JPS6112516B2 - - Google Patents

Info

Publication number
JPS6112516B2
JPS6112516B2 JP4569280A JP4569280A JPS6112516B2 JP S6112516 B2 JPS6112516 B2 JP S6112516B2 JP 4569280 A JP4569280 A JP 4569280A JP 4569280 A JP4569280 A JP 4569280A JP S6112516 B2 JPS6112516 B2 JP S6112516B2
Authority
JP
Japan
Prior art keywords
polyolefin
epoxy resin
coating
metal
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4569280A
Other languages
Japanese (ja)
Other versions
JPS56143223A (en
Inventor
Mitsuo Tanaka
Fuyuhiko Ootsuki
Fumihiro Hirano
Mitsuo Kuze
Yutaka Ishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Nippon Steel Corp
Original Assignee
Nippon Paint Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd, Nippon Steel Corp filed Critical Nippon Paint Co Ltd
Priority to JP4569280A priority Critical patent/JPS56143223A/en
Publication of JPS56143223A publication Critical patent/JPS56143223A/en
Publication of JPS6112516B2 publication Critical patent/JPS6112516B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は金属とポリオレフインの接着方法に関
し、更に詳しくは、予じめ150〜250℃の温度に加
熱した金属表面に特定の組成物を塗布し、その上
に直ちにポリオレフインを被覆せしめることによ
り、充分なる接着強度と耐温水性を付与すること
ができる金属とポリオレフインの接着方法に関す
る。 鉄鋼、亜鉛、アルミニウムなどの金属製の管、
板状体、成形体などの表面にポリエチレン、ポリ
プロピレンなどのポリオレフインを被覆して上記
金属製品の防蝕性を高めることは工業的に既に実
施されている。しかしながら、ポリオレフインは
一般に無極性の結晶性樹脂で通常の薬品や溶剤な
どに溶解しない耐薬品性、耐溶剤性の良好な極め
て安定な樹脂であるが、ポリオレフインを他の素
材、例えば金属に接着させることは非常に困難で
あつた。 従来、金属製品をポリオレフインで被覆するに
は、例えば金属表面をリン酸塩処理する方法、金
属表面に変性ポリオレフインを主体とする接着剤
を加熱融着せしめる方法などが知られている。し
かしながら、これらの方法では、十分な密着力又
は接着強度と、十分な耐蝕性および耐温水性をも
つたポリオレフイン被覆金属製品が得られないと
いう欠点があつた。特に、近年、鋼管の内外面な
どへポリオレフインを被覆して成るポリオレフイ
ン被覆金属製品が多用されるようになり、品質面
への要求も厳しくなりすぐれた密着力、耐蝕性お
よび耐温水性を兼備したポリオレフイン被覆金属
製品の開発が経済的にも実用的にも強く望まれて
いる。 本発明者らは、かかる現状に鑑み、前記した従
来の金属とポリオレフインとの接着方法の欠点を
排除し、すぐれた密着力、耐蝕性および耐温水性
を与える金属とポリオレフインの接着方法を開発
することを目的として鋭意研究を進めた結果、本
発明をなすに至つた。 本発明に従つた金属とポリオレフインの接着方
法は、金属の表面を予じめ150〜250℃の温度に加
熱した後、これに(i)エポキシ当量170〜280のビス
フエノールA系エポキシ樹脂および(ii)アミン価
200〜500の複素環状変性アミン硬化剤から成る無
溶剤型エポキシ樹脂組成物を塗布し、その上に、
被塗物の温度が140℃以上の間に、ポリオレフイ
ンを被覆することから成る。 本発明に従えば、更に、金属の表面を予じめ
150〜250℃の温度に加熱した後、これに(i)エポキ
シ当量170〜280のビスフエノールA系エポキシ樹
脂、(ii)アミン価200〜500の複素環状変性アミン硬
化剤並びに(iii)前記(i)および(ii)成分の合計量100重
量部当り0.5〜5重量部の、一次粒子の平均粒子
径が50mμ以下のシリカ微紛末から成る無溶剤型
エポキシ樹脂組成物を塗布し、その上に、被塗物
の表面温度が140℃以上の間に、ポリオレフイン
を被覆することから成る金属とポリオレフインの
接着方法が提供される。 本発明方法において使用する無溶剤型エポキシ
樹脂組成物は(i)エポキシ当量170〜280のビスフエ
ノールA系の液状エポキシ樹脂と、(ii)前記エポキ
シ樹脂と常温で反応して硬化するアミン価200〜
500の複素環状変性アミンの液状樹脂硬化剤とを
含む。かかるエポキシ樹脂と硬化剤の組合せは、
速硬化性で150℃の温度で30秒以内に硬化し、塗
布後被塗物の温度が140℃以上の間に次の工程、
即ちポリオレフインの被覆工程に入ることができ
る。また、このエポキシ樹脂組成物は、無溶剤タ
イプであるために、予じめ150〜250℃の温度に加
熱された被塗金属表面に、ワキ、タレなどの塗膜
欠陥を生ずることなく塗布できるという特徴をも
ち、かかる組合せにより硬化時の収縮が小さく接
着性に優れた被覆を金属表面上に形成できる。こ
のように無溶剤型エポキシ樹脂組成物は速硬化性
であること、塗装作業性の良好なこと、無溶剤型
であること、積層体にした時に密着性と耐温水性
に優れることなどの特性が要求される。 かかる要件を満足するエポキシ樹脂としては、
耐温水性の点からビスフエノールA系エポキシ樹
脂であることが必要であり、そして速乾性を要す
ることから無溶剤型である。また無溶剤系であり
ながら容易に塗装し得るようにするために樹脂の
粘度が低いことが必要である。かかる観点からエ
ポキシ当量は170〜280、好ましくは180〜200で、
粘度が5〜160ポイズのものを選定する。エポキ
シ当量が170未満ではビスフエノールA型エポキ
シ樹脂としての所望の性能が期待できず、逆に
280を超えると粘度が高くなり過ぎて塗装自体が
困難となり、均一な塗膜の形成ができなくなる。
一方、硬化剤としては、脂肪族アミン系は耐温水
性の点で、ポリアミド樹脂は速硬化性の点で、そ
して芳香族アミン系は密着性の点でそれぞれ不適
であり、前記要件を満足するものとしては、前記
エポキシ樹脂ど常温で反応硬化するアミン価200
〜500の複素環状変性アミンが選定される。この
変性アミンのアミン価が500を超えると変性アミ
ンが結晶性を帯びるようになつて作業性が不良と
なり、逆にアミン価が200未満では硬化反応が遅
くなるので好ましくない。 本発明方法において使用されるエポキシ樹脂
は、エポキシ当量が170〜280の任意のビスフエノ
ールA系エポキシ樹脂とすることができ、そのよ
うな樹脂を例示すれば、例えばエポトートYD128
(東都化成社製)、エピコート828(油化シエルエ
ポキシ社製)などがあげられる。一方、本発明に
おいて使用される複素環状変性アミン硬化剤とし
ては、例えば の変性物などがあげられる。エポキシ樹脂と硬化
剤の使用量比には特に限定はなく、使用するビス
フエノールA系エポキシ樹脂のエポキシ当量に従
つて従前通り決定することができる。 本発明方法の好ましい態様では、エポキシ樹脂
組成物は、前記したエポキシ当量170〜280のビス
フエノールA系エポキシ樹脂及びアミン価200〜
500の複素環状変性アミンの合計量100重量部に対
し、更に0.5〜5重量部の、一次粒子の平均粒子
径が50mμ以下のシリカ微粉末を含む。本発明者
等は、驚くべきことに、かかるシリカ微粉末の配
合により、エポキシ樹脂組成物被覆の耐温水性が
更に一層著しく向上することを見出した。このよ
うに耐温水性がシリカ微粒子の配合により著しく
改良される機構については必ずしも明確ではない
が、おそらくは平均粒の非常に小さいシリカ微粉
末の表面活性が強く、この表面活性のために硬化
物中の親水性基がシリカ微粉末に捕捉され、エポ
キシ樹脂組成物被覆及び積層体の耐温水性が著し
く向上するものと想定される。 本発明方法の好ましい態様においてエポキシ樹
脂組成物中に配合されるシリカ微粉末の平均粒子
径が50mμを超えると耐温水性の改良効果が顕著
でなくなるので好ましくない。シリカ微粉末の添
加量が0.5重量部未満では耐温水性の改良効果が
認められず、逆に5重量部を超えるとエポキシ樹
脂組成物の粘度が上昇し塗装作業性が不良になる
ので好ましくない。例えば、平均粒子径12mμの
シリカ微粉末を6重量部配合すると、エポキシ樹
脂組成物の粘度は600ポイズになり塗装作業性に
支障を来すようになる。なお、シリカ微粉末とし
ては、平均粒子径が上記範囲内のものであれば任
意のものを使用でき、例えば、アエロジル200、
アエロジルOX50(日本アエロジル社製),ニツプ
シールLP(日本シリカ社製)などを使用するこ
とができる。このシリカ微粉末は通常エポキシ樹
脂又は硬化剤中に、ロールミル、デイスパーなど
の一般的な分散手段を用いて分散せしめて使用す
る。 本発明方法において金属とポリオレフインを接
着する方法について説明すれば、先ず金属表面の
酸化皮膜などを酸洗い、サンドブラスト、シヨツ
トブラストなどの方法により除去した後、適当な
加熱手段、例えば加熱炉、バーナーなどを用いて
金属表面を150〜250℃、好ましくは180〜200℃の
温度範囲に予熱する。予熱温度が低すぎると、エ
ポキシ樹脂組成物の密着力の低下を示し、逆に高
すぎると熱劣化を生じ本来の目的である密着力及
び耐温水性を低下させるので好ましくない。本発
明方法によつてポリオレフインを被覆することの
できる金属材料は、例えば、板状、管状、その他
の任意の形状のアルミニウム、銅、亜鉛、鉄、ニ
ツケル、錫、ステンレススチール、真ちゆう、ブ
リキ、トタンなどの常用金属材料である。 本発明方法においては、前述の如く、予じめ
150〜250℃の温度に加熱した金属表面に、前記エ
ポキシ樹脂組成物を、例えばエアレススプレー、
ローラー塗り、刷毛塗り、しごき塗りなどの一般
的方法で塗布してエポキシ樹脂組成物の被覆を形
成せしめ、その上に直ちにポリオレフインの被覆
を形成せしめる。ここにおいて、「直ちに」と
は、金属表面温度が140℃以下にならないうちに
次の工程に入ることをいう。エポキシ樹脂組成物
の被覆厚には制限はないが、一般には20〜100μ
厚(乾燥時厚)とする。 本発明方法において使用するポリオレフインに
は、従来金属又は金属製品を被覆するのに一般に
使用されていたものが含まれ、例えばポリエチレ
ン、ポリプロピレンなどの単一重合体、又はこれ
らと、酢酸ビニル、アクリル酸、無水マレイン
酸、1−ブテン、1−ヘキセンなどとの共重合体
を使用することができ、これらはシート状、ペレ
ツト状、粉末状などのいずれの形状であつても良
い。更に、これらに、必要に応じ、顔料、各種添
加剤、増量剤などが含まれていても良い。 前記エポキシ樹脂被覆上にポリオレフイン被覆
を施するに当つては、通常の粉体散布又は押出被
覆などの方法でポリオレフインを融着させればよ
い。 例えば粉末状のポリオレフインを使用する場合
には、静電塗装或いは流動浸漬塗装が用いられ
る。静電塗装では加熱された被塗物表面にポリオ
レフイン粉末を静電噴霧させることによつてポリ
オレフイン粉末が被塗物表面に付着し、被塗物の
温度でエポキシ樹脂組成物被覆に融着する。一
方、流動浸漬塗装では負に帯電したポリオレフイ
ン粉末が空気によつて浮動されている浸漬槽内に
加熱された被塗物を導入し、電気的引力によりポ
リオレフイン粉末を被塗物表面に付着させ、被塗
物の温度でポリオレフイン粉末がエポキシ樹脂組
成物被覆に融着する。かくしてポリオレフイン被
覆がエポキシ樹脂組成物被覆上に接着する。 ペレツト状ポリオレフインを使用する場合に
は、通常の押出被覆方法を用いてポリオレフイン
被覆をエポキシ樹脂組成物被覆上に接着させるこ
とができ、フイルム又はシート状ポリオレフイン
を使用する場合には、温度140〜200℃で圧力0.1
〜5.0Kg/cm2にて20〜180秒間圧着させればよい。
なおポリオレフイン被覆の膜厚については特に限
定はないが、一般には2〜4mm程度である。 このようにして、本発明に従えば充分な接着強
度、防蝕性および耐温水性を有するポリオレフイ
ン−金属被覆体を得ることができ、従来困難とさ
れていた、すぐれた接着強度、防蝕性および耐温
水性を保持したポリオレフインと金属との積層体
を経済的かつ実用的に製造することが可能となつ
た。 以下、本発明を実施例に従つて具体的に説明す
るが、本発明の範囲をこれらの実施例に限定する
ものでないことはいうまでもない。なお、例中
「部」および「%」は特にことわらない限り重量
基準を意味する。 実施例1〜5および比較例1〜6 第1表に示した組成のエポキシ樹脂組成物を予
じめ表面をサンドブラストし、予熱した鉄板(寸
法9×100×200mm)上に40〜50μ厚に塗布し、そ
の上に直ちに変性ポリオレフイン(三井石油化学
製、商品名アドマーNE050)を300〜400μ厚に
170℃にて圧着せしめ、又は更にその上に予じめ
加熱したポリエチレンフイルム(フイルム厚3mm
厚、MI値1.5、密度0.925の低密度ポリエチレン)
を170℃の温度にて0.1Kg/cm2の圧力下に圧着せし
め、ポリオレフインと鉄板との2層又は3層の積
層体を得た。 得られた3層積層体の180゜剥離強度(接着強
度)および積層体を95℃の温水に60時間浸漬後同
様にして180゜剥離強度(耐温水性)を測定し、
その結果をエポキシ樹脂組成物の特性と共に第1
表に示した。なお、180゜剥離強度は、積層体に
10mm巾で鉄面に達するまでのキズを入れた後、そ
の一部を剥離し、鉄面とポリエチレン被覆の180
゜剥離強度をテンシロン型引張り試験器(東洋ボ
ールドウイン社製)にて20℃で測定した。また得
られた2層の積層体の接着強度と耐温水性は積層
面に2mm間隔にてナイフでクロスカツトを入れ、
100個のゴバン目をつくり、次にセロハンテープ
をその上に圧着後剥離し、結果を「剥離しなかつ
たゴバン目の個数/100」で評価した。 第1表の結果から明らかなように、予熱温度
150〜250℃の範囲のときに高いピール強度を示
し、これよりも高くても低くてもピール強度は低
くなる。また、シリカ微粉末の添加によつて、耐
温水性は向上する。この結果はシリカ微粉末の粒
径が大きいとあまり認められなくなり、また量を
多くすると作業性が低下する。
The present invention relates to a method for adhering metal and polyolefin, and more specifically, the present invention relates to a method for adhering metal and polyolefin, and more specifically, by applying a specific composition to a metal surface that has been heated in advance to a temperature of 150 to 250°C, and immediately coating polyolefin thereon, it is possible to bond the metal and polyolefin. The present invention relates to a method for adhering metal and polyolefin that can provide adhesive strength and hot water resistance. pipes made of metal such as steel, zinc, aluminum,
It has already been industrially practiced to coat the surfaces of plate-like bodies, molded bodies, etc. with polyolefins such as polyethylene and polypropylene to improve the corrosion resistance of the above-mentioned metal products. However, polyolefin is generally a non-polar crystalline resin and is an extremely stable resin with good chemical and solvent resistance that does not dissolve in ordinary chemicals or solvents. That was extremely difficult. Conventionally, methods known for coating metal products with polyolefin include, for example, a method of treating the metal surface with phosphate, a method of heat-sealing an adhesive mainly composed of modified polyolefin to the metal surface, and the like. However, these methods have the disadvantage that polyolefin-coated metal products cannot be obtained that have sufficient adhesion or adhesive strength, and sufficient corrosion resistance and hot water resistance. In particular, in recent years, polyolefin-coated metal products, which are made by coating the inner and outer surfaces of steel pipes with polyolefin, have come into widespread use, and quality requirements have become stricter. The development of polyolefin-coated metal products is strongly desired both economically and practically. In view of the current situation, the present inventors have developed a method of bonding metal and polyolefin that eliminates the drawbacks of the conventional bonding method of metal and polyolefin and provides excellent adhesion, corrosion resistance, and hot water resistance. As a result of intensive research aimed at this purpose, the present invention has been completed. The method of bonding metal and polyolefin according to the present invention involves heating the surface of the metal in advance to a temperature of 150 to 250°C, and then adding (i) a bisphenol A-based epoxy resin with an epoxy equivalent of 170 to 280 and ( ii) Amine value
A solvent-free epoxy resin composition consisting of 200 to 500 heterocyclic modified amine curing agents is applied, and on top of that,
It consists of coating the object with polyolefin while the temperature of the object is 140°C or higher. According to the present invention, the surface of the metal is further prepared in advance.
After heating to a temperature of 150 to 250°C, (i) a bisphenol A epoxy resin with an epoxy equivalent of 170 to 280, (ii) a heterocyclic modified amine curing agent with an amine value of 200 to 500, and (iii) the above ( 0.5 to 5 parts by weight per 100 parts by weight of the total amount of components i) and (ii) of a solvent-free epoxy resin composition consisting of fine silica powder with an average primary particle diameter of 50 mμ or less is applied, and then Furthermore, there is provided a method for adhering metal and polyolefin, which comprises coating the object with polyolefin while the surface temperature of the object is 140° C. or higher. The solvent-free epoxy resin composition used in the method of the present invention includes (i) a bisphenol A liquid epoxy resin having an epoxy equivalent of 170 to 280, and (ii) an amine value of 200 that cures by reacting with the epoxy resin at room temperature. ~
500 heterocyclic modified amine liquid resin curing agent. Such a combination of epoxy resin and curing agent is
It is fast-curing and hardens within 30 seconds at a temperature of 150℃, and the next process can be carried out while the temperature of the coated object is 140℃ or higher after application.
That is, a polyolefin coating step can be started. In addition, since this epoxy resin composition is solvent-free, it can be applied to metal surfaces that have been preheated to a temperature of 150 to 250°C without causing coating defects such as wrinkles or sagging. With this combination, it is possible to form a coating on a metal surface that exhibits little shrinkage during curing and has excellent adhesive properties. In this way, solvent-free epoxy resin compositions have properties such as fast curing, good painting workability, solvent-free properties, and excellent adhesion and hot water resistance when formed into a laminate. is required. Epoxy resins that meet these requirements include:
It needs to be a bisphenol A-based epoxy resin in terms of hot water resistance, and it needs to be a solvent-free type because it needs to dry quickly. Furthermore, the resin needs to have a low viscosity so that it can be easily applied even though it is a solvent-free type. From this point of view, the epoxy equivalent is 170 to 280, preferably 180 to 200,
Select one with a viscosity of 5 to 160 poise. If the epoxy equivalent is less than 170, the desired performance as a bisphenol A type epoxy resin cannot be expected;
If it exceeds 280, the viscosity becomes too high, making painting itself difficult and making it impossible to form a uniform coating film.
On the other hand, as curing agents, aliphatic amines are unsuitable in terms of hot water resistance, polyamide resins are unsuitable in terms of quick curing, and aromatic amines are unsuitable in terms of adhesion. As a product, the epoxy resin has an amine value of 200, which reacts and cures at room temperature.
~500 heterocyclic modified amines are selected. If the amine value of the modified amine exceeds 500, the modified amine becomes crystalline, resulting in poor workability, while if the amine value is less than 200, the curing reaction slows down, which is not preferred. The epoxy resin used in the method of the present invention can be any bisphenol A-based epoxy resin having an epoxy equivalent of 170 to 280. Examples of such resins include Epototo YD128.
(manufactured by Toto Kasei Co., Ltd.) and Epicote 828 (manufactured by Yuka Ciel Epoxy Co., Ltd.). On the other hand, examples of the heterocyclic modified amine curing agent used in the present invention include Examples include modified products of. The ratio of the amounts of the epoxy resin to the curing agent used is not particularly limited, and can be determined as before according to the epoxy equivalent of the bisphenol A-based epoxy resin used. In a preferred embodiment of the method of the present invention, the epoxy resin composition comprises the aforementioned bisphenol A-based epoxy resin having an epoxy equivalent of 170 to 280 and an amine value of 200 to 280.
The composition further contains 0.5 to 5 parts by weight of fine silica powder having an average primary particle diameter of 50 mμ or less with respect to 100 parts by weight of the total amount of the heterocyclic modified amine. Surprisingly, the present inventors have found that by incorporating such fine silica powder, the hot water resistance of the epoxy resin composition coating is even more significantly improved. The mechanism by which hot water resistance is significantly improved by blending fine silica particles is not necessarily clear, but it is probably due to the strong surface activity of the fine silica powder, which has a very small average particle size, that the surface activity of the fine silica particles increases. It is assumed that the hydrophilic groups of are captured in the silica fine powder, and the hot water resistance of the epoxy resin composition coating and the laminate is significantly improved. In a preferred embodiment of the method of the present invention, if the average particle diameter of the fine silica powder blended into the epoxy resin composition exceeds 50 mμ, the effect of improving hot water resistance will not be significant, which is not preferred. If the amount of silica fine powder added is less than 0.5 parts by weight, no improvement effect on hot water resistance will be observed, and if it exceeds 5 parts by weight, the viscosity of the epoxy resin composition will increase and painting workability will be poor, which is not preferable. . For example, if 6 parts by weight of fine silica powder with an average particle diameter of 12 mμ is added, the viscosity of the epoxy resin composition will be 600 poise, which will impede painting workability. Note that any fine silica powder can be used as long as the average particle size is within the above range, such as Aerosil 200,
Aerosil OX50 (manufactured by Nippon Aerosil Co., Ltd.), Nip Seal LP (manufactured by Nippon Silica Co., Ltd.), etc. can be used. This fine silica powder is usually used by dispersing it in an epoxy resin or a hardening agent using a common dispersion means such as a roll mill or a disper. To explain the method of bonding metal and polyolefin in the method of the present invention, first, the oxide film on the metal surface is removed by a method such as pickling, sandblasting, shot blasting, etc., and then an appropriate heating means such as a heating furnace or a burner is used. Preheat the metal surface to a temperature range of 150 to 250°C, preferably 180 to 200°C. If the preheating temperature is too low, the adhesion of the epoxy resin composition will be reduced, whereas if it is too high, it will cause thermal deterioration and reduce the original objectives of adhesion and hot water resistance, which is not preferable. Metal materials that can be coated with polyolefin by the method of the present invention include, for example, plate-shaped, tubular, or other arbitrary shapes of aluminum, copper, zinc, iron, nickel, tin, stainless steel, brass, and tin. , commonly used metal materials such as galvanized iron. In the method of the present invention, as described above,
The epoxy resin composition is applied to a metal surface heated to a temperature of 150 to 250°C by, for example, airless spraying.
A coating of the epoxy resin composition is formed by coating by a common method such as roller coating, brush coating, or ironing, and a polyolefin coating is immediately formed thereon. Here, "immediately" means starting the next step before the metal surface temperature falls below 140°C. There is no limit to the coating thickness of the epoxy resin composition, but it is generally 20 to 100μ.
Thickness (thickness when dry). The polyolefins used in the method of the present invention include those commonly used in the past for coating metals or metal products, such as homopolymers such as polyethylene, polypropylene, or their combinations with vinyl acetate, acrylic acid, Copolymers with maleic anhydride, 1-butene, 1-hexene, etc. can be used, and these may be in any form such as sheet, pellet, or powder. Furthermore, these may contain pigments, various additives, extenders, etc., if necessary. When applying a polyolefin coating onto the epoxy resin coating, the polyolefin may be fused by a conventional method such as powder dispersion or extrusion coating. For example, when powdered polyolefin is used, electrostatic coating or fluidized dip coating is used. In electrostatic coating, polyolefin powder is electrostatically sprayed onto the heated surface of the object to be coated, so that the polyolefin powder adheres to the surface of the object to be coated and is fused to the epoxy resin composition coating at the temperature of the object to be coated. On the other hand, in fluidized dip coating, a heated object to be coated is introduced into a dipping tank in which negatively charged polyolefin powder is suspended in the air, and the polyolefin powder is adhered to the surface of the object by electrical attraction. The polyolefin powder fuses to the epoxy resin composition coating at the temperature of the object being coated. The polyolefin coating thus adheres onto the epoxy resin composition coating. When polyolefin pellets are used, the polyolefin coating can be adhered onto the epoxy resin composition coating using conventional extrusion coating methods; Pressure 0.1 at °C
It is sufficient to press it at ~5.0Kg/cm 2 for 20 to 180 seconds.
The thickness of the polyolefin coating is not particularly limited, but is generally about 2 to 4 mm. In this way, according to the present invention, it is possible to obtain a polyolefin-metal coated body having sufficient adhesive strength, corrosion resistance, and hot water resistance. It has become possible to economically and practically produce a laminate of polyolefin and metal that retains water-warm properties. EXAMPLES The present invention will be specifically described below with reference to Examples, but it goes without saying that the scope of the present invention is not limited to these Examples. In addition, "part" and "%" in the examples mean a weight basis unless otherwise specified. Examples 1 to 5 and Comparative Examples 1 to 6 Epoxy resin compositions having the compositions shown in Table 1 were sandblasted on the surface in advance and placed on a preheated iron plate (dimensions 9 x 100 x 200 mm) to a thickness of 40 to 50 μm. Immediately apply modified polyolefin (manufactured by Mitsui Petrochemicals, trade name Admer NE050) to a thickness of 300 to 400μ.
A polyethylene film (film thickness 3mm) that was crimped at 170°C or preheated on top
(low density polyethylene with thickness, MI value 1.5, density 0.925)
were pressed together at a temperature of 170° C. under a pressure of 0.1 Kg/cm 2 to obtain a two- or three-layer laminate of polyolefin and iron plate. The 180° peel strength (adhesive strength) of the resulting three-layer laminate and the 180° peel strength (hot water resistance) were measured in the same manner after immersing the laminate in 95°C hot water for 60 hours.
The results are summarized in the first section along with the characteristics of the epoxy resin composition.
Shown in the table. Note that the 180° peel strength is
After making a 10mm wide scratch that reaches the steel surface, part of it is peeled off and the steel surface and polyethylene coating are 180 mm thick.
゜Peel strength was measured at 20°C using a Tensilon type tensile tester (manufactured by Toyo Baldwin). The adhesive strength and hot water resistance of the resulting two-layer laminate were determined by making cross cuts with a knife at 2 mm intervals on the laminate surface.
100 goblets were made, then cellophane tape was pressed onto it and then peeled off, and the results were evaluated as "number of goblets that did not peel off/100". As is clear from the results in Table 1, the preheating temperature
It exhibits high peel strength when the temperature is in the range of 150 to 250°C, and the peel strength decreases when the temperature is higher or lower than this. Furthermore, the addition of fine silica powder improves hot water resistance. This result becomes less noticeable when the particle size of the fine silica powder is large, and when the amount is increased, workability decreases.

【表】 実施例6及び比較例7〜9 第2表に示した組成のエポキシ樹脂組成物を用
いて実施例1〜5及び比較例1〜6と同様にして
ポリオレフインと鉄板とを接着させて3層の積層
体を得た。 得られた結果は第2表に示す通りであつた。
[Table] Example 6 and Comparative Examples 7 to 9 Polyolefin and iron plates were adhered in the same manner as Examples 1 to 5 and Comparative Examples 1 to 6 using epoxy resin compositions having the compositions shown in Table 2. A three-layer laminate was obtained. The results obtained were as shown in Table 2.

【表】【table】

Claims (1)

【特許請求の範囲】 1 金属の表面を予じめ150〜250℃の温度に加熱
した後、これに(i)エポキシ当量170〜280のビスフ
エノールA系エポキシ樹脂および(ii)アミン価200
〜500の複素環状変性アミン硬化剤から成る無溶
剤型エポキシ樹脂組成物を塗布し、その上に、被
塗物の温度が140℃以上の間に、ポリオレフイン
を被覆することを特徴とする金属とポリオレフイ
ンの接着方法。 2 金属の表面を予じめ150〜250℃の温度に加熱
した後、これに(i)エポキシ当量170〜280のビスフ
エノールA系エポキシ樹脂、(ii)アミン価200〜500
の複素環状変性アミン硬化剤並びに(iii)前記(i)およ
び(ii)成分の合計量100重量部当り0.5〜5重量部
の、一次粒子の平均粒子径が50mμ以下のシリカ
微紛末から成る無溶剤型エポキシ樹脂組成物を塗
布し、その上に、被塗物の温度が140℃以上の間
に、ポリオレフインを被覆することを特徴とする
金属とポリオレフインの接着方法。
[Claims] 1. After heating the surface of the metal to a temperature of 150 to 250°C in advance, (i) a bisphenol A-based epoxy resin with an epoxy equivalent of 170 to 280 and (ii) an amine value of 200
~500~A solvent-free epoxy resin composition consisting of a heterocyclic modified amine curing agent is applied, and a polyolefin is coated thereon while the temperature of the object to be coated is 140°C or higher. Adhesion method of polyolefin. 2. After preheating the surface of the metal to a temperature of 150 to 250°C, (i) a bisphenol A-based epoxy resin with an epoxy equivalent of 170 to 280, (ii) an amine value of 200 to 500
a heterocyclic modified amine curing agent; and (iii) 0.5 to 5 parts by weight per 100 parts by weight of the total amount of components (i) and (ii) above, consisting of fine silica powder whose primary particles have an average particle diameter of 50 mμ or less. 1. A method for adhering metal and polyolefin, which comprises applying a solvent-free epoxy resin composition and coating polyolefin thereon while the temperature of the object to be coated is 140°C or higher.
JP4569280A 1980-04-09 1980-04-09 Bonding method of polyolefin to metal Granted JPS56143223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4569280A JPS56143223A (en) 1980-04-09 1980-04-09 Bonding method of polyolefin to metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4569280A JPS56143223A (en) 1980-04-09 1980-04-09 Bonding method of polyolefin to metal

Publications (2)

Publication Number Publication Date
JPS56143223A JPS56143223A (en) 1981-11-07
JPS6112516B2 true JPS6112516B2 (en) 1986-04-08

Family

ID=12726432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4569280A Granted JPS56143223A (en) 1980-04-09 1980-04-09 Bonding method of polyolefin to metal

Country Status (1)

Country Link
JP (1) JPS56143223A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168628A (en) * 1982-03-30 1983-10-05 Mitsui Petrochem Ind Ltd Production of metallic material coated with polyethylene composition
JPS59150575A (en) * 1983-02-17 1984-08-28 Ube Ind Ltd Coating method for metal surface
JPS60244539A (en) * 1984-05-18 1985-12-04 川崎製鉄株式会社 Double layer coated steel material and manufacture thereof
JPS61220837A (en) * 1985-03-28 1986-10-01 住友金属工業株式会社 Metallic pipe coated with resin and manufacture thereof
JPS6360735A (en) * 1986-08-30 1988-03-16 Toyoda Gosei Co Ltd Method and apparatus for treating core metal of steering wheel with adhesive
JPS6360736A (en) * 1986-08-30 1988-03-16 Toyoda Gosei Co Ltd Coating of adhesive

Also Published As

Publication number Publication date
JPS56143223A (en) 1981-11-07

Similar Documents

Publication Publication Date Title
GB1564548A (en) Polymer compositions
JPS622870B2 (en)
JPS6112516B2 (en)
JPS6021547B2 (en) Polyolefin coated metal products
JPH03268939A (en) Organic composite coated steel plate excellent in electrodeposition painting properties and corrosion resistance
JP2002105393A (en) Anticorrosive powder coating composition for steel material, steel material coated with the coating and method for producing the coated steel material
US5069966A (en) Organic coating for metals
US4471109A (en) Polyester powdered paint
JP2988302B2 (en) Polyolefin-coated steel pipe and method for producing the same
JPH0245590B2 (en)
JP3759312B2 (en) Anticorrosion coating method for galvanized steel
JP4207632B2 (en) Polyolefin coated steel
JPH04143296A (en) Organic coated rust preventive steel sheet having excellent image clarity of coating film and production thereof
JPS6129986B2 (en)
JPS6372377A (en) Preparation of steel material coated with polyolefin resin powder by fusion bonding
JPS6055156A (en) Resin coated corrosion-proof iron wire and its production
JPH11291397A (en) Polyethylene-coated steel material
JPH11106701A (en) Powder coating, manufacture thereof and coated metallic article
JPS62148585A (en) Adhesive having improved salt water resistance
JPH01127085A (en) Method for anticorrosion coating of steel pipe
JPS6324468B2 (en)
JP2618438B2 (en) Metal surface coating method
JPS59232160A (en) Adhesive having excellent resistance to salt water and for use in laminating polyolefin and metal
JPS6230832B2 (en)
JPS58128174A (en) Production of painted stainless steel plate