is a problem. In that sense, the substantial melting temperature of the above-mentioned coating material is 90°C.

また、前述したように第1の加熱炉2における加熱温度
を粉体塗料の実質的溶融温度の120〜200%とする
のは次の理由による。
Moreover, as mentioned above, the reason why the heating temperature in the first heating furnace 2 is set to 120 to 200% of the substantial melting temperature of the powder coating is as follows.

粉体塗料は被塗装物、この場合鋼管4に付着したものか
ら浴融し、後から付着するものに対しては熱量4の悪い
粉体塗料溶融層を通して熱が伝わ!ll溶融が進行して
いく。
The powder coating adheres to the object to be coated, in this case the steel pipe 4, and then melts in the bath, and heat is transferred to the object that adheres later through the molten layer of the powder coating, which has a poor calorific value 4! ll Melting progresses.

そのため被塗装物に対する加熱温度を実質的な溶融温度
とした場合、後から付着する粉体塗料に加えられる熱量
が不足することになる。そこで、鋼管4に付着した粉体
塗料全体を溶融させるためには、鋼管4の加熱温度を実
質的な溶融温度よりも20チ程度高い温度とすることが
必要である。
Therefore, if the heating temperature for the object to be coated is set to the substantial melting temperature, the amount of heat added to the powder coating material that is subsequently attached will be insufficient. Therefore, in order to melt the entire powder coating adhered to the steel pipe 4, it is necessary to set the heating temperature of the steel pipe 4 to about 20 degrees higher than the actual melting temperature.

すなわち、加熱温度が粉体塗料の溶融温度の120%未
満であるときには、鋼管に付着した7く料全体を完全に
溶融させることはできなくなる。
That is, when the heating temperature is less than 120% of the melting temperature of the powder coating, it becomes impossible to completely melt the entire coating material attached to the steel pipe.

′しか1逆に加熱温度を粉体塗料の溶融温度の200チ
を越す温度に設定すると粉体塗料の溶融と硬化が同時に
生じ、形成される塗膜に気泡が含まれる等の不都合が生
じる。
On the other hand, if the heating temperature is set to a temperature that exceeds the melting temperature of the powder coating by 200 degrees, the powder coating will melt and harden at the same time, causing problems such as bubbles being included in the formed coating film.

次に、以上のようにして加熱された鋼゛σ4には塗装ブ
ース1内で所定量の粉体塗料が付着せしめられ、付着し
た粉体塗料は溶融し塗膜を形成し、硬化を開始しつつ鋼
管4と共に第2の加熱炉:3内に搬入される。この第2
の加熱炉3で塗膜は単に硬化するのみならず種々の塗膜
としての性能を確保するのに必要な熱量を与えられ十分
にキーアーする。そして、塗膜が硬化しスキー−ロー2
5に接触しても表面に傷がつかない硬さに達した後、鋼
’l 4はスキー−ローラ5によって支えられて搬送さ
れ、水冷ゾーン6において検査等の後工程に支障のない
温度まで冷却される。上記第2の加熱炉3で加えられる
熱量は、下限は前記塗膜形成温度を越えた温度として設
定されるが、上限は用いられる熱硬化性樹脂の硬化速度
おふび塗装速度に依存して決定される。すなわち、硬化
速度のわシに塗装速度を速くする場合は、第2の加熱炉
3で大きく昇温する必要があシ、逆に硬化速度のわシに
塗装速度を遅くする場合、第2の加熱炉3における昇温
は比較的に小さくてもよい。
Next, a predetermined amount of powder coating is applied to the heated steel σ4 in the coating booth 1, and the adhered powder coating melts to form a coating film and begins to harden. The steel pipes 4 and the steel pipes 4 are then transported into the second heating furnace 3. This second
In the heating furnace 3, the coating film is not only cured, but also sufficiently heated by being given the amount of heat necessary to ensure the performance of various coating films. Then, the coating film hardens and the ski-low 2
After reaching a hardness that does not cause scratches on the surface when it comes into contact with the steel 4, the steel 4 is supported by ski-rollers 5 and conveyed, and cooled in a water cooling zone 6 to a temperature that does not interfere with post-processing such as inspection. cooled down. The lower limit of the amount of heat applied in the second heating furnace 3 is set as a temperature exceeding the coating film formation temperature, but the upper limit depends on the curing speed of the thermosetting resin used and the coating speed. It is determined. In other words, if the coating speed is to be increased to meet the curing speed, it is necessary to raise the temperature significantly in the second heating furnace 3; conversely, if the coating speed is to be slowed to meet the curing speed, The temperature increase in the heating furnace 3 may be relatively small.

次にこの発明の実施例を示す。Next, examples of this invention will be shown.

実施例1 前述した第2図に示す市販のエポキシ樹脂を用いて第1
図に示す塗装ラインで外径1,4:20mm。
Example 1 Using the commercially available epoxy resin shown in FIG.
The outer diameter is 1,4:20 mm at the painting line shown in the figure.

肉厚16 +n+aノ&i4%ft、f&装速度1.5
 #)’1nin 、塗装膜厚350μとして塗装した
。塗装の温度条件は、次のように設定した。
Thickness: 16 +n+a&i4%ft, f&loading speed: 1.5
#) '1nin, coating thickness was 350μ. The temperature conditions for coating were set as follows.

すなわち、塗料の実質的溶融温度90 ’Cに対して、
それを20%上′まわる1 10 ”Cで塗装できるよ
うに、第1の加熱炉2における加熱温度は120°Cと
し、第1の加熱炉2において120℃に加熱された鋼管
4を塗装ブース1に搬入し、塗装ブース1にて塗料を塗
着させた後、第2の加熱・炉3において230℃に加熱
して約4分間のキュアーを行ないその後水冷した。
That is, for a paint's substantial melting temperature of 90'C,
The heating temperature in the first heating furnace 2 is set to 120°C so that it can be coated at 110"C, which is 20% higher than that, and the steel pipe 4 heated to 120°C in the first heating furnace 2 is placed in a coating booth. 1 and was coated with paint in the coating booth 1, heated to 230° C. in the second heating/furnace 3, cured for about 4 minutes, and then cooled with water.

実施例2 他の条件は実施例1と同様にし、次のようにして塗装を
行なった。すなわち、塗料の実質的溶融温度90℃の2
倍である180℃で塗料を塗層し得るように、第1の加
熱炉2における加熱温度を190℃とし、第2の加熱炉
3における加熱温度を230°Cとした。
Example 2 Other conditions were the same as in Example 1, and painting was performed in the following manner. That is, the actual melting temperature of the paint is 90°C.
The heating temperature in the first heating furnace 2 was set to 190°C, and the heating temperature in the second heating furnace 3 was set to 230°C so that the paint layer could be coated at 180°C, which is twice as high.

実施例;3 第3図に示す塗装ラインで、他の条件は実施例1と同様
にして粉体塗装を行なった。すなわち、室温の@管4に
塗装ブース7で塗料を被覆し、その鋼f4を第1の加熱
炉8で160℃に昇温し、約1分後記2の加熱炉9で2
30℃に昇温し、約4分間のキュアーを行なって水冷し
た。
Example 3 Powder coating was carried out using the coating line shown in FIG. 3 under the same conditions as in Example 1 except for the other conditions. That is, the pipe 4 at room temperature is coated with paint in the coating booth 7, the steel f4 is heated to 160°C in the first heating furnace 8, and heated in the heating furnace 9 in 2 below for about 1 minute.
The temperature was raised to 30°C, cured for about 4 minutes, and then cooled with water.

比較例 前記各実施例と同一の鋼管に対して、同一の塗料を用い
て、従来方法による塗装を行なった。鋼管に対する加熱
温度は230℃とし、塗装ブースで塗料を吹付ける時の
銅管の温度を220℃に維持するようにし、水冷までの
約5分間で塗膜が硬化し、十分にキーアーするようにし
た。
Comparative Example The same steel pipe as in each of the above Examples was coated with the same paint by a conventional method. The heating temperature for the steel pipe was 230°C, and the temperature of the copper pipe when spraying paint in the paint booth was maintained at 220°C, so that the paint film would harden in about 5 minutes before cooling with water and be sufficiently quenched. did.

以上の各実施例および比較例における塗装温度条件を第
1表に示す。
Table 1 shows the coating temperature conditions in each of the above examples and comparative examples.

第1表 塗装温度条件 各実施例および比較例によって得られた塗膜について表
面および断面の外観検査を行ない、また(幾械的強度の
試!j九を行なった。その結果をイ12壱に示す。
Table 1: Coating temperature conditions The surface and cross-sectional appearance of the coating films obtained in each Example and Comparative Example were inspected, and (mechanical strength tests!) were conducted. show.

第2表 塗膜性能 第2表にも示すように、比較例で得られた塗膜の表面は
、肌に小さな凹凸が生じており、また塗装ブース内に浮
遊rる塗料粉が(=J着したと思われる吹きかぶりが認
められた。これに対し、各実施例で得られた塗1摸の表
面は、1f!めて平渭で、良好であった。また、塗膜内
部には、比較例の場合気泡が散在するのが認められるの
に対し、各実施例によって得られた塗膜には気泡は存在
しなかった。
Table 2 Paint film performance As shown in Table 2, the surface of the paint film obtained in the comparative example had small irregularities on the skin, and paint powder floating in the paint booth (=J On the other hand, the surface of the first coating obtained in each example was 1f!, and was in good condition. In contrast to the comparative examples, where air bubbles were observed to be scattered, no air bubbles were present in the coating films obtained in each of the examples.

このように各実施例によってデ(Iられた塗1i4’f
は緻密であり、そのため第2表に示されるように、−4
0℃における曲げ試験および衝撃試験についても、比較
例の塗膜に較べ各実施例によって得られた塗膜では良好
な結果が得られた。
In this way, each embodiment
is dense, so as shown in Table 2, −4
In the bending test and the impact test at 0° C., the coating films obtained in each example gave better results than the coating films of the comparative examples.

以上のようにこの発明によれば、粉体塗料が溶融する程
度の加熱と、溶融した塗料を硬化させる程度の加熱との
2段階に分けて加熱して粉体塗装を行うようにしたので
、粉体時に塗料が有していた空気や溶融した塗料が硬化
時に発生するガスを塗膜が内包しないようにすることが
でき、観械的強度の高い塗膜を得ることができる。また
、外観も平滑で肌荒れのない塗膜を得ることができる。
As described above, according to the present invention, powder coating is performed by heating in two stages: heating to melt the powder paint and heating to harden the melted paint. It is possible to prevent the coating film from containing the air that the coating material had when it was powdered and the gas generated when the molten coating material is cured, and it is possible to obtain a coating film with high visual strength. Moreover, a coating film with a smooth appearance and no rough skin can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一笑施例に供される塗装ラインの模
式図、第2図はこの発明の実施例に用いた市販のエポキ
シ樹脂粉体塗料の浴融温度測定結果を示す図である。 1・・・塗装ブース、2・・・第1の加熱炉、3・・・
第2の加熱炉、4−・・/j$4管、5・・・スキュー
ローラ。
Fig. 1 is a schematic diagram of a coating line used in an embodiment of the present invention, and Fig. 2 is a diagram showing the results of measuring the bath melting temperature of a commercially available epoxy resin powder coating used in an embodiment of the invention. . 1...Painting booth, 2...First heating furnace, 3...
Second heating furnace, 4-.../J$4 tube, 5... Skew roller.

Claims (3)

【特許請求の範囲】[Claims] (1)被塗装物上で熱硬化性粉体樹脂をその粉体樹脂の
実質的溶融温度の120〜200%の温度で溶融させ、
それによって被塗装物に粉体樹脂の溶融塗膜を形成し、
次いでその溶融塗膜を昇温して塗膜を十分にキーアーさ
せることを特徴とする粉体塗装方法。
(1) Melting the thermosetting powder resin on the object to be coated at a temperature of 120 to 200% of the substantial melting temperature of the powder resin,
As a result, a molten coating film of powder resin is formed on the object to be coated,
A powder coating method characterized in that the temperature of the molten coating film is then raised to sufficiently stiffen the coating film.
(2)被塗装物上に熱硬化性粉体樹脂の溶融塗膜を形成
する工程が、予め被塗装物を加熱して前記粉体樹脂の溶
融温度の120〜200チの温度に加熱しておき、その
後被塗装物を前記粉体樹脂で被覆して被塗装物塗装面に
その粉体樹脂を溶融塗着させることによって行なわれる
ことを特徴とする特許請求の範囲第1項記載の粉体塗装
方法。
(2) The step of forming a molten coating film of thermosetting powder resin on the object to be coated is performed by heating the object to be coated in advance to a temperature of 120 to 200 degrees higher than the melting temperature of the powder resin. The powder according to claim 1 is coated with the powder resin, and then coats the object to be painted with the powder resin, and melts and applies the powder resin to the painted surface of the object. Painting method.
(3)被塗装物上に熱硬化性粉体樹脂の溶融塗膜を形成
する工程が、常温の被塗装物に前記粉体樹脂を被覆した
後、被塗装物上の前記粉体樹脂をその粉体樹脂の溶融温
度の120〜200チの温度に加熱することによって行
なわれることを特徴とする特許請求の範囲第1項記載の
粉体塗装方法。
(3) The step of forming a molten coating film of thermosetting powder resin on the object to be coated is performed after coating the object to be coated at room temperature with the powder resin. 2. The powder coating method according to claim 1, wherein the powder coating method is carried out by heating to a temperature of 120 to 200 degrees higher than the melting temperature of the powder resin.
JP13388383A 1983-07-21 1983-07-21 Powder coating method Pending JPS6025573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13388383A JPS6025573A (en) 1983-07-21 1983-07-21 Powder coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13388383A JPS6025573A (en) 1983-07-21 1983-07-21 Powder coating method

Publications (1)

Publication Number Publication Date
JPS6025573A true JPS6025573A (en) 1985-02-08

Family

ID=15115315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13388383A Pending JPS6025573A (en) 1983-07-21 1983-07-21 Powder coating method

Country Status (1)

Country Link
JP (1) JPS6025573A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0684293A1 (en) 1994-05-27 1995-11-29 Seiko Epson Corporation Water-soluble ink for ink jet type recording and ink jet type recording apparatus using same
US5874228A (en) * 1985-06-11 1999-02-23 Novartis Ag Methods and kits for determining the levels of IGE-BF
JP2009001131A (en) * 2007-06-21 2009-01-08 Tcm Corp Loading space device of carrying truck

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834069A (en) * 1981-08-22 1983-02-28 Fujikura Ltd Formation of paint film by composite powdery body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834069A (en) * 1981-08-22 1983-02-28 Fujikura Ltd Formation of paint film by composite powdery body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5874228A (en) * 1985-06-11 1999-02-23 Novartis Ag Methods and kits for determining the levels of IGE-BF
EP0684293A1 (en) 1994-05-27 1995-11-29 Seiko Epson Corporation Water-soluble ink for ink jet type recording and ink jet type recording apparatus using same
JP2009001131A (en) * 2007-06-21 2009-01-08 Tcm Corp Loading space device of carrying truck

Similar Documents

Publication Publication Date Title
US3348995A (en) Method of coating metal surfaces with polyethylene utilizing a polyethylene primer and articles produced thereby
US2171599A (en) Process of making negatives in metal of metal objects of substantially smooth surface
JPS6025573A (en) Powder coating method
JP2005066574A (en) Reinforcing bar coated with high adhesion corrosion-prevention film, and its production method
US1281108A (en) Process of coating metals, alloys, or other materials with protective coats of metals or alloys.
US2156331A (en) Method of coating steel strips
KR102305208B1 (en) Method of measuring bonding strength of coated steel sheet using tensile test
JP3275770B2 (en) Defect inspection method for resin-coated steel
JPS57131357A (en) Local surface hardening method for ferrous parts
JPH07156268A (en) Plastic covering method of steel pipe
JPS6112516B2 (en)
JPS59212257A (en) Plastic coated steel pipe
JPS6328880A (en) Method for lining cast iron pipe
JPH01278329A (en) Manufacture of vinyl chloride resin lined steel tube
JPS60244539A (en) Double layer coated steel material and manufacture thereof
JPH04180867A (en) Application of epoxy resin powder to steel pipe
JPS6055156A (en) Resin coated corrosion-proof iron wire and its production
JPH0280227A (en) Coat forming method for coated metal tube material
JPS57103925A (en) Plastic coating method for transmission shaft
JPS5939372A (en) Formation of resin film on metal roll
JPS574376A (en) Cementation method of glass
JPS61120671A (en) Production of painted steel material with good concrete adhesive property
JPH05309333A (en) Lining method for polypropylene
JPS5930143B2 (en) Continuous manufacturing method for external thermosetting resin-coated steel pipes
JPS60144645A (en) Method for deciding adhesion between silicone rubber and metal