JPH04180867A - Application of epoxy resin powder to steel pipe - Google Patents

Application of epoxy resin powder to steel pipe

Info

Publication number
JPH04180867A
JPH04180867A JP30381990A JP30381990A JPH04180867A JP H04180867 A JPH04180867 A JP H04180867A JP 30381990 A JP30381990 A JP 30381990A JP 30381990 A JP30381990 A JP 30381990A JP H04180867 A JPH04180867 A JP H04180867A
Authority
JP
Japan
Prior art keywords
epoxy resin
steel pipe
temperature
chemical conversion
preheating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30381990A
Other languages
Japanese (ja)
Inventor
Tatsufumi Kamigaki
上垣 達文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP30381990A priority Critical patent/JPH04180867A/en
Publication of JPH04180867A publication Critical patent/JPH04180867A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To lower the inner quality defects and obtain a coating with good mechanical functions by applying a powdery epoxy resin painting while the surface of a steel pipe is preheated after chromate chemical conversion treatment, and carrying out post-heating at the temperature lower than the thermal decomposition temperature after gelling of the epoxy resin. CONSTITUTION:After the surface of a steel pipe is cleaned by blast treatment, etc., and chemical conversion with chromate is carried out, the surface of the steel pipe is preheated to 170-210 deg.C and a powdery epoxy resin paint is applied and post-heating is carried out at the temperature lower than the thermal decomposition temperature of the epoxy resin after the applied epoxy resin gels. In this way, since the preheating temperature of the steel pipe is kept low and the period when the epoxy resin paint is melted without being hardened by heat is made long, the time becomes enough to let bubbles owing to ambient air mixed to the paint during the painting float up and the defects of the internal quality are remarkably lowered. Also, since chemical conversion with chromate is carried out before the preheating of the steel pipe, adhesion strength of the epoxy resin powder, that is cathodic peeling resistance of the coating, is not deteriorated even if the preheating temperature is lowered.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、鋼管のエポキシ樹脂粉体塗装方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for coating steel pipes with epoxy resin powder.

〈従来の技術〉 粉体エポキシ樹脂を鋼管表面に塗装する場合、通常鋼管
表面を218〜260 ’Cに予め加熱(以下予熱と言
う)しておき、この上に粉体エポキシ樹脂塗料を塗装し
、鋼管の自然放冷過程において鋼管の顕熱を利用して、
粉体エポキシ樹脂塗料を溶融、流動化させ硬化させると
いう方法がよく知られている(製鉄研究第314号(1
984年)P、111〜112′参照)。
<Prior art> When applying powdered epoxy resin to the surface of a steel pipe, the surface of the steel pipe is usually preheated to 218 to 260'C (hereinafter referred to as preheating), and then powdered epoxy resin paint is applied on top of this. , Utilizing the sensible heat of the steel pipe during the natural cooling process of the steel pipe,
A well-known method is to melt, fluidize, and harden powdered epoxy resin paint (Steel Research No. 314 (1)).
(984) P, 111-112').

エポキシ樹脂は熱硬化型樹脂であり、硬化反応が不充分
な塗膜はもろく、耐曲げ性などの機械性能が劣化するた
め、上記のような従来の塗装方法では、塗装温度つまり
予熱温度を高めに設定し、硬化不足を防ぐ方法が取られ
ている。
Epoxy resin is a thermosetting resin, and if the curing reaction is insufficient, the coating film will be brittle and mechanical performance such as bending resistance will deteriorate. A method is taken to prevent insufficient curing.

しかし、塗装温度を必要以上に高くすると、粉体エポキ
シ樹脂塗料の溶融している時間が短くなり、内部に気泡
を巻き込んだまま硬化して、塗膜形成するというような
内質欠陥を生じたり、塗膜表面が滑らかにならないまま
硬化して、ゆず肌という外観的な不良が生じる。
However, if the coating temperature is higher than necessary, the melting time of the powder epoxy resin paint will be shortened, and it will harden with air bubbles trapped inside, causing internal defects such as forming a paint film. , the coating surface hardens without becoming smooth, resulting in an appearance defect called orange skin.

上述のように、塗装温度に関して相反する傾向を示す2
種の品質特性、すなわち塗膜の硬化と内質欠陥、外観不
良という2種の品質特性を同時に満足させるのは難しく
、現実的には塗膜の硬化を重視し、肉質欠陥は後の検査
工程(ピンホールテスト)で検出し補修するという方法
がとられていた。
As mentioned above, two methods exhibiting contradictory trends regarding coating temperature.
It is difficult to simultaneously satisfy two quality characteristics: hardening of the paint film, internal quality defects, and poor appearance.In reality, emphasis is placed on hardening of the paint film, and fleshy defects are dealt with later in the inspection process. The method used was to detect and repair defects using a pinhole test.

〈発明が解決しようとするsB> 従来技術では上記の肉質欠陥を無くすことは難しく、ピ
ンホールテストで検出した内質欠陥を補修する工数も多
大であった。
<SB to be Solved by the Invention> In the conventional technology, it is difficult to eliminate the above-mentioned flesh defects, and the number of man-hours required to repair the flesh defects detected by the pinhole test is also large.

本発明は、内質欠陥を実用上無視できるレベルまで低減
し、かつ機械性能が良好なレヘルまで硬化させた塗膜を
得ることができる鋼管のエポキシ樹脂粉体塗装方法を提
供することを目的とする。
An object of the present invention is to provide an epoxy resin powder coating method for steel pipes that can reduce internal defects to a practically negligible level and obtain a coating film cured to a level with good mechanical performance. do.

<!18を解決するための手段〉 本発明は、鋼管表面をブラスト処理などで清浄にしてク
ロム酸系の化成処理を行った後に、鋼管表面を170〜
210”Cに予熱して粉状のエポキシ樹脂塗料を塗装し
、鋼管表面に塗装したエポキシ樹脂がゲル化した後にエ
ポキシ樹脂の熱分解温度未満の温度で後加熱することを
特徴とする鋼管のエポキシ樹脂粉体塗装方法である。
<! Means for Solving Problem 18> The present invention cleans the surface of the steel pipe by blasting or the like and performs a chromic acid-based chemical conversion treatment, and then the surface of the steel pipe is
Epoxy for steel pipes, which is characterized in that the steel pipes are preheated to 210"C, coated with powdered epoxy resin paint, and after the epoxy resin coated on the surface of the steel pipes gels, they are post-heated at a temperature below the thermal decomposition temperature of the epoxy resin. This is a resin powder coating method.

〈作 用〉 本発明の方法によれば、鋼管の予熱温度を低くし、エポ
キシ樹脂塗料が熱で硬化せずに溶融している時間を長く
したので、塗料を吹付ける際に、塗料中に混入した雰囲
気の空気などに起因する気泡が浮上する時間が充分にあ
り、内質欠陥が著しく減少する。
<Function> According to the method of the present invention, the preheating temperature of the steel pipe is lowered and the time during which the epoxy resin paint is melted without being cured by heat is increased, so that when spraying the paint, there is no There is sufficient time for bubbles caused by air in the mixed atmosphere to float, and internal defects are significantly reduced.

予熱温度を210 ’C以下に限定したのは、210°
Cを超えると肉質欠陥減少の効果が薄れるためである。
The preheating temperature was limited to 210'C or less.
This is because if it exceeds C, the effect of reducing flesh quality defects will be weakened.

また170°C以上に限定したのは、170”Cを下回
ると塗膜の耐陰極剥離性能が劣化するためである。
Further, the reason why the temperature is limited to 170°C or higher is because the cathodic peeling resistance of the coating film deteriorates when the temperature is lower than 170''C.

さらに後加熱の温度に関しては、塗膜が硬化しさえすれ
ば如何なる温度でもよいが、エポキシ樹脂が熱分解する
と、機械性能および耐食性能が著しく劣化するため、エ
ポキシ樹脂の熱分解温度未満に限定した。
Furthermore, the post-heating temperature may be any temperature as long as the coating film is cured, but if the epoxy resin thermally decomposes, the mechanical performance and corrosion resistance will deteriorate significantly, so it is limited to a temperature below the thermal decomposition temperature of the epoxy resin. .

また、本発明の方法によれば、鋼管の予熱前にクロム酸
系の化成処理を行うので、予熱温度を低くしてもエポキ
シ樹脂粉体の塗着性、即ち塗膜の耐陰極剥離性能は損な
われない。
Furthermore, according to the method of the present invention, the chromic acid-based chemical conversion treatment is performed before preheating the steel pipe, so even if the preheating temperature is lowered, the adhesion of the epoxy resin powder, that is, the cathodic peeling resistance of the coating film, is not damaged.

〈実施例〉 外径800−1肉厚15mの鋼管を用いて、その外表面
に粉体エポキシ樹脂を膜厚が400amとなるように静
電塗装した。このときの諸条件と評価結果を併せて表1
に示す。
<Example> Using a steel pipe with an outer diameter of 800-1 and a wall thickness of 15 m, powder epoxy resin was electrostatically coated on the outer surface of the pipe to a film thickness of 400 am. Table 1 shows the various conditions and evaluation results at this time.
Shown below.

まず、塗装前処理としてブラスト処理と化成処理とを施
した。具体的には、すべての鋼管外表面をスチールグリ
ントを用し)てブラスティングし、研掃度をスウェーデ
ン規格S I S 05−5900 Sa3.0に調整
した。その後、鋼管表面にクロム酸系の化成処理剤を塗
布して全クロム付着量が0.3g/ボのクロメート皮膜
を形成させた。ただし、比較例の中には化成処理を施し
ていないケースもある。
First, blasting treatment and chemical conversion treatment were performed as pre-painting treatments. Specifically, the outer surfaces of all the steel pipes were blasted using steel glint, and the degree of polishing was adjusted to Swedish standard SI S 05-5900 Sa3.0. Thereafter, a chromate-based chemical conversion treatment agent was applied to the surface of the steel pipe to form a chromate film with a total chromium deposition amount of 0.3 g/bo. However, some comparative examples do not undergo chemical conversion treatment.

その後、鋼管を誘導加熱コイルを用いて加熱し、ピーク
温度に達した直後に自然放冷途中で粉体エポキシ樹脂を
吹き付けて塗装した。この塗装時点での鋼管表面温度を
予熱温度と定義しており、ピーク温度からの低下化は約
5°Cである。その後、後熱を実施する場合は誘導加熱
コイルで再度加熱し、鋼管表面の塗膜が100°Cにな
るまで自然放冷した後、常温まで水冷した。この後熱時
のピーク温度を後熱温度としている。また後熱を実施し
ない場合は、塗装後100℃まで自然放冷した後、常温
まで水冷した。これらの加熱パターンを模式的に第1図
に示す。
Thereafter, the steel pipe was heated using an induction heating coil, and immediately after reaching the peak temperature, powdered epoxy resin was sprayed and painted while it was being left to cool naturally. The surface temperature of the steel pipe at the time of coating is defined as the preheating temperature, and the decrease from the peak temperature is about 5°C. Thereafter, when performing post-heating, the steel pipe was heated again with an induction heating coil, allowed to cool naturally until the coating film on the surface of the steel pipe reached 100°C, and then water-cooled to room temperature. The peak temperature during this post-heating is defined as the post-heating temperature. In addition, when post-heating was not carried out, the coating was allowed to cool naturally to 100° C. after coating, and then water-cooled to room temperature. These heating patterns are schematically shown in FIG.

次に、塗膜の評価方法を説明する。Next, a method for evaluating the coating film will be explained.

まずピンホールテストは、塗膜表面と鋼管との間に10
にνの電圧を付加し、肉質欠陥が鋼管表面から塗膜表面
まで貫通したタイプの欠陥や内質欠陥の存在により塗膜
厚が薄くなった部分を絶縁破壊させ、欠陥を検出し、1
0−当たりの個数として評価した。
First, in the pinhole test, 10
By applying a voltage of ν to
Evaluation was made as the number per 0.

塗膜の硬化度の判定は、塗膜のDSC分析によりガラス
転移温度T g +を求め、さらに塗膜を280℃まで
ラボで加熱した後のガラス転移温度Tgtとの差ΔTg
 = I Tg+  Tgz lを計算して評価した。
The degree of hardening of a coating film is determined by determining the glass transition temperature T g + by DSC analysis of the coating film, and then determining the difference ΔTg between the glass transition temperature Tgt after heating the coating film to 280°C in a laboratory.
= I Tg+ Tgz l was calculated and evaluated.

−船釣にΔTg≦3 ”Cをもって塗膜の硬化と判断し
ており、今回もこの判定基準を採用した。
- For boat fishing, we judge that the coating film has hardened when ΔTg≦3”C, and this judgment criterion was also adopted this time.

また塗膜の曲げ性能は、鋼管より塗膜の付いた状態で鋼
片を切り出し、塗膜の表面歪が4.0%になるように曲
げ、割れの有無を目視にて判断した。
The bending performance of the coating film was determined by cutting out a piece of steel from a steel pipe with the coating film attached, bending it so that the surface strain of the coating film was 4.0%, and visually determining the presence or absence of cracks.

耐食性の評価としては、70°Cの3%NaC/熔液中
に、鋼表面をカロメル電極ムこ対し−】、5■の電位に
保った状態に10日間保持し、剥離長さを評価した。
For evaluation of corrosion resistance, the steel surface was held at a potential of 5 µm against a calomel electrode in a 3% NaC/molten solution at 70°C for 10 days, and the peeling length was evaluated. .

表1の本発明例のNnl、2.3では、予熱温度の低減
により肉質欠陥は減少しており、後熱の効果により塗膜
の硬化も充分となり良好な曲げ性能を示している。また
、耐陰極剥離性能も良好な結果となっている。
In the present invention example shown in Table 1, Nnl is 2.3, flesh defects are reduced due to the reduction in preheating temperature, and the coating film is sufficiently hardened due to the effect of postheating, showing good bending performance. In addition, good results were obtained in terms of cathode peeling resistance.

比較例A−Eは従来、−船釣に採用されている塗装方法
であるが、本発明に対して予熱温度が高いため内質欠陥
の発生は避けられない。
Comparative Examples A to E are coating methods conventionally used for boat fishing, but since the preheating temperature is higher than that of the present invention, the occurrence of internal quality defects is unavoidable.

また、比較例り、Hのように化成処理を実施しない場合
は、耐陰極剥離性能が劣り、特に比較例りのように予熱
温度が低い場合には、耐陰極剥離性能の観点より高温・
湿潤環境下での使用には適さないレベルとなる。これは
、予熱温度が低い場合、溶融したエポキシ樹脂の粘度が
低く鋼表面になじみにくくなるためと言われている。
In addition, when chemical conversion treatment is not performed as in Comparative Example H, the cathodic peeling resistance is poor, and especially when the preheating temperature is low as in Comparative Example, high temperature and
The level is unsuitable for use in a humid environment. This is said to be because when the preheating temperature is low, the viscosity of the molten epoxy resin is low and it becomes difficult to adapt to the steel surface.

本発明例のNfll、2.3は、予熱温度を低下して内
質欠陥を著しく低減させなから化成処理を施すことによ
り、塗膜と鋼との界面での剥離反応を抑制し、耐陰極剥
離性能の低下を抑制した点に特徴がある。従って、本発
明例No、 2と全く同し加熱パターンで化成処理を実
施しなかった比較例Fのケースでは、内質欠陥、曲げ性
能ともに良好であるが、耐陰極剥離性能が劣る結果とな
っている。
Nfll, 2.3 of the present invention is a cathode resistant material that suppresses the peeling reaction at the interface between the coating film and the steel by lowering the preheating temperature and applying chemical conversion treatment to significantly reduce internal defects. It is characterized by suppressing deterioration in peeling performance. Therefore, in the case of Comparative Example F, in which the chemical conversion treatment was not performed using the same heating pattern as Invention Examples No. 2, both internal defects and bending performance were good, but the cathode peeling resistance was poor. ing.

しかしながら予熱温度を下げ過ぎた比較例Gの場合lこ
は、内質欠陥は無く塗膜も硬化しており曲げ性能も良好
であるが、耐陰極剥離性能が劣る結果となる。これは前
述の低温予熱時の耐陰極剥離性能の低下を、化成処理で
カバーしきれなかったためである。
However, in the case of Comparative Example G in which the preheating temperature was lowered too much, there were no internal defects, the coating film was cured, and the bending performance was good, but the cathodic peeling resistance was poor. This is because the chemical conversion treatment could not fully compensate for the aforementioned decrease in cathode peeling resistance during low-temperature preheating.

次に比較例Hは、本発明例Nα2に対して後熱を省略し
た例であるが、硬化が不足し曲げ性能に劣りている。こ
のように低温予熱で硬化の不足している塗膜に後熱を加
えることにより硬化を促進させる点に、本発明のもう1
つの特徴がある。
Next, Comparative Example H is an example in which post-heating is omitted from Invention Example Nα2, but the hardening is insufficient and the bending performance is inferior. Another aspect of the present invention is that curing is accelerated by applying post-heat to a coating film that is insufficiently cured due to low-temperature preheating.
There are two characteristics.

ただし、比較例Iのように後熱温度がエポキシ樹脂の分
解温度(概略280°C)を超える場合には、硬化は達
成されても曲げ性能に劣る結果となる。
However, if the post-heating temperature exceeds the decomposition temperature of the epoxy resin (approximately 280° C.) as in Comparative Example I, even if hardening is achieved, the bending performance will be poor.

〈発明の効果〉 以上説明したように、本発明により、内質欠陥の発生が
著しく低減され、かつ曲番ヂ性能、耐陰極剥離性能に優
れた粉体エポキシ相月旨塗装鋼管を1尋ることができる
<Effects of the Invention> As explained above, the present invention provides a powder epoxy coated steel pipe that significantly reduces the occurrence of internal defects and has excellent bending performance and cathodic peeling resistance. be able to.

【図面の簡単な説明】 第1図は本発明の実施例及び比較伊jのカロ熱ツクター
ンを模式的に示したグラフである。 厘−胴目刺セ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph schematically illustrating the heat exchangers of Examples of the present invention and Comparative Examples. Rin - Dome Sashise

Claims (1)

【特許請求の範囲】[Claims] 鋼管表面をブラスト処理などで清浄にしてクロム酸系の
化成処理を行った後に、鋼管表面を170〜210℃に
予熱して粉状のエポキシ樹脂塗料を塗装し、鋼管表面に
塗装したエポキシ樹脂がゲル化した後にエポキシ樹脂の
熱分解温度未満の温度で後加熱することを特徴とする鋼
管のエポキシ樹脂粉体塗装方法。
After cleaning the steel pipe surface by blasting or other means and performing chromic acid-based chemical conversion treatment, the steel pipe surface is preheated to 170-210°C and powdered epoxy resin paint is applied. A method for coating steel pipes with epoxy resin powder, which comprises gelling and then post-heating at a temperature below the thermal decomposition temperature of the epoxy resin.
JP30381990A 1990-11-13 1990-11-13 Application of epoxy resin powder to steel pipe Pending JPH04180867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30381990A JPH04180867A (en) 1990-11-13 1990-11-13 Application of epoxy resin powder to steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30381990A JPH04180867A (en) 1990-11-13 1990-11-13 Application of epoxy resin powder to steel pipe

Publications (1)

Publication Number Publication Date
JPH04180867A true JPH04180867A (en) 1992-06-29

Family

ID=17925689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30381990A Pending JPH04180867A (en) 1990-11-13 1990-11-13 Application of epoxy resin powder to steel pipe

Country Status (1)

Country Link
JP (1) JPH04180867A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012000530A (en) * 2010-06-14 2012-01-05 Chuo Spring Co Ltd Powder coating method
JP2020063759A (en) * 2018-10-16 2020-04-23 Jfeスチール株式会社 Manufacturing method of inner surface-coated steel pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012000530A (en) * 2010-06-14 2012-01-05 Chuo Spring Co Ltd Powder coating method
JP2020063759A (en) * 2018-10-16 2020-04-23 Jfeスチール株式会社 Manufacturing method of inner surface-coated steel pipe

Similar Documents

Publication Publication Date Title
CN105602408B (en) A kind of Fe-B rare-earth permanent magnet fluorine-contained surface metal coating and preparation method thereof
US5672390A (en) Process for protecting a surface using silicate compounds
ES2046558T3 (en) STEEL PLATE WITH ORGANIC COATING HAVING IMPROVED CORROSION RESISTANCE.
JPH0737674B2 (en) Steel article with double protective coating and method of making same
CN110787979A (en) Steel structure corrosion prevention process
US5205874A (en) Process of protecting metallic and wood surfaces using silicate compounds
JPS6184382A (en) Chromate treatment solution and method for coating metal
US4540637A (en) Process for the application of organic materials to galvanized metal
JP2999665B2 (en) Coating method of roasting and quenching steel using chromium-containing aqueous organic resin
JPH04180867A (en) Application of epoxy resin powder to steel pipe
JP4742950B2 (en) Inner coated steel pipe for water piping
AU691794B2 (en) Process for protecting a surface using silicate compounds
JP6623543B2 (en) Organic resin coated steel
JPH0280227A (en) Coat forming method for coated metal tube material
JP2005118621A (en) Coating method of outdoor installed box body
JPH11141054A (en) Covered steel wire excellent in corrosion resistance
CN102107929B (en) Method for repairing liner rubber of air-cooling condensation water fine treatment system
JP3327177B2 (en) Polyolefin coated steel pipe
JPS61120671A (en) Production of painted steel material with good concrete adhesive property
CN105968895A (en) Abrasion-resistant and scratch-resistant waterborne Dacromet coating liquid for automotive chassis and preparation method of Dacromet coating liquid
CN117324236A (en) Decontaminating and paint spraying process after sand blasting electroplating
JPS5921671B2 (en) Corrosion-resistant hot-dip galvanizing treatment method
JPS58137476A (en) Method for applying powdery resin body
JPS6025573A (en) Powder coating method
CN116851239A (en) Design method and application of novel protective coating system of offshore wind power tower