JPS60255106A - Composite membrane for gas separation - Google Patents

Composite membrane for gas separation

Info

Publication number
JPS60255106A
JPS60255106A JP59111562A JP11156284A JPS60255106A JP S60255106 A JPS60255106 A JP S60255106A JP 59111562 A JP59111562 A JP 59111562A JP 11156284 A JP11156284 A JP 11156284A JP S60255106 A JPS60255106 A JP S60255106A
Authority
JP
Japan
Prior art keywords
membrane
composite membrane
poly
gas separation
perfluorochemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59111562A
Other languages
Japanese (ja)
Inventor
Shigeru Ogawa
小川 滋
Toshihide Haraguchi
原口 俊秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemiphar Co Ltd
Original Assignee
Nippon Chemiphar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemiphar Co Ltd filed Critical Nippon Chemiphar Co Ltd
Priority to JP59111562A priority Critical patent/JPS60255106A/en
Publication of JPS60255106A publication Critical patent/JPS60255106A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/127In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction using electrical discharge or plasma-polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42

Abstract

PURPOSE:To provide the titled composite membrane for gas separation having high permeability and selectivity and excellent mechanical strength, workability, resistance to chemicals, and durability by forming a thin film consisting of poly (perfluoro chemical) on the surface of a porous supporting membrane. CONSTITUTION:A porous supporting membrane is fixed on a rotary disk 1 of a plasma polymerization device. A monomer of a perfluoro chemical such as perfluorotributylamine is vaporized while evacuating the inside of a chamber 2 to fill the inside of the chamber with the vaporized monomer. Then glow discharge is generated between electrodes 3 while rotating the rotary disk 1, and a thin film of the poly(perfluoro chemical) is formed on the surface of the supporting membrane while plasma-polymerizing the perfluoro chemical to obtain the composite membrane for gas separation.

Description

【発明の詳細な説明】 本発明は混合気体に対し選択透過性を有し、特定の気体
を分離することができる複合膜に関する。特に本発明は
、膜分離法により、空気から酸素富化空気を製造する際
に、空気の透過量が大きく、かつ酸素の選択透過性がす
ぐれた分離膜として好適に使用し得る気体分離用複合膜
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composite membrane that has selective permeability to a mixed gas and is capable of separating a specific gas. In particular, the present invention provides a gas separation composite that can be suitably used as a separation membrane that has a large amount of air permeation and excellent oxygen permselectivity when producing oxygen-enriched air from air using a membrane separation method. Regarding membranes.

近年、混合気体中から特定の気体を分離するだめの膜分
離技術の進歩は著しく、あるものは工業的規模で実用化
されている。
In recent years, membrane separation technologies for separating specific gases from mixed gases have made remarkable progress, and some have even been put into practical use on an industrial scale.

一方、空気から酸素富化空気を得ることは、循環器疾患
、脳卒中、慢性肺疾患等の治療として、製鉄、ガラス、
セメント等の高熱を要する工場において、まだ養魚、発
酵、廃水の微生物処理等において極めて重要である。
On the other hand, obtaining oxygen-enriched air from the air can be used to treat cardiovascular diseases, strokes, chronic lung diseases, etc.
It is still extremely important in factories that require high heat such as cement production, fish farming, fermentation, and microbial treatment of wastewater.

而して、斯かる気体分離に使用される膜は、高透過性、
高選択はがあり、かつ機械的強度、加工性、耐薬品性、
耐久性等が優れていることが要求される。
Therefore, the membranes used for such gas separation have high permeability,
It has high selection and mechanical strength, processability, chemical resistance,
It is required to have excellent durability, etc.

このような実情から、従来、当該条件を具備した膜を提
供するだめの多くの研究がなされ、すでに多くの報告が
なされている。就中、2− 透過性及び選択性の高い薄膜を多孔性支持膜の表面に形
成した複合膜がその主流をなしている。しかし、これま
で知られている当該薄膜は、透過性、選択性が充分でな
かつたり、捷だ強度、耐薬品性等が劣っているなどの欠
点があり、必ずしも満足できるものではなかった。
Under these circumstances, many studies have been made to provide membranes meeting the above conditions, and many reports have already been made. Among these, composite membranes in which a thin film with high permeability and selectivity is formed on the surface of a porous support membrane are the mainstream. However, the thin films known so far have drawbacks such as insufficient permeability and selectivity, and poor bending strength, chemical resistance, etc., and are not necessarily satisfactory.

そとで、本発明者は、上記欠点を克服せんと鋭意研究を
行った結果、パーフルオロケミカルを重合して得られる
ポリ(パーフルオロケミカル)の薄膜が上記条件を具備
することを見出し、本発明を完成した。
As a result of intensive research to overcome the above drawbacks, the present inventor discovered that a thin film of poly(perfluorochemical) obtained by polymerizing perfluorochemicals satisfies the above conditions. Completed the invention.

すなわち、本発明は、混合気体から特定の気体を分離す
る膜であって、多孔性支持膜とその表面又は孔を充塞し
てその表面に形成したポリ(パーフルオロケミカル)か
らなる薄膜とから形成される複合膜よりなる気体分離用
複合膜を提供するものである。
That is, the present invention provides a membrane for separating a specific gas from a mixed gas, which is formed from a porous support membrane and a thin film made of poly(perfluorochemical) formed on the surface or by filling the pores. The purpose of the present invention is to provide a composite membrane for gas separation consisting of a composite membrane comprising:

本発明において、多孔性支持膜は当該技術分野において
一般に使用されているものは何3− れも使用できる。その材質としては、例えば、ポリスル
ホン、ポリエチレン、ポリプロピレン、ポリ7チレン、
セルロースアセテート、ポリカーボネート等の高分子樹
脂、和紙、不織布、合成紙、P紙、布、雲母等が挙げら
れる。支持膜の厚さは強度が充容であれば特に制限され
ないが、一般には1μ〜1mmのものが好ましい。捷だ
支持膜の空孔率は30〜90係が好ましく、その孔径は
001〜1μが好ましい。この多孔性支持膜は平膜でも
中空膜でもよいが、特に外縁1mm〜200aの中空繊
維膜がよい結果を与える。
In the present invention, any porous support membrane commonly used in the art can be used. Examples of the material include polysulfone, polyethylene, polypropylene, poly7-tyrene,
Examples include polymer resins such as cellulose acetate and polycarbonate, Japanese paper, nonwoven fabric, synthetic paper, P paper, cloth, and mica. The thickness of the support film is not particularly limited as long as it has sufficient strength, but is generally preferably 1 μm to 1 mm. The porosity of the twisted support membrane is preferably 30 to 90, and the pore diameter is preferably 0.001 to 1 .mu.m. This porous support membrane may be a flat membrane or a hollow membrane, but particularly a hollow fiber membrane with an outer edge of 1 mm to 200 a gives good results.

本発明腹合膜の薄膜を構成するポリ(パーフルオロケミ
カル)を製造するために使用される単量体、すなわちパ
ーフルオロケミカルは、分子量300〜700の液体で
、人工血液の素材として研究された化学的及び生物学的
に極めて安定なものであり、その代表的なものとしては
パーフルオロデカリン、パーフルオロアダマンタン、パ
ーフルオロl−IJ フロ4− ピルアミン、パーフルオロトリブチルアミン、パーフル
オロブチルテトラヒドロフラン等が例示されるが、就中
特にパーフルオロトリブチルアミンが好ましい。
The monomer used to produce the poly(perfluorochemical) that constitutes the thin film of the peritoneal membrane of the present invention, that is, the perfluorochemical, is a liquid with a molecular weight of 300 to 700 and has been studied as a material for artificial blood. It is extremely stable chemically and biologically, and typical examples include perfluorodecalin, perfluoroadamantane, perfluoro l-IJ furo-4-pyramine, perfluorotributylamine, and perfluorobutyltetrahydrofuran. Among these, perfluorotributylamine is particularly preferred.

ポリ(パーフルオロケミカル)はこれらのパーフルオロ
ケミカル単量体を重合することによって製造することが
できるが、プラズマ重合法を用いるのが好ましい。本発
明の複合膜は、多孔性支持膜の表面、また必要に応じて
枝孔を充塞するようにその表面にポリ(パーフルオロケ
ミカル)の膜層を形成させることによって得られる。ポ
リ(パーフルオロケミカル)の膜層を形成する方法とし
ては、ポリ(パーフルオロケミカル)を多孔性支持膜の
表面に・・ケ塗、スプレー塗、静電塗装、つけ塗、転が
し塗、遠心力塗装、しごき塗、ローラ塗、真空蒸着塗装
、タンポ塗、ヘラ塗すル方法、パーフルオロケミカルの
単量体又は低分子量ポリマーを適当々温度を加えて蒸発
させた後、グロー放電させることによりプラ=5− ズマ蒸気化し、当該支持膜表面に重合させながら塗布す
るプラズマ蒸着塗装法、まだは上記単量体又は低分子量
ポリマー液に多孔性支持膜を浸漬して孔中に単量体等を
含浸させ、プラズマ重合して塗装する方法等を用いるこ
とができる。このポリ(パーフルオロケミカル)の薄膜
の厚さは、気体の透過量からすると1μ以下、特に05
μ以下が好ましいが、あ捷り薄くするとピンホールの発
生及び強度の問題が生ずるので、01〜1μが好ましい
Although poly(perfluorochemicals) can be produced by polymerizing these perfluorochemical monomers, it is preferred to use plasma polymerization methods. The composite membrane of the present invention is obtained by forming a poly(perfluorochemical) membrane layer on the surface of a porous support membrane and, if necessary, on the surface so as to fill the branch pores. Methods for forming a poly(perfluorochemical) film layer include coating, spray coating, electrostatic coating, dipping, rolling coating, and centrifugal force coating. Painting, ironing, roller coating, vacuum deposition coating, tampon coating, spatula coating, perfluorochemical monomers or low molecular weight polymers are evaporated by applying an appropriate temperature, and then glow discharge is applied. =5- Plasma vapor deposition coating method in which Zuma is vaporized and applied to the surface of the support film while polymerizing, but the porous support film is immersed in the above monomer or low molecular weight polymer liquid and the monomer etc. are added into the pores. A method of impregnation, plasma polymerization, and painting can be used. Considering the amount of gas permeation, the thickness of this poly(perfluorochemical) thin film is 1μ or less, especially 0.5μ or less.
The thickness is preferably 0.1 to 1.mu. or less, but if the thickness is reduced by thinning, pinholes will occur and strength problems will occur, so 01 to 1.mu. is preferable.

上記パーフルオロケミカルのプラズマ重合法は、本発明
者によって見出されたものであるが、例えばパーフルオ
ロトリブチルアミンのプラズマ重合は、10KHzの放
電下では、放電圧力0.03 mmHg、出力50W、
電極間距離6crn、放電時間25分の場合に最も酸素
透過特性のよい薄膜が得られる。
The above plasma polymerization method for perfluorochemicals was discovered by the present inventor. For example, plasma polymerization of perfluorotributylamine requires a discharge pressure of 0.03 mmHg, an output of 50 W, and
A thin film with the best oxygen permeation properties can be obtained when the distance between the electrodes is 6 crn and the discharge time is 25 minutes.

このようにして得られた本発明の複合膜は、後述するよ
うに、酸素透過速度は2.IX]0−5(ec(stp
 ) 10h、 sec、 cmHg〕、酸素の分離係
数6− (PO2/PN2 )は36以上と極めて大きいので、
これを用いて空気から約50%の酸素富化空気を得るこ
とができる。
The composite membrane of the present invention thus obtained has an oxygen permeation rate of 2. IX]0-5(ec(stp
) 10h, sec, cmHg], the oxygen separation coefficient 6- (PO2/PN2) is extremely large at 36 or more, so
Using this, approximately 50% oxygen-enriched air can be obtained from air.

次に実施例を挙げて説明する。Next, an example will be given and explained.

実施例1 市販の多孔質ポリプロピレンツ・fルム(厚す25μ、
最大孔径0.2 p x 0.02□空孔率38係、商
品名ジコラガード240、ポリプラスチック社製)を第
1図に示しだペルジャー型プラズマ重合装置の直径35
crnの回転円板(1)上に固定する。全容積約59t
のチャンバー(2)内を真空排気し寿から、先にセット
したモノマーのパーフルオロトリブチルアミン[N(C
4F9)3−分子量6711蒸気圧1. ] 4 mm
Hg(37℃)製造7 ルカ、販売和光紬薬〕を蒸気化
しチャンバー内を蒸気で満たし、最終的に0.03 m
n+Hgの圧力とする。そして、フィルムを固定した回
転円板を1rpsの回転速度で回転させながら、出力5
0W電極間距離6m、および電極面積15cmX15画
の条件で] OKH2のグロー放電を発生させ、7− 25分間放電した。ただしフィルムが電極間の放電フレ
ーム中に滞電する実際の時間は放電時間の約六とみなさ
れる。従って、フィルムが放電フレーム中に止まってい
るとした場合の正味の最適滞留時間は2y4分、つまり
約375秒程度である。
Example 1 Commercially available porous polypropylene film (thickness 25μ,
Maximum pore diameter: 0.2 p x 0.02
It is fixed on the rotating disk (1) of CRN. Total volume approximately 59t
The inside of the chamber (2) was evacuated and the previously set monomer perfluorotributylamine [N(C
4F9) 3-Molecular weight 6711 Vapor pressure 1. ] 4 mm
Hg (37℃) Production 7 Luca, sold by Wako Tsumugi Pharmaceutical] was vaporized and the chamber was filled with steam, ultimately reaching a height of 0.03 m.
The pressure is n+Hg. Then, while rotating the rotating disk to which the film was fixed at a rotational speed of 1 rps, the output was 5.
Under the conditions of 0W electrode distance of 6 m and electrode area of 15 cm x 15 squares], glow discharge of OKH2 was generated and discharged for 7 to 25 minutes. However, the actual time that the film is charged during the discharge frame between the electrodes is considered to be about 6 hours of discharge time. Therefore, if the film were to remain stationary during the discharge frame, the net optimum residence time would be about 2y4 minutes, or about 375 seconds.

その結果、多孔質ポリプロピレンフィルム上にパーフル
オロトリブチルアミンより得られた再現性の良い酸素透
過特性の良好なピンホールの々い薄膜が形成され、複合
膜が得られた。
As a result, a thin film obtained from perfluorotributylamine with good oxygen permeability and pinholes was formed on a porous polypropylene film, and a composite film was obtained.

実施例2 市販のセルロースアセテート限外濾過膜(厚さ0.1 
mm平均孔径0.025#、空孔率so係、商品名ミリ
ボアVS、日本ミリポア社製)を用いて、以下実施例1
と同様の操作、条件で行なって複合膜を得た。
Example 2 Commercially available cellulose acetate ultrafiltration membrane (thickness 0.1
The following Example 1 was carried out using Millipore VS (product name: Millipore VS, manufactured by Nippon Millipore Co., Ltd.) with an average pore diameter of 0.025 # and a porosity of so.
A composite membrane was obtained using the same operations and conditions as above.

実施例3 実施例1で得だ複合膜を用いて、その性能試8− 験を行ない、膜特性をめた。まず走査電子顕微鴫(SE
M)写真を撮り、その膜状態を観察した。その結果、膜
厚は1μ程度でピンホールは全く認められなかった。
Example 3 Using the composite membrane prepared in Example 1, a performance test was conducted to determine the membrane properties. First, scanning electron microscopy (SE)
M) Photographs were taken and the state of the film was observed. As a result, the film thickness was approximately 1 μm and no pinholes were observed.

つぎに複合膜のガス透過速度を通常の容積法および圧力
法により測定した。その結果は表1のとおりである。
Next, the gas permeation rate of the composite membrane was measured using a conventional volumetric method and a pressure method. The results are shown in Table 1.

表1 複合膜の気体透過特性 9− 表1から明らかな如く、酸素の透過速度は2、I X 
10−5[’cc (stp)/+cJ sec cm
l(g)で、窒素のそれは5.8 X 10″Ccc 
(stp)/d sec cmHg) テあり、分離係
数(PO2/PN2)は3.6であった。従って、理論
的には49.6%の酸素富化空気が得られる。
Table 1 Gas permeation characteristics of composite membrane 9- As is clear from Table 1, the oxygen permeation rate is 2, I
10-5 ['cc (stp)/+cJ sec cm
l(g), that of nitrogen is 5.8 X 10″Ccc
(stp)/d sec cmHg) and the separation coefficient (PO2/PN2) was 3.6. Therefore, theoretically, 49.6% oxygen enriched air can be obtained.

また、複合膜の表面分析はX線光電子分光法により分析
した。その結果、重合膜(薄膜)はC,F、 0. N
 の元素からなり、 CF2−1CFsの構造を含むも
のであった。
In addition, the surface of the composite film was analyzed by X-ray photoelectron spectroscopy. As a result, the polymer film (thin film) contained C, F, 0. N
It consisted of the following elements and contained the structure of CF2-1CFs.

更に複合膜をセットした円筒状の密閉系透過係数測定用
セルをそのまま利用して、一方より空気(21%酸素、
79%飯素)を加圧し、他方より複合膜を通過させた酸
素富化空気を分取し、カスー四重極質量分析装置(Ga
s −Mass 5pect、)により分析した結果4
1%の酸素富化空気が得られた。尚これと理論値の相違
は測定誤差によるものである。
Furthermore, using the cylindrical closed system permeability measurement cell with the composite membrane set as is, air (21% oxygen,
The oxygen-enriched air that has passed through the composite membrane is separated from the other side, and the oxygen-enriched air is collected using a Cassu quadrupole mass spectrometer (Ga
Results of analysis using s-Mass 5pect, ) 4
1% oxygen enriched air was obtained. The difference between this and the theoretical value is due to measurement error.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明複合膜を製造するためのベル10− ジャー型プラズマ重合装置の説明図である。 以上 出願人 日本ケミファ株式会社 11− 第1図 1、回転円板 2、 チャンバー 3、 電極 4 単量体 5、 ポンプ 6、高周波電力 手続補正書(自発) 昭和60年 8 月 29日 特許庁長官 宇賀道部 殿 昭和59年 特 許 願第111562号2 発明の名
称 気体分離用複合膜 3 補正をする者 事件との関係 出願人 住 所 東京都千代田区岩本町2丁目2番3号名 称 
日本ケミファ株式会社 代表者丑山圭三 4代理人 自 発 6、 補正の対象 明細書の「発明の詳細な説明」の欄 7、補正の内容 (1)明細書中、第4頁第2行 「?リスルホン、」とある次に「−リエーテルスルホン
、」を挿入する。 (2)同第6頁第16行 「場合に」とあるを[場合に、また1 :L 56 M
l(zの放電下では、放電圧力0.04 mmHf 、
出力50W1電極間距離6cIL1放電時間150秒の
場合に」と訂正する。 (3)同第8頁第16行 「複合膜を得た。」とある次に行を換えて成文を挿入す
る。 [実施例3 市販の?リスルホン製の中空糸(直径240μ、肉厚8
0μ)を用いて、十字管型ゾラズマ重合装置内にノ(−
フルオロトリブチルアミンの蒸気を圧力0.04 mm
Hfで満たし、出力50W1電極間距離6cx、電極面
積14(XX11mの条件で13.56 MHzのグロ
ー放電を発生させ、150秒間放電した。 その結果、中空糸上に、e−フルオロトリブチルアミン
より得られた酸素透過特性の良好〔分離係数02/N2
=2.7)な複合膜が得られた。」 (4)同第8頁第17行 「実施例3」とあるを「実施例4」と訂正する。 (5) 同第10頁第17〜18行 3− 「尚これと一一一によるものである。」とあるを削除す
る。  4−
FIG. 1 is an explanatory diagram of a bell 10-jar type plasma polymerization apparatus for producing the composite membrane of the present invention. Applicant: Nippon Chemifa Co., Ltd. 11- Figure 1 1, Rotating disk 2, Chamber 3, Electrode 4, Monomer 5, Pump 6, High frequency power procedure amendment (voluntary) August 29, 1985 Commissioner of the Patent Office Michibu Uga 1981 Patent Application No. 111562 2 Name of the invention Composite membrane for gas separation 3 Relationship to the case of the person making the amendment Applicant address 2-2-3 Iwamoto-cho, Chiyoda-ku, Tokyo Name Name
Nippon Chemifa Co., Ltd. Representative Keizo Ushiyama 4 Agent Voluntary 6 Column 7 “Detailed Description of the Invention” of the specification subject to amendment Contents of the amendment (1) In the specification, page 4, line 2 “?” After ``Lisulfone,'' insert ``-Riethersulfone.'' (2) Page 6, line 16, “In case” [In case, also 1: L 56 M
l (under the discharge of z, the discharge pressure is 0.04 mmHf,
When the output is 50W, the distance between the electrodes is 6cIL, and the discharge time is 150 seconds.'' (3) On page 8, line 16, which says ``A composite membrane was obtained,'' change the next line and insert the text. [Example 3 Commercially available? Risulfone hollow fiber (diameter 240μ, wall thickness 8
0μ) into the cross tube type Zolazma polymerization apparatus.
Fluorotributylamine vapor at a pressure of 0.04 mm
Filled with Hf, a glow discharge of 13.56 MHz was generated under the conditions of an output of 50 W, an inter-electrode distance of 6 cx, and an electrode area of 14 m (XX 11 m), and discharged for 150 seconds. Good oxygen permeability properties [separation coefficient 02/N2
= 2.7) composite membrane was obtained. (4) On page 8, line 17, "Example 3" is corrected to "Example 4." (5) Page 10, lines 17-18, 3--Delete the statement ``This and 111.'' 4-

Claims (1)

【特許請求の範囲】 1 混合気体から特定の気体を分離する膜であって、多
孔性支持膜とその表面又は孔を充塞1−でその表面に形
成したポリ(パーフルオロケミカル)からなる薄膜とか
ら形成される複合膜より々る気体分離用複合膜。 2 ポリ(パーフルオロケミカル)がポリ(パーフルオ
ロトリブチルアミン)である特許請求の範囲第1項記載
の気体分離用複合膜。 3 ポリ(パーフルオロケミカル)カ、パーフルオロケ
ミカルをプラズマ重合して得られたものである特許請求
の範囲第1項又は第2項記載の気体分離用複合膜。
[Scope of Claims] 1. A membrane for separating a specific gas from a gas mixture, comprising a porous support membrane and a thin film made of poly(perfluorochemical) formed on the surface of the porous support membrane and its surface or pores filled with 1-. Composite membranes for gas separation. 2. The composite membrane for gas separation according to claim 1, wherein the poly(perfluorochemical) is poly(perfluorotributylamine). 3. The composite membrane for gas separation according to claim 1 or 2, which is obtained by plasma polymerizing poly(perfluorochemical) or perfluorochemical.
JP59111562A 1984-05-31 1984-05-31 Composite membrane for gas separation Pending JPS60255106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59111562A JPS60255106A (en) 1984-05-31 1984-05-31 Composite membrane for gas separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59111562A JPS60255106A (en) 1984-05-31 1984-05-31 Composite membrane for gas separation

Publications (1)

Publication Number Publication Date
JPS60255106A true JPS60255106A (en) 1985-12-16

Family

ID=14564524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59111562A Pending JPS60255106A (en) 1984-05-31 1984-05-31 Composite membrane for gas separation

Country Status (1)

Country Link
JP (1) JPS60255106A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1693408A1 (en) * 2003-12-03 2006-08-23 Tonen Chemical Corporation Microporous composite film, process for producing the same, and use
JP2009185316A (en) * 2008-02-05 2009-08-20 Utec:Kk Plasma cvd apparatus and fluoride organic film, and organic film having silane coupling group
WO2017004495A1 (en) * 2015-07-01 2017-01-05 3M Innovative Properties Company Composite membranes with improved performance and/or durability and methods of use
WO2017004492A1 (en) * 2015-07-01 2017-01-05 3M Innovative Properties Company Pvp- and/or pvl-containing composite membranes and methods of use
WO2017004496A1 (en) * 2015-07-01 2017-01-05 3M Innovative Properties Company Polymeric ionomer separation membranes and methods of use

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1693408A1 (en) * 2003-12-03 2006-08-23 Tonen Chemical Corporation Microporous composite film, process for producing the same, and use
EP1693408A4 (en) * 2003-12-03 2007-01-17 Tonen Sekiyukagaku Kk Microporous composite film, process for producing the same, and use
US7785735B2 (en) 2003-12-03 2010-08-31 Tonen Chemical Corporation Microporous composite membrane and its producing method and use
JP2009185316A (en) * 2008-02-05 2009-08-20 Utec:Kk Plasma cvd apparatus and fluoride organic film, and organic film having silane coupling group
WO2017004496A1 (en) * 2015-07-01 2017-01-05 3M Innovative Properties Company Polymeric ionomer separation membranes and methods of use
WO2017004492A1 (en) * 2015-07-01 2017-01-05 3M Innovative Properties Company Pvp- and/or pvl-containing composite membranes and methods of use
WO2017004495A1 (en) * 2015-07-01 2017-01-05 3M Innovative Properties Company Composite membranes with improved performance and/or durability and methods of use
CN107735163A (en) * 2015-07-01 2018-02-23 3M创新有限公司 Composite membrane and application method containing PVP and/or PVL
JP2018520861A (en) * 2015-07-01 2018-08-02 スリーエム イノベイティブ プロパティズ カンパニー Composite membrane having improved performance and / or durability and method of use
US20190001273A1 (en) * 2015-07-01 2019-01-03 3M Innovative Properties Company Pvp- and/or pvl-containing composite membranes and methods of use
US10478778B2 (en) 2015-07-01 2019-11-19 3M Innovative Properties Company Composite membranes with improved performance and/or durability and methods of use
US10618008B2 (en) 2015-07-01 2020-04-14 3M Innovative Properties Company Polymeric ionomer separation membranes and methods of use
US10737220B2 (en) 2015-07-01 2020-08-11 3M Innovative Properties Company PVP- and/or PVL-containing composite membranes and methods of use
CN107735163B (en) * 2015-07-01 2021-02-23 3M创新有限公司 Composite membranes comprising PVP and/or PVL and methods of use

Similar Documents

Publication Publication Date Title
US4073733A (en) PVA membrane and method for preparing the same
US4938778A (en) Composite hollow fiber type separation membranes processes for the preparation thereof and their use
US4812269A (en) Process for producing hollow fiber semi-permeable membranes
CA1316311C (en) Anisotropic membranes for gas separation
JPH0451209B2 (en)
JPH0451214B2 (en)
JPH0647058B2 (en) Gas selective permeable membrane
JPS60255106A (en) Composite membrane for gas separation
CA1107467A (en) Polycarbonate membranes for use in hemodialysis
JPS594163B2 (en) Gastou Kasemak
JPS6138208B2 (en)
JPS6333871B2 (en)
JPS59225703A (en) Porous membrane and preparation thereof
EP0164468A2 (en) Porous membrane
JPS6223403A (en) Porous hollow yarn membrane and its preparation
JPH047026A (en) Composite semi-permeable membrane
JP7441633B2 (en) gas separation membrane
Albrecht et al. Formation of porous bilayer hollow fibre membranes
JPS59228016A (en) Hollow yarn membrane of aromatic polysulfone
JPS61103521A (en) Selective permeable compound film for gas and its preparation
Sakata et al. Plasma‐polymerized membranes and gas permeability III
JP7349885B2 (en) gas separation membrane
JPS62210008A (en) Production of liquid separation membrane exhibiting permselectivity to ethanol
JPS6041503A (en) Polyether sulfone microporous membrane and its manufacture
JP2646562B2 (en) Method for producing permselective composite hollow fiber membrane