JPS60254375A - X-ray ct picture processor - Google Patents

X-ray ct picture processor

Info

Publication number
JPS60254375A
JPS60254375A JP59111869A JP11186984A JPS60254375A JP S60254375 A JPS60254375 A JP S60254375A JP 59111869 A JP59111869 A JP 59111869A JP 11186984 A JP11186984 A JP 11186984A JP S60254375 A JPS60254375 A JP S60254375A
Authority
JP
Japan
Prior art keywords
image
storage device
image storage
bone
adder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59111869A
Other languages
Japanese (ja)
Other versions
JPH0454455B2 (en
Inventor
Eiji Yoshitome
吉留 英二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Original Assignee
Yokogawa Medical Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Medical Systems Ltd filed Critical Yokogawa Medical Systems Ltd
Priority to JP59111869A priority Critical patent/JPS60254375A/en
Priority to DE8585901557T priority patent/DE3586203T2/en
Priority to PCT/JP1985/000124 priority patent/WO1985004090A1/en
Priority to EP85901557A priority patent/EP0204844B1/en
Priority to US06/800,077 priority patent/US4739481A/en
Priority to DE198585901557T priority patent/DE204844T1/en
Publication of JPS60254375A publication Critical patent/JPS60254375A/en
Publication of JPH0454455B2 publication Critical patent/JPH0454455B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/008Specific post-processing after tomographic reconstruction, e.g. voxelisation, metal artifact correction

Abstract

PURPOSE:To attain simple beam hardening correction of a bone by contracting a binary picture and a weight function indicating the bone by 1/N in the vertical and horizontal directions, repeating two-dimensional addition of the weight function by using the binary picture as its mask in all picture elements, then expanding the interpolation again by N times to add the expanded result to the original density image. CONSTITUTION:An X-ray CT reconstituted density image inputted from an external device to the 1st picture memory 1 is converted by a binary-coding device 2 and the converted result is stored in the 2nd picture memory 3. A masking adder 5 matches the center of the weight function obtained from a weight function memory 4 with a picture element position indicating the bone in the binary picture are having a high CT value to add and store the two-dimensionally expanded weight function to/in the 3rd picture memory 6. The picture obtained by repeatedly adding all the picture elements is added to the initially inputted reconstituted density image by a picture adder 7 and the beam hardening artifact of the bone is removed. Thus, the number of times of operation is reduced and rapid operation is attained by contracting the binary picture and the weight function indicating the bone by 1/N in the vertical and horizontal directions.

Description

【発明の詳細な説明】 (技術分野) 本発明は、X線CT (CTはCOmpUtedT’ 
Om OQ ra p 11 Vの略)像に生じる骨の
ビームノ\−1:ニングアーチファクトを再構成像のみ
を使って高速に除去するようにしたX線CT画像処理装
置に関する。(従来技術) 骨のビームハードニング補正は、従来ジョセフ他の文献
(J osepl+−8pital−AM ethod
 t’orCorrecting 3one Indu
ced Artifacts inCo’mputed
 T omoaraphy S canners、 J
 ournal ofCompute+’ △5sis
tetl T−omography Vo12p100
〜1o8. Jan、197B)に見られるように、再
構成画像を画像上でスキャンしその中に含まれるソフト
ティシュ一部と骨(0丁値で分離される)の経路長から
補正用を泪算し、これをもとに実スキャンデータを補正
した上で再び再構成J−る方法で行われていた。
Detailed Description of the Invention (Technical Field) The present invention relates to X-ray CT (CT is COMPUtedT'
The present invention relates to an X-ray CT image processing apparatus that quickly removes bone beam artifacts that occur in images using only reconstructed images. (Prior Art) Bone beam hardening correction has been previously described in the literature of Joseph et al.
t'orCorrecting 3one Indu
ced Artifacts in Co'mputed
T omoaraphy S canners, J.
internal ofCompute+' △5sis
tetl T-omography Vo12p100
~1o8. As seen in Jan, 197B), the reconstructed image is scanned on the image and the correction amount is calculated from the path length of the soft tissue part and bone (separated by the zero value) included therein. Based on this, the actual scan data was corrected and then reconstructed again.

しかしながら、この方法では次のような問題点があった
However, this method has the following problems.

02度の再構成と画像上でのスキャンが必要なため、演
算間が莫人であり、高速処理が期待できない。
Since 0.2 degree reconstruction and scanning on the image are required, the calculation time is enormous, and high-speed processing cannot be expected.

■実スキャンデータが必要なため事後処理が容易でない
■Post-processing is not easy because actual scan data is required.

(発明の目的) 本発明は、このような点に鑑みてなされたもので、その
目的は、アーチファクトの除去効果は損わず、高速かつ
簡単に画像データのみから骨のビームハードニング補正
を行い1qるX線CT画像処理装置を提供づ−ることに
ある。
(Object of the Invention) The present invention has been made in view of the above points, and its purpose is to perform bone beam hardening correction quickly and easily from only image data without impairing the effect of removing artifacts. An object of the present invention is to provide an X-ray CT image processing device of 1q.

(発明の構成) このような目的を達成する第1の発明は、外部装置に対
しXIICTの再構成濃淡像を入出力することのできる
第1の画像記憶装置と、この第1の画像記憶装置から与
えられる画像を予め定められたCT値をもとに2鎮化す
る2埴化装置と、この2値画像を記憶しておくための第
2の画像記憶装置と、重み関数を蓄えた重み関数記憶装
置と、前記2値画像をマスクとして前記重み関数を加算
器るマスクイ4加算器と、このマスク付加算器で得られ
た加算結果を蓄える第3の画像記m装置と、前記第1の
画像記憶装置と前記第3の画像記憶装置の画像間の加算
を行い、加算結果を第1の画像記憶装置に与える画像加
算器とを具備し、再構成像の骨成分を表づ全画素でこの
点を中心として広がる2次元の重み関数の総和をとって
補正像とし、再構成像と補正像をJIG算づることによ
り骨のビームハードニング補正を行うようにしたことを
特徴とするもので、第2の発明は、外部装置に対してX
線CTの再構成濃淡像を入出力することのできる第1の
画像記憶装置と、この第1の画像記憶装置から与えられ
る画像を縦横ともに縮小する画像縮小装置と、この縮小
画像を記憶する第4の画像記憶装置と、この第4の画像
記憶装置り冒ろ与えられる画像を予め定められたCT値
をもとに2値化する2値化装置と、この2値画像を記憶
しておくための第2の画像記憶装置と、重み関数を蓄え
た重み関数記憶装置と、前記2値画像をマスクとして前
記重み関数を加算するマスク(−1加算器と、このマス
ク付加算器で得られl、二加算結果を蓄える第3の画像
記憶装置ど、この第3の画像記憶装置から与えられる画
像を補間を施し”<縦横ともにもとの大きさに拡大する
画像拡大装置と、前記第1の画像記憶装置と前記画像拡
大装置の画像間の加算を行い、加算結果を第1の画像記
憶装置に与える画像加算器とを具備し、骨を表121a
 1iji像及び重み関数を縦横1/Nに縮小した後で
2値画像をマスクとして重み関数を2次元で加算する処
理を骨を表す全画素について繰り返し、得られ/ζ加算
像を補間を使って縦横N倍に拡大した上でもとの再構成
濶淡像に加算して骨のビームハードニング補正を行うよ
うにしたことを’t?i徴とするもので・ある。
(Structure of the Invention) A first invention that achieves the above object includes a first image storage device capable of inputting and outputting a reconstructed gray scale image of XIICT to an external device, and this first image storage device. a second image storage device for storing this binary image, and a weight storing a weighting function. a function storage device; a mask adder that adds the weighting function using the binary image as a mask; a third image storage device that stores the addition result obtained by the mask addition adder; and an image adder that performs addition between the images in the image storage device and the third image storage device, and provides the addition result to the first image storage device, and includes an image adder that performs addition between the images in the image storage device and the third image storage device, and provides the addition result to the first image storage device, and adds all pixels representing the bone component of the reconstructed image. The beam hardening correction of the bone is performed by calculating the sum of two-dimensional weighting functions spread around this point as a correction image, and performing JIG calculations on the reconstructed image and the correction image. So, the second invention is to
a first image storage device capable of inputting and outputting a reconstructed grayscale image of a line CT; an image reduction device that reduces the image provided from the first image storage device both vertically and horizontally; and a first image storage device that stores the reduced image. This fourth image storage device has a binarization device that binarizes the given image based on a predetermined CT value, and stores this binary image. a second image storage device for storing weighting functions, a weighting function storage device storing weighting functions, a mask for adding the weighting functions using the binary image as a mask (-1 adder, and a second image storage device for adding the weighting functions to each other using the binary image as a mask); an image enlarging device that performs interpolation on the image provided from the third image storage device and enlarges it to its original size both vertically and horizontally; and an image adder that performs addition between the images of the image storage device and the image enlargement device and provides the addition result to the first image storage device,
After reducing the 1iji image and the weighting function to 1/N vertically and horizontally, the process of adding the weighting function two-dimensionally using the binary image as a mask is repeated for all pixels representing the bone, and the obtained /ζ addition image is calculated using interpolation. Is it true that beam hardening correction for the bones is performed by adding the image to the original reconstructed image after enlarging it N times vertically and horizontally? It is a sign of i.

(実施例) 以下、図面を用いて本発明の実施例を詳しく説明する。(Example) Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は第1の発明に係るX線C1−画像処理装置の一
実施例を示づ要部のブロック構成図である。この図にお
いて、1は再構成濃淡像を記憶づる第1の画像記憶装置
、2は2俯化装置、3は第2の画像記4@装置、4は重
み関数記憶装置、55はマスクイ」加算器、6は第3の
画像記憶装置、7は画像加Q器である。
FIG. 1 is a block diagram of essential parts showing an embodiment of an X-ray C1-image processing apparatus according to the first invention. In this figure, 1 is a first image storage device that stores reconstructed grayscale images, 2 is a 2-viewing device, 3 is a second image storage device, 4 is a weighting function storage device, and 55 is a masking addition device. 6 is a third image storage device, and 7 is an image adding Q device.

第1の画像記ffi装置1は外部装@(図示せず)に対
し画像を入出力することができるようになっている。2
値化装置2は第1の画像記憶装置1の画像を予め設定さ
れたCT値をしきい値として2値化づるものであり、第
2の画像記憶装置3はこの2値画像を記1 tlるもの
である。マスク付加算器5は重み関数記憶装置4と第2
の画像記憶装置3との出力を受(プ、2値画像上骨を表
すCT値の高い画素位置に重み関数の中心を合わせて2
次元に広がる重み関数を第3の画像記憶装置6に加算記
憶する。画像加睦器7は第3の画像記憶装置6の画像と
第1の画像記憶装置1の画像とを加算するもので、加算
されIこ画像は第1の画像記憶装置1に記憶されるよう
になっている。
The first image recording ffi device 1 is capable of inputting and outputting images to an external device (not shown). 2
The digitizing device 2 binarizes the image in the first image storage device 1 using a preset CT value as a threshold, and the second image storage device 3 records this binary image. It is something that The mask addition adder 5 has a weighting function storage device 4 and a second
The center of the weighting function is aligned with the pixel position of the high CT value representing the bone on the binary image.
The weighting functions spread across dimensions are added and stored in the third image storage device 6. The image adder 7 adds the image in the third image storage device 6 and the image in the first image storage device 1, and the added image is stored in the first image storage device 1. It has become.

このような構成において、外部装置より第1の画像記憶
装置1に入力されたX線CTの再構成濃淡像は、2値化
装置2において予め設定されたしきい値と比較され2値
化される。この2値画像を第2の画像記憶装置3に順次
記憶してゆく。マスク(=I加棹器5では、この第2の
画像記憶装置3より2値画像を受(プ、この2値画像上
骨を表すCT値の高い画素位置に重み関数記憶装置4か
らの重み関数の中心を合わゼて2次元に広がる重み関数
を第3の画像記憶装置6に加算記憶J−る。尚、第3の
画像記憶装置6の初期記憶値は零に設定されている。こ
の加算処理をしきい値」メ−)−の0丁値を持つすべて
の画素に対して繰り返す。
In such a configuration, a reconstructed grayscale image of X-ray CT input from an external device to the first image storage device 1 is compared with a preset threshold value in the binarization device 2 and binarized. Ru. These binary images are sequentially stored in the second image storage device 3. The mask (=I) receives the binary image from the second image storage device 3 and assigns a weight from the weighting function storage device 4 to the pixel position with a high CT value representing the upper bone of the binary image. A weighting function that spreads two-dimensionally by merging the centers of the functions is added and stored in the third image storage device 6.The initial storage value of the third image storage device 6 is set to zero. The addition process is repeated for all pixels having a value of 0 at the threshold value.

このようにしてできあがった画像は、画像加算器7にJ
−って初めに人力された再構成濃淡像(第1の画像記憶
装置1に記憶されている)に加算される。これにより、
骨のビームハードニングアーヂフj・り[・を除去Jる
ことができ、その画像は改めて第1の画像記憶装置1に
書き込まれ、必要に応じて外部装置に出力される。
The image created in this way is sent to the image adder 7.
- is added to the initially manually reconstructed grayscale image (stored in the first image storage device 1). This results in
The beam hardening of the bone can be removed, and the image is written anew to the first image storage device 1 and output to an external device as required.

第2図は本発明の他の実施例を示す説明図である。第1
図と異なるところは第3の画像記憶装置6と画像加算器
7を省略した点である。第2図においては、重み関数の
総和をとって後から2枚の画像間で加算する代りに、重
み関数を再構成像の対応Jる位置に直接加算し、結果を
第1の画像記憶装置 構成によっても上述と同様に骨のビームハードニングア
ーチフアクL−を除去覆ることができる。
FIG. 2 is an explanatory diagram showing another embodiment of the present invention. 1st
The difference from the figure is that the third image storage device 6 and image adder 7 are omitted. In FIG. 2, instead of taking the sum of the weighting functions and adding them later between the two images, the weighting functions are added directly to the corresponding positions of the reconstructed image and the results are stored in the first image storage device. Depending on the configuration, the bone beam hardening artifact L- can be removed and covered in the same manner as described above.

尚、あるCT(a以上の画素に対して同一の重み関数を
加算しているが、あるCT値以上の画素に対してそのC
T値により変調した重み関数を加算するように構成する
ことも可能である。
In addition, the same weighting function is added to pixels with a certain CT value (a or more, but the C
It is also possible to configure so that weighting functions modulated by the T value are added.

又、マスク付加算器5は第2の画像記憶装置3の2値画
像と重み関数記憶装置4の重み関数の2次元コンボリュ
ーションて冒ぎ換えることも可能で必る。
Further, the mask addition adder 5 can perform a two-dimensional convolution of the binary image in the second image storage device 3 and the weighting function in the weighting function storage device 4.

以上)ホベた第1の発明の実施例においては、骨を表す
画素の数だけ2次元の重み関数を加算しており、場合に
よってはかなりの演算量になる。そこで、骨を表12値
画像1重み関数を縦横1/Nに縮小した後で2値画像を
マスクとして重み関数を2次元で加算し、骨を表す全画
素について加算を繰り返すようにすれば、演算量を減少
させることができ、それだけ高速処理を実現することが
できる。
In the embodiment of the first invention described above, two-dimensional weighting functions are added for the number of pixels representing bones, which may result in a considerable amount of calculation depending on the case. Therefore, if we reduce the weight function of the bone to 1/N vertically and horizontally, use the binary image as a mask, add the weight function two-dimensionally, and repeat the addition for all pixels representing the bone. The amount of calculations can be reduced, and high-speed processing can be achieved accordingly.

第3図はこのような高速処理を図った第2の発明におけ
るX線CT画像処理装置の一実施例を示す構成図である
。第3図において、第1図と同等部分には同一符号を付
しである。第1図と異なる構成部分は画像縮小装置31
.第4の画像記fIA装置321画像拡大装R33,第
5の画像記憶装置34である。
FIG. 3 is a configuration diagram showing an embodiment of the X-ray CT image processing apparatus according to the second invention, which is designed to achieve such high-speed processing. In FIG. 3, parts equivalent to those in FIG. 1 are given the same reference numerals. Components different from those in FIG. 1 are the image reduction device 31
.. They are a fourth image recording fIA device 321, an image enlargement device R33, and a fifth image storage device 34.

画像縮小装置31は第1の画像記憶装置1の画像を受け
、これを縦横両方向に1/Nに縮小するもので、結果は
第4の画像記憶装置32に格納される。第4の画像記憶
装置32の出力は2値化装・ 置2に導かれるようにな
っている。
The image reduction device 31 receives the image in the first image storage device 1 and reduces it to 1/N in both the vertical and horizontal directions, and the result is stored in the fourth image storage device 32. The output of the fourth image storage device 32 is led to the binarization device/device 2.

画像拡大装置33は第3の画像記憶装置6の縮小画像を
N倍し、もとの大きさの画像に拡大するものである。拡
大画像は第5の画像記憶装@34に一旦格納された後画
像加算器7に送られる。
The image enlarging device 33 multiplies the reduced image stored in the third image storage device 6 by N times and enlarges the reduced image to the original size. The enlarged image is once stored in the fifth image storage device @34 and then sent to the image adder 7.

このような構成における動作を次に説明づ−る。The operation in such a configuration will be explained next.

外部装置から第1の画像記憶装置1に入ツノされたX線
CHの再構成濃淡像は、画像縮小装置31で縦横両方向
に1/Nに縮小され、第4の画像記憶装@32に記憶さ
れる。尚、Nは通常整数が用いられる。
The reconstructed grayscale image of the X-ray CH input from the external device into the first image storage device 1 is reduced to 1/N in both vertical and horizontal directions by the image reduction device 31, and is stored in the fourth image storage device @32. be done. Note that N is usually an integer.

記憶装置32の縮小画像は予め設定されたCT値に従っ
て2値化装置2で2値化され、第2の画像拡大装置3に
記憶される。
The reduced image in the storage device 32 is binarized by the binarization device 2 according to a preset CT value, and is stored in the second image enlarging device 3.

重み関数記憶装置40重み関数も前述の縮小率1/Nに
対応して予め縦横1/Nに縮小されているものとする。
It is assumed that the weighting function of the weighting function storage device 40 has also been reduced in advance to 1/N in the vertical and horizontal directions corresponding to the above-mentioned reduction rate of 1/N.

マスク付加算器5において、重み関数記憶装置4の重み
関数を2値画像(記憶装置3)の骨を族1−各画素に対
し中心を合わUて第3の画像記憶装置6に加算記憶ブー
る。尚、第3の画像記憶装置6の初期記憶値は零に設定
されている。
In the mask adding adder 5, the weighting function of the weighting function storage device 4 is added to the third image storage device 6 by centering the bones of the binary image (storage device 3) for each pixel. Ru. Note that the initial storage value of the third image storage device 6 is set to zero.

この加算処理を骨を表ねづ全画素について行った結果は
縮小像に対重る補正像となっているので、これを画像拡
大装置33でN倍し、もとの大ぎざに復元する。この拡
大には割算時間の短縮のため線型補間を用い、1次元毎
に2段階に分けて2次元の補間を行う。拡大された画像
は第5の画像記憶装@34に蓄えられ、この拡大補正像
は画像加算器7において第1の画像記18置1上の入力
画像と2次元加算され、その結果が第1の画像記憶装置
1上に出力される。
The result of performing this addition process on all pixels that do not represent bones is a corrected image that overlaps the reduced image, so this is multiplied by N in the image enlarging device 33 and restored to the original large serrations. For this expansion, linear interpolation is used to shorten the division time, and two-dimensional interpolation is performed in two stages for each dimension. The enlarged image is stored in the fifth image storage device @34, and this enlarged corrected image is two-dimensionally added to the input image on the first image recorder 18 in the image adder 7, and the result is added to the first image storage device @34. The image data is output onto the image storage device 1 of the image storage device 1.

第4図はN=4の場合の拡大補間を説明する説明図であ
る。既知の値(○印)をもとにまずX印での値をそれを
挟むQ印の値から次式で算出する。
FIG. 4 is an explanatory diagram illustrating enlarged interpolation when N=4. Based on the known value (○ mark), first calculate the value at the X mark from the value at the Q mark sandwiching it using the following formula.

f (i > =f (1)+(i /4)・(f (
2)−f (1)) ここで、==1.2.3 次に*印での値をそれを挟む左右のX印の値から次式で
輝出する。
f (i > = f (1) + (i /4)・(f (
2)-f (1)) Here, ==1.2.3 Next, the value at the * mark is extracted from the values at the X marks on the left and right sides thereof using the following formula.

・<r <2>−r (1)) ここで、r =1.2.3 このようにして補間を行う。N=4以外の場合も同様で
ある。
-<r <2>-r (1)) Here, r = 1.2.3 Interpolation is performed in this way. The same applies to cases other than N=4.

尚、実施例に限らず、次のようにしでもよい。Note that the present invention is not limited to the embodiment, and the following method may be used.

0画像縮小装置31では実際には画像を縮小ぜず、2値
化装冒2と一体化して縦横ともN画素毎に1ノ°ンプル
して2値化する。
The 0-image reduction device 31 does not actually reduce the image, but integrates it with the binarization equipment 2 to binarize the image by pulling one sample every N pixels in both the vertical and horizontal directions.

■画像拡大装跨33は第5の画像記憶装置34を通さず
に直接第1の画像記憶装置と加算Jる。
(2) The image enlarging device 33 performs addition directly to the first image storage device without passing through the fifth image storage device 34.

■マスク付加算器5を2次元コンポリコーション装置に
向き換える。
(2) Replace the mask addition adder 5 with a two-dimensional conpolision device.

0画像縮小装置31.第4の画像記憶装置32と第2の
画像記憶装置3を用いずに、2値化装置2が出力づるN
 +Jンブル旬の値に従って加算器5をオン・Δノする
0 image reduction device 31. The binarization device 2 outputs N without using the fourth image storage device 32 and the second image storage device 3.
The adder 5 is turned on and off according to the value of +J.

(発明の効宋) 以−1説明したように、本発明によれば、重み関数を適
切に設定することにより、ジ、、1F:!フ他の従来の
方法によるのと同等の骨のじ一ムハードニング補正がで
き、脳と頭蓋骨の画+IJ!1のきれが良く、しかも骨
によるカッピングのない画像を1qることができる。
(Effect of the Invention Song Dynasty) As explained in Part 1, according to the present invention, by appropriately setting the weighting function, Ji...1F:! It is possible to correct bone hardening equivalent to other conventional methods, and the image of the brain and skull + IJ! It is possible to obtain 1 q of clear images without bone cupping.

又、従来のような画像−[:で改めてスキャンを繰り返
し、その経路内での成分を調べ、それによる実スキャン
データの補正を行い、それを再び再構成するという複雑
かつ莫大な演算量を要する処理と比べ、再構成像をもど
に簡単な画像間の演算を繰り返すだ1)で処理ができる
など、アルゴリズムの簡単さ、演算量の少なさから極め
て実用的である。
In addition, it requires a complex and huge amount of calculation to repeat the scan again with the conventional image - [:, examine the components in the path, correct the actual scan data accordingly, and reconstruct it again. Compared to conventional processing, it is extremely practical due to the simplicity of the algorithm and the small amount of calculations, such as the fact that processing can be performed by repeating simple calculations between images using the reconstructed image as a base (1).

例えば、使用画像320x 320画素画素用重み関数
61X 61画素としたとき、ジ3廿フ他の従来方法で
は約15時間ががっていたが、本発明によれば約50分
の処理時間でづむ。
For example, when using an image of 320 x 320 pixels and a pixel weighting function of 61 x 61 pixels, it took about 15 hours with other conventional methods, but according to the present invention, the processing time is about 50 minutes. nothing.

又、第3図に示すような本発明によれば、最初に画像を
1/N2に縮小し、この縮小画像に対して2値化、重み
関数の加算を行うため、匝み関数ももどの1/N2に縮
小しIこものを使うことから加筒回数はM 2 ×f<
から<M/N) 2xk /N2と1./ N4に減少
する。ここでM2は重み関数の面積を画素数で表したも
の、kは骨を表す画素の数である。
Furthermore, according to the present invention as shown in FIG. 3, the image is first reduced to 1/N2, and the reduced image is binarized and the weighting function is added. Since it is reduced to 1/N2 and an I-sized cylinder is used, the number of cylinders is M 2 ×f<
From <M/N) 2xk /N2 and 1. / Decrease to N4. Here, M2 is the area of the weighting function expressed in the number of pixels, and k is the number of pixels representing the bone.

計IIIによるシミュレーションににれば、N=4、M
=61で画質の劣化は±1CT値以下であり、4算時間
は縮小しない場合に比べて 1/ 203倍どtJ′つ
Iこ。
In the simulation using Total III, N=4, M
= 61, the image quality deterioration is less than ±1 CT value, and the calculation time is 1/203 times that of the case without reduction.

この方式は畳のビームハードニング補正像が低い空間周
波数成分しか含んでいないという現象を巧みに利用した
結果のたまものである。
This method is the result of skillfully exploiting the phenomenon that the beam hardening corrected image of tatami mats contains only low spatial frequency components.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1の発明に係るX線CT画像処理装置の一実
施例を承り構成図、第2図は第1の発明の他の実施例を
示す説明図、第3図は第2の発明の一実施例を示す構成
図、第4図は拡大補間を説明するための説明図である。 1・・・第1の画像記憶装置 2・・・21m化装置 3・・・第2の画像記憶装置 4・・・重み関数記憶装置 5・・・マスク付加算器 6・・・第3の画像記憶装置 7・・・画像加算器 31・・・画像縮小!!、置 32・・・第4の画像記憶装置 33・・・画像拡大装置 34・・・第5の画像記憶装置 pP)2図 oxxx。 X来米来× ×僚1g辛 X X米殊来X
FIG. 1 is a configuration diagram of an embodiment of the X-ray CT image processing apparatus according to the first invention, FIG. 2 is an explanatory diagram showing another embodiment of the first invention, and FIG. FIG. 4 is a block diagram showing one embodiment of the invention, and is an explanatory diagram for explaining enlargement interpolation. 1... First image storage device 2... 21m conversion device 3... Second image storage device 4... Weighting function storage device 5... Mask addition adder 6... Third Image storage device 7...image adder 31...image reduction! ! , location 32...Fourth image storage device 33...Image enlargement device 34...Fifth image storage device pP) 2 oxxx. X come to the US × × 1g spicy X X come to the US X

Claims (2)

【特許請求の範囲】[Claims] (1)外部装置に対しX線CTの再構成濃淡像を入出力
づることのできる第1の画像記憶装置と、この第1の画
像記憶装置から与えられる画像を予め定められたCT値
をもとに2値化Jる2値化装置と、この2値画像を記憶
しており1.:めの第2の画像記憶装置と、重み関数を
蓄えた重み関数記4Ja装置と、前記2値画像をマスク
として前記重み関数を加算するマスク付加算器と、この
マスク付加算器で得られIζ加算結果を蓄える第3の画
像記憶装置と、前記第1の画像記憶装置と前記第3の画
像記憶装置の画像間の加算を行い、加算結果を第1の画
像記憶装置に与える画像加算器とを具備し、再構成像の
青成分を表す全画素でこの点を中心どして広がる2次元
の重み関数の総和をとって補正像とし、再構成像と補正
像を加算することにより骨のビームハードニング補正を
行うようにしたことを特徴とするX¥ACT画像処理装
置。
(1) A first image storage device capable of inputting and outputting reconstructed grayscale images of X-ray CT to an external device; A binarization device that performs binarization and stores this binary image.1. : a second image storage device, a weighting function notation 4Ja device that stores weighting functions, a mask addition adder that adds the weighting functions using the binary image as a mask, and an image obtained by this mask addition adder. a third image storage device that stores Iζ addition results; and an image adder that performs addition between images of the first image storage device and the third image storage device and provides the addition result to the first image storage device. The sum of the two-dimensional weighting functions spread around this point for all pixels representing the blue component of the reconstructed image is calculated as a corrected image, and the bone is calculated by adding the reconstructed image and the corrected image. An X\ACT image processing device characterized by performing beam hardening correction.
(2)外部装置に対してX線CTの再構成濃淡像を入出
力することのできる第1の画像記憶装置と、この第1の
画像記憶装置から与えられる画像を縦横ともに縮小する
画像縮小装置と、この縮小画像を記憶する第4の画像記
憶装置と、この第4の画像記憶装置から与えられる画像
を予め定められたCT値をもどに2(lIj化する2値
化装置と、この2値画像を記憶しておくための第2の画
像記憶装置と、重み関数を蓄えた重み関数記憶装置と、
前記2値画像をマスクとして前記重み関数を加算するマ
スク付加算器と、このマスク付加算器で得られた加算結
果を蓄える第3の画像記憶装置と、この第3のm像記憶
装置から与えられる画像を補間を施しで縦横ともにもと
の大きさに拡大する画像拡大装置と、前記第1の画像記
憶装置と前記画像拡大装置の画像間の加算を行い、加算
結果を第1の画像記憶装置に与える画像加算器とを具備
し、骨を表す2値画像及び重み関数を縦横1/Nに縮小
した後で21画像をマスクとして重み関数を2次元で加
算する処理を骨を表す全画素について繰り返し、得られ
た加算像を補間を使って縦横N倍に拡大した上でもとの
再構成I淡像に加算して骨のビームハードニング補正を
行うようにしたことを特徴とするX線CTi1ii像処
理装置。
(2) A first image storage device that can input and output a reconstructed grayscale image of X-ray CT to an external device, and an image reduction device that reduces the image provided from the first image storage device both vertically and horizontally. a fourth image storage device that stores this reduced image; a binarization device that converts the image provided from the fourth image storage device into 2(lIj) with a predetermined CT value; a second image storage device for storing value images; a weighting function storage device storing weighting functions;
a mask addition adder that adds the weighting function using the binary image as a mask; a third image storage device that stores the addition result obtained by the mask addition adder; an image enlarging device that performs interpolation to enlarge the image to the original size both vertically and horizontally; and an image enlarging device that performs addition between the images of the first image storage device and the image enlarging device, and stores the addition result in the first image storage. The device is equipped with an image adder that applies the image adder to the apparatus, and after reducing the binary image representing the bone and the weighting function to 1/N vertically and horizontally, the process of adding the weighting function two-dimensionally using the 21 images as a mask is performed on all pixels representing the bone. is repeated, and the resulting added image is enlarged vertically and horizontally by N times using interpolation, and then added to the original reconstructed I pale image to perform beam hardening correction for the bone. CTi1ii image processing device.
JP59111869A 1984-03-15 1984-05-31 X-ray ct picture processor Granted JPS60254375A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59111869A JPS60254375A (en) 1984-05-31 1984-05-31 X-ray ct picture processor
DE8585901557T DE3586203T2 (en) 1984-03-15 1985-03-13 IMAGE PROCESSING DEVICE FOR X-RAY GENTOMOGRAPHY.
PCT/JP1985/000124 WO1985004090A1 (en) 1984-03-15 1985-03-13 X-ray ct image processor
EP85901557A EP0204844B1 (en) 1984-03-15 1985-03-13 X-ray ct image processor
US06/800,077 US4739481A (en) 1984-03-15 1985-03-13 X-ray CT image processing apparatus
DE198585901557T DE204844T1 (en) 1984-03-15 1985-03-13 IMAGE PROCESSING DEVICE FOR X-RAY GENTOMOGRAPHY.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59111869A JPS60254375A (en) 1984-05-31 1984-05-31 X-ray ct picture processor

Publications (2)

Publication Number Publication Date
JPS60254375A true JPS60254375A (en) 1985-12-16
JPH0454455B2 JPH0454455B2 (en) 1992-08-31

Family

ID=14572198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59111869A Granted JPS60254375A (en) 1984-03-15 1984-05-31 X-ray ct picture processor

Country Status (1)

Country Link
JP (1) JPS60254375A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03144860A (en) * 1989-10-31 1991-06-20 Shimadzu Corp Picture filtering device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538589A (en) * 1976-07-01 1978-01-26 Emi Ltd Method of correcting error in radiation absorbing display

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538589A (en) * 1976-07-01 1978-01-26 Emi Ltd Method of correcting error in radiation absorbing display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03144860A (en) * 1989-10-31 1991-06-20 Shimadzu Corp Picture filtering device

Also Published As

Publication number Publication date
JPH0454455B2 (en) 1992-08-31

Similar Documents

Publication Publication Date Title
JP3995854B2 (en) Image processing method and apparatus, and recording medium
US7072524B1 (en) Method of and system for image processing and recording medium for carrying out the method
JP3096054B2 (en) Inverse conversion method from halftone digital video to continuous tone digital video
US4698843A (en) Method for compensating for void-defects in images
JPH04306775A (en) Method for compressing digital image data
JP2001509971A (en) Method and apparatus for minimizing interference products in filtered images
JPH0944657A (en) Method and device for processing image
JP4244094B2 (en) Image processing method and apparatus, and recording medium
JPS63266982A (en) Interpolating method for picture signal and picture signal processor executing it
EP1761896A2 (en) Image edge filtering
WO1985004090A1 (en) X-ray ct image processor
JP3738791B2 (en) Image processing method and apparatus
JP3999432B2 (en) Image processing method and apparatus, and recording medium
JPH06325165A (en) Display method for part of radiation picture
JP3485454B2 (en) Image gradation conversion device, image gradation changing method, medium recording program for executing the method, and infrared camera
KR101341617B1 (en) Apparatus and method for super-resolution based on error model of single image
JP5514132B2 (en) Image reduction device, image enlargement device, and program thereof
JPS60254375A (en) X-ray ct picture processor
JP3965302B2 (en) Spatial filtering method
WO2011087083A1 (en) Data processing method, data processing device and data processing program
JP5498970B2 (en) Image reduction device, image enlargement device, and program thereof
JP2002335400A (en) Image processing unit, image processing method and recording medium
JPH08154188A (en) Dynamic image processing device
JP2013084019A (en) Data extrapolation method, data extrapolation device, and data extrapolation program
KR101106613B1 (en) Apparatus and method for converting resolution of image using edge profile