WO2011087083A1 - Data processing method, data processing device and data processing program - Google Patents

Data processing method, data processing device and data processing program Download PDF

Info

Publication number
WO2011087083A1
WO2011087083A1 PCT/JP2011/050534 JP2011050534W WO2011087083A1 WO 2011087083 A1 WO2011087083 A1 WO 2011087083A1 JP 2011050534 W JP2011050534 W JP 2011050534W WO 2011087083 A1 WO2011087083 A1 WO 2011087083A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
frequency
image data
data processing
spectrum
Prior art date
Application number
PCT/JP2011/050534
Other languages
French (fr)
Japanese (ja)
Inventor
茂樹 広林
貴博 加古
Original Assignee
国立大学法人富山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010006234A external-priority patent/JP2013084019A/en
Application filed by 国立大学法人富山大学 filed Critical 国立大学法人富山大学
Publication of WO2011087083A1 publication Critical patent/WO2011087083A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4007Scaling of whole images or parts thereof, e.g. expanding or contracting based on interpolation, e.g. bilinear interpolation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/005Correction of errors induced by the transmission channel, if related to the coding algorithm

Definitions

  • the present invention relates to a data processing method, a data processing apparatus, and a data processing program for analyzing and processing various types of data such as image data, and in particular, correcting missing portions of data by data interpolation processing and / or extrapolation processing.
  • the present invention relates to a data processing method, a data processing apparatus, and a data processing program.
  • an area with high brightness in the obtained image data causes so-called “overexposed” due to an excessive aperture of the imaging device, and vice versa.
  • so-called “blackout” or the like may occur, and information that is inherently lost may be lost.
  • a process of interpolating missing information based on adjacent macroblocks to generate a predicted image or performing various image corrections is performed during compression encoding. ing.
  • an interpolation technique for example, there is a technique to which an interpolation method is applied like the techniques described in Patent Documents 1 to 6 and the like.
  • Patent Document 1 discloses a technique for reducing image quality degradation due to judder at a low cost in an image interpolation device that converts a frame frequency using an interpolated image generated from an original image.
  • Patent Document 2 discloses a technique for appropriately generating pixels in any region of an image of an interpolation frame when performing frame interpolation on a video signal.
  • Patent Document 3 when interpolating an interpolated frame on an interpolated frame surface between temporally adjacent frames, there is no gap or overlap between images in the interpolated frame, and further block distortion occurs.
  • a technique for reducing the above is disclosed.
  • Patent Document 4 discloses a technique for expanding the resolution by interpolating between two points inside the frame subjected to frequency analysis.
  • Patent Document 5 discloses a technique for applying an interpolation method when creating a three-dimensional color information conversion table for color-converting RGB signal processing system image information to YMCK signal processing system image information. Yes.
  • Patent Document 6 discloses a technique for applying an interpolation method when smoothing the periphery of a texture image.
  • Patent Document 7 discloses a technique for linearly interpolating the total code amount calculated for each quantization step in order to realize image compression that can efficiently control the total code amount of the entire frame. .
  • Patent Document 8 discloses a technique for efficiently generating a prediction signal for an image having a complex pattern when generating an intra-screen prediction signal by applying an extrapolation method.
  • Patent Document 9 when an input image is divided into block units and a difference from a predicted image generated according to a prediction mode selected by intra prediction is encoded, pixel values are extrapolated.
  • a technique for generating a predicted image is disclosed.
  • Patent Document 10 discloses a technique for removing block artifacts from a compressed image by extrapolation.
  • Patent Document 11 discloses a technique for obtaining a texture map value using extrapolation instead of a mipmap that cannot be used when mapping a texture image.
  • Patent Document 12 discloses a technique for performing extrapolation processing when mapping a texture image and performing image correction processing.
  • Patent Document 5 described above also discloses a technique for applying an extrapolation method when creating a three-dimensional color information conversion table for color-converting RGB signal processing system image information into YMCK signal processing system image information.
  • Patent Document 6 described above also discloses a technique for applying an extrapolation method when smoothing the periphery of a texture image.
  • JP 2009-253626 A Japanese Patent Laid-Open No. 2009-200760 JP 2004-357215 A JP 2000-299862 A JP 2005-354219 A Japanese translation of PCT publication No. 2003-504697 JP 2008-42943 A JP 2007-300380 A JP 2006-295408 A Japanese National Patent Publication No. 11-504173 JP 2008-305408 A JP 2004-206672 A
  • Patent Document 6 Patent Document 11, and Patent Document 12 described above are techniques for extrapolating high frequency components in the frequency domain in order to obtain high resolution.
  • prediction is performed from adjacent macroblocks, and the error is encoded. This is not suitable for predicting a wide range, and there is a problem that block noise occurs.
  • the present invention has been made in view of such circumstances, and can analyze various data without generating block noise, and can perform interpolation and / or extrapolation over a wide range.
  • it is an object to provide a data processing method, a data processing device, and a data processing program that can make data after extrapolation significantly natural.
  • NHA Non-Harmonic Analysis
  • This NHA has a frequency f ′ at which the sum of squares of the difference between the signal to be analyzed and the sine wave model signal represented by the phase using the frequency f ′ and the initial phase ⁇ ′ and the amplitude A ′ becomes a minimum value.
  • Amplitude A ′, and initial phase ⁇ ′ are calculated as parameters of the Fourier transform equation of the aperiodic signal.
  • the present invention uses NHA having a high frequency resolution and a small influence on the analysis window length, thereby accurately extracting and interpolating and / or extrapolating the spectrum of the cut out data. The technology that essentially solves the problem is established.
  • the data processing method according to the present invention that achieves the above-described object is a data processing method that analyzes and processes various data, and inputs the original data to be processed to the data processing device and stores it in the memory.
  • a data input step and an arithmetic means of the data processing device reads the original data inputted in the data input step and stored in the memory, and an arbitrary dimension signal based on the original data, a frequency f ′ and an initial value
  • the frequency f ′, the amplitude A ′, and the initial phase ⁇ ′ at which the sum of squares of the difference between the phase using the phase ⁇ ′ and the sinusoidal model signal represented by the amplitude A ′ is minimized.
  • the spectrum is extracted as a Fourier transform parameter of the aperiodic signal, the data is interpolated and / or extrapolated based on the extracted spectrum, and the reconstructed data is extracted. Including an interpolation and / or extrapolation step for obtaining the data.
  • a data processing apparatus that achieves the above-described object is a data processing apparatus that analyzes and processes various data, and includes data input means for inputting original data to be processed, and the data input means.
  • the sum of squares of the difference between the arbitrary dimension signal based on the original data inputted via the sine wave model signal represented by the phase using the frequency f ′ and the initial phase ⁇ ′ and the amplitude A ′ is the minimum value
  • a spectrum is extracted by obtaining the frequency f ′, the amplitude A ′, and the initial phase ⁇ ′ as follows as parameters of a Fourier transform formula of an aperiodic signal, and data interpolation processing is performed based on the extracted spectrum And / or an extrapolation process to obtain reconstruction data.
  • a data processing program that achieves the above-described object is a computer-executable data processing program that analyzes and interpolates various data, and inputs the original data to be processed to the computer.
  • the frequency f ′, the amplitude A ′, and the initial phase ⁇ ′ that minimize the sum of squares of the difference from the signal are obtained as parameters of the Fourier transform equation of the aperiodic signal, and a spectrum is extracted and extracted. It is characterized by functioning as an arithmetic means for obtaining reconstructed data by performing data interpolation processing and / or extrapolation processing based on the spectrum obtained.
  • the data processing method, the data processing apparatus, and the apparatus in which the data processing program according to the present invention is mounted use a frequency analysis method that has a high frequency resolution and is less affected by the analysis window length.
  • interpolation and / or extrapolation based on the original data can be performed without impairing the characteristics of the original data and without causing an error between frames.
  • the present invention as described above, it is possible to interpolate the missing information with high accuracy without generating block noise regardless of the shape and size of the portion where the information is missing. Data can be significantly more natural. Similarly, in the present invention, it is possible to extrapolate unknown information with high accuracy without generating block noise regardless of any data and any portion of the data. In addition, when an image is configured with a small spectrum, high frequency components are insufficient and ringing occurs at the rising edge of the edge.In the present invention, the dynamic range at the time of data reconstruction is expanded to save the data to be stored. Since rounding can be performed according to the standard, occurrence of such ringing can be reduced.
  • FIG. 6 is a flowchart showing a series of processing when image data is reconstructed by interpolation and / or extrapolation based on original image data in the data processing apparatus shown as an embodiment of the present invention.
  • FIG. 6B is a diagram showing a portion corresponding to the missing portion shown in FIG. 6A in the reconstructed image data shown in FIG.
  • FIG. 10 is a diagram showing image data reconstructed by extrapolation processing by applying FFT based on the original image data shown in FIG. 9. It is a figure which shows the image data reconfigure
  • FIG. 9 It is a figure which shows the image data reconfigure
  • FIG. 16 is a diagram for explaining the effectiveness when this frequency analysis method is applied to the “exemplar based method” algorithm, and is a diagram showing image data obtained by deleting information over a wide area with respect to the image data shown in FIG. 15. It is a figure for demonstrating the effectiveness at the time of applying this frequency-analysis method to the "exemplar” based “method” algorithm, and is a figure which shows the image data interpolated by the "exemplar” based “method” algorithm. It is a figure for demonstrating the effectiveness at the time of applying this frequency-analysis method to an "exemplar-based-method” algorithm, and is a figure which shows the image data interpolated by applying this frequency-analysis method.
  • This embodiment is a data processing device that analyzes and / or extrapolates various data such as image data.
  • this data processing apparatus applies a new frequency analysis method in which the frequency resolution does not depend on the analysis window length by estimating a Fourier coefficient by solving a nonlinear equation, and performs data interpolation and / or extrapolation. Is.
  • a case will be mainly described in which reconstruction is performed by performing interpolation based on original image data by performing interpolation processing and / or extrapolation processing.
  • the data processing apparatus is composed of, for example, a computer or the like. As shown in FIG. 1, a CPU (Central Processing Unit) 11 that centrally controls each unit and a read-only ROM (Read Read ROM that stores various types of information including various programs). Only Memory 12 and RAM (Random) that functions as a work area (Access Memory) 13, a storage unit 14 that stores various information in a readable and / or writable manner, an input operation control unit 15 that performs processing and control of an input operation via a predetermined operation device (not shown) as a user interface, And a display unit 16 for displaying various information.
  • a CPU Central Processing Unit
  • ROM Read Read ROM
  • Only Memory 12 and RAM (Random) that functions as a work area (Access Memory) 13
  • a storage unit 14 that stores various information in a readable and / or writable manner
  • an input operation control unit 15 that performs processing and control of an input operation via a predetermined operation device (not shown) as a user interface
  • the CPU 11 executes various programs including various application programs stored in the storage unit 14 and the like, and comprehensively controls each unit.
  • the ROM 12 stores various information including various programs. Information stored in the ROM 12 is read under the control of the CPU 11.
  • the RAM 13 functions as a work area when the CPU 11 executes various programs. Under the control of the CPU 11, the RAM 13 temporarily stores various information and reads the stored various information.
  • the storage unit 14 stores various types of information including original image data and mask data to be processed in addition to application programs such as a data processing program according to the present invention.
  • a hard disk or a non-volatile memory can be used as the storage unit 14.
  • the storage unit 14 also includes a drive device that reads and / or writes various types of information on a storage medium such as a flexible disk or a memory card that can be attached to and detached from the main body.
  • Various types of information stored in the storage unit 14 are read out under the control of the CPU 11.
  • the input operation control unit 15 accepts an input operation via a predetermined operation device (not shown) as a user interface such as a keyboard, a mouse, a keypad, an infrared remote controller, a stick key, or a push button, for example, and indicates operation contents.
  • a predetermined operation device such as a keyboard, a mouse, a keypad, an infrared remote controller, a stick key, or a push button, for example, and indicates operation contents.
  • a control signal is supplied to the CPU 11.
  • the display unit 16 is, for example, a liquid crystal display (Liquid Crystal).
  • Various display devices such as a display (LCD), a plasma display panel (PDP), an organic electroluminescence (Organic ElectroLuminescent) display, or a CRT (Cathode Ray Tube). Display information.
  • the display unit 16 displays the screen, and the input original image data as the processing target and the image data after interpolation as the interpolation and / or extrapolation result Etc. are displayed.
  • the data processing apparatus including each unit executes a data processing program under the control of the CPU 11, the spectrum is extracted by performing frequency analysis of the input image data under the control of the CPU 11. Then, the image data is reconstructed based on the obtained spectrum.
  • a signal to be subjected to frequency analysis that is, image data to be processed is input to the CPU 11 via a data input unit (not shown).
  • the data processing apparatus interpolates image data captured by an imaging apparatus such as a digital camera by interpolation processing and / or extrapolation processing, a predetermined interface that connects the data processing apparatus and the imaging apparatus The image data as the signal to be processed is input by storing it in the storage unit 14.
  • the data processing apparatus may input arbitrary data created by the user by storing it in the storage unit 14 as a processing target signal. That is, the data input unit is a part having a function of causing the CPU 11 to input image data as a processing target. Needless to say, the data input unit also has a function of performing A / D conversion and converting it into a digital signal when an analog signal is input. At this time, the data input unit may be an A / D converter including an anti-aliasing filter as necessary. Under the control of the CPU 11, the data processing apparatus performs interpolation processing and / or extrapolation processing by performing frequency analysis of the image data as the processing target input in this manner, and reconstructed image data. And the like are stored in the storage unit 14 via an output unit (not shown) or output to other devices.
  • the problem of obtaining the frequency parameter of the Fourier transform equation of the non-periodic signal shown in the following equation (1) is obtained as the optimal solution of the nonlinear equation. Replaced with a problem.
  • the so-called steepest descent method is applied to the frequency parameters f ′ and ⁇ ′ constituting the phase of the sine wave model signal in the above equation (2), and the frequency parameters f m ′ and ⁇ m ′ are applied. Is obtained by the following equations (3) and (4).
  • the frequency parameter A ′ as a coefficient of the sine wave model signal in the above equation (2) can be uniquely obtained.
  • the frequency parameter A m ′ is converged by equation (6).
  • this frequency analysis method it is possible to converge the amplitude A ′, the frequency f ′, and the initial phase ⁇ ′ with high accuracy by repeatedly performing these series of calculations.
  • the calculation is performed by separately obtaining the frequency parameters f ′ and ⁇ ′ constituting the phase of the sine wave model signal in the above equation (2) and the frequency parameter A ′ as a coefficient. It can be performed simply.
  • this frequency analysis method it is desirable to converge the frequency parameters f m ′ and ⁇ m ′ to some extent by applying the steepest descent method, and then to converge with high accuracy by applying the so-called Newton method. .
  • the frequency parameters f m ′ and ⁇ m ′ are obtained by the recurrence formulas shown in the following equations (7) and (8) as the Newton method.
  • J is the following formula (9) and is abbreviated as the following formula (10).
  • [nu m is also a weighting coefficient based on the reduction method in the same manner as mu m, taking the value of timely 0-1.
  • the frequency parameters A ′, f ′, and ⁇ ′ are estimated at high speed and with high accuracy by using a hybrid method combining the steepest descent method and the Newton method. Can do.
  • the spectral parameter can be approximately derived by performing successive subtraction processing.
  • the analysis target signal x (n) is the sum of a plurality of sine waves and is expressed as the following equation (11).
  • This frequency analysis method can determine the frequency f ′, the amplitude A ′, and the initial phase ⁇ ′ of the sine wave model signal at high speed and with high accuracy by obtaining the optimal solution of the nonlinear equation.
  • the inventor of the present application verified accuracy by comparing DFT and GHA (Generalized Harmonic Analysis), which is said to have the highest analysis accuracy among the developed types of DFT. .
  • DFT and GHA apparently have a plurality of window lengths in one analysis window length, so the frequency resolution depends on the analysis window length, but the resolution frequency is finite, and the signal to be analyzed If the analysis signal is different from the frequency that can be analyzed accurately, the analysis signal cannot be analyzed when the frequency is other than the decomposition frequency. A frequency (sideband component) appears, and a plurality of frequencies appear.
  • the analysis window length is one second (1024 samples) and is very short.
  • a single sine wave was analyzed, one sine wave was extracted by each method, and the square error from the original signal was examined. The result is shown in FIG.
  • this frequency analysis method can perform analysis with surprisingly high accuracy even compared to GHA, which is said to have the highest analysis accuracy.
  • this frequency analysis method is applied and shown in FIG. A series of processes are performed.
  • the data processing apparatus converts the original image data I org (n 1 , n 2 ) into a two-dimensional signal via a data input unit (not shown) under the control of the CPU 11 in step S1.
  • image data I (n 1 , n 2 ) is input and stored in a memory such as the RAM 13, the minimum L required to reconstruct the image data under the control of the CPU 11 in step S 2. It is determined whether or not a book spectrum has been extracted.
  • step S3 When the data processing apparatus has not extracted all the L spectra, in step S3, the portion of the image data I (n 1 , n 2 ) that lacks information under the control of the CPU 11 To the image data I (n 1 , n 2 ), the mask data M (n 1 , n 2 ) corresponding to the missing information is applied to the image data I (n 1 , n 2 ) as shown in the following equation (15): New image data I ′ (n 1 , n 2 ) is generated.
  • n 1 , n 2 ) 1 and can be generated by using an arbitrary mask data generation algorithm, image processing software, or the like.
  • M ′ is the inverted data of the mask data M.
  • K is a predetermined constant, and takes the average value or median value of the image data I in the case of interpolation processing.
  • the constant K in the case of extrapolation processing is not practically used because the inverted data M ′ always takes a value of 0.
  • an image is used here.
  • An arbitrary value such as an average value or a median value of the data I is assumed. That is, the data processing apparatus substitutes the value K for an unknown area in the image data I (n 1 , n 2 ) and proceeds with the process. Specifically, for example, as shown in FIG. 4A, the data processing apparatus performs mask data M (n) when processing the image data I (n 1 , n 2 ) with some information missing. 1 , n 2 ), data is prepared that takes a value of 0 for an unknown region lacking information as shown in FIG. 4B and a value of 1 for a known region.
  • the data processing apparatus may subtract the constant C from the data I ⁇ M + K ⁇ M ′ under the control of the CPU 11.
  • the data processing apparatus is able to perform extrapolation over a wide area by extracting a spectrum of only the AC component of the texture from which information unnecessary for extrapolated information is removed while reducing the amount of information.
  • the low-frequency component with little deterioration is removed by quantization.
  • the data processing apparatus when extracting a plurality of spectra, it is necessary to set a new initial value for each spectrum extraction in order to perform the calculations of the above equations (2) to (10). . Therefore, after setting an initial value under the control of the CPU 11 in step S4, the data processing apparatus sets the image data I ′ (n 1 , n 1 , n 2 , obtained in step S3 consisting of a two-dimensional signal in step S5. The frequency analysis method described above is applied to n 2 ), and the above formulas (2) to (10) are calculated.
  • step S6 the data processing apparatus extracts the l-th spectrum as shown in the following equation (16) under the control of the CPU 11.
  • f xs and f ys are sampling frequencies [Hz] in the horizontal axis direction and the vertical axis direction of the image data, respectively
  • a l ′, f xl ′, f yl ′, ⁇ l ′ is the amplitude of the spectrum to be extracted, the frequency corresponding to each axis of the image data, and the initial phase, respectively.
  • the data processing apparatus performs DFT, Fast Fourier Transform (FFT), etc.
  • FFT Fast Fourier Transform
  • the data processing apparatus applies the frequency analysis method described above to a portion of the image data I ′ (n 1 , n 2 ) where the pixel value of the mask data M (n 1 , n 2 ) is not zero.
  • the data processing device expresses image data that is a two-dimensional signal using a sine wave model function, changes parameters so that the difference between the actual signal and the sine wave model signal is minimized, and obtains each frequency.
  • step S7 the data processing device converts the image data I ′′ (n 1 , n 2 ) represented by the extracted spectrum from the image data I (n 1 , n 2 ) under the control of the CPU 11.
  • the subtracted residual signal is substituted for the image data I (n 1 , n 2 ), and in step S8, the image data I ′ (n 1 , n 2 ) and the image data I ′′ (n 1 , n 2 ) Is added to the image data I ′ (n 1 , n 2 ), and in step S9, l is incremented, the constant K is updated, and the processing from step S2 is repeated.
  • the image data I (n 1 , n 2 ) is the original image data I org (n 1 , n 2 ) itself, but the second and subsequent ones are extracted.
  • the image data I (n 1 , n 2 ) is the image data I ′′ (n) composed of the original image data I (n 1 , n 2 ) and the spectrum extracted so far. 1 , n 2 ).
  • the interpolation and / or extrapolation processing of the image data is performed as shown in the following equation (17).
  • the reconstructed image data I ′ ′′ (n 1 , n 2 ) is output, and the series of processes is terminated.
  • the image data is obtained by reconstructing the constant C ′ based on the L spectra.
  • the data processing device removes the ringing of the texture image by extending the dynamic range when reconstructing the image data to enhance the image intensity and rounding it with a predetermined threshold. That is, the data processing apparatus, for example, in the case of image data quantized with 8 bits, an arbitrary constant k is applied to the image data constituted by the extracted spectrum so that 0 and 255 are set as threshold values. It is desirable to reconstruct the image data while expanding the dynamic range of the image data by multiplying.
  • the data processing apparatus reconstructs the image data I ′ ′′ (n 1 , n 2 ) based on the original image data I org (n 1 , n 2 ) by performing such a series of processes. Can do. Since the dynamic range of the reconstructed image data I ′ ′′ (n 1 , n 2 ) is rounded according to the standard of the image data, ringing can be reduced. In addition, the data processing apparatus can extrapolate information outside the measurement region by extending the possible range of (n 1 , n 2 ) to a length exceeding the measurement region.
  • image data in which information is lost due to a plurality of dots dispersed over the entire image area was prepared.
  • the peak SNR of the image data shown in FIG. 5B with respect to the image data shown in FIG. 5A is 21.2079 dB.
  • mask data having values corresponding to these dots was prepared.
  • reconstructed image data was obtained by interpolating the missing information based on information around the portion of the image data where the information is missing.
  • the inventor of the present application also examined the influence of the shape and size of a portion where information is missing when the frequency analysis method is applied. Specifically, for the same image data as the image data shown in FIG. 5 (a), as shown in FIG. 6 (a), image data provided with three missing portions having different shapes and sizes are prepared. did. Then, reconstructed image data was obtained by interpolating the missing information based on information around the portion of the image data where the information is missing.
  • the data processing apparatus to which this frequency analysis method is applied performs interpolation processing that eliminates the generation of block noise that could not be achieved by applying the conventional frequency analysis method, and significantly reconstructed image data is obtained. It is possible to obtain.
  • Image data having the same pattern as shown in FIG. 8 is prepared, and a portion surrounded by a rectangular frame (FIG. 9) is cut out as an analysis object, that is, original image data. Based on this original image data Then, the reconstructed image data was obtained by extrapolating the surrounding unknown information. Note that the size of the original image data shown in FIG. 9 is 140 pixels ⁇ 140 pixels, and based on this, reconstructed image data having a size of 420 pixels ⁇ 420 pixels was obtained.
  • the original image data is not lost without losing the characteristics of the original image data and without generating an error between frames.
  • Extrapolation based on even when a portion surrounded by a rectangular frame line in FIG. 12 is cut out as other original image data and surrounding unknown information is extrapolated by a data processing apparatus to which the present frequency analysis method is applied, the characteristics of the original image data The extrapolation based on the original image data can be performed without impairing the image quality and without causing an error between frames.
  • the data processing apparatus can perform accurate analysis without damaging the characteristics of the original image data, regardless of what texture image or any portion of the texture image is cut out.
  • the data processing apparatus can extrapolate information outside the measurement region by extending the range that (n 1 , n 2 ) can take beyond the measurement region.
  • the image data shown in FIG. 9 has a value in the range of (n 1 , n 2 ) from 0 to 1, whereas the image data shown in FIG. 11 has a value of (n 1 , n 2 ) from ⁇ 1 to 2. It is the result of restructuring by range.
  • the inventor of the present application also examined the influence of the removal of the low frequency component in step S3 in FIG. 3 and the expansion of the dynamic range in step S4.
  • FIG. 13A shows the same original image data consisting of 140 pixels ⁇ 140 pixels as shown in FIG.
  • step S3 in FIG. 3 after subtracting the constant C of the number of quantization bits / 2 from the original image data, reconstruction is performed based on 50 spectra extracted by analysis by this frequency analysis method. Then, by adding the subtracted constant C, image data in which ringing occurred at the edge portion of the image was obtained as shown in FIG.
  • the data processing apparatus to which this frequency analysis method is applied performs extrapolation processing that eliminates the generation of block noise that could not be achieved by applying the conventional frequency analysis method, and significantly reconstructed image data is obtained. It is possible to obtain.
  • the “exemplar based method” algorithm is as shown in FIG. That is, when the “exemplar based method” algorithm extracts the initial contour ⁇ 0 of the region ⁇ selected as the interpolation target for the original data, the contour ⁇ t is identified and prioritized in the t-th iteration in step S21.
  • the degree P (p) is calculated.
  • the contour [Delta] [omega t is 0 and ends the series of processes.
  • step S23 a sample ⁇ q ′ ⁇ that minimizes the distance d ( ⁇ p ′ , ⁇ q ′ ) between the two patches ⁇ p ′ and ⁇ q ′ is searched, and in step S24, from the patch ⁇ q ′. Copy the image data to the patch ⁇ p ′ . Note that the relationship of ⁇ p ⁇ p ′ ⁇ is satisfied.
  • exemplar based method algorithm, in step S25, the updated reliability term C a (p) such that ⁇ p ⁇ p ' ⁇ .
  • the inventor of the present application tried to interpolate over a wide area by applying this frequency analysis method by replacing the processing of step S22 to step S24 in the “exemplar based method” algorithm with this frequency analysis method.
  • the image data shown in FIG. 15 was processed to create image data in which information was lost over a wide area, as indicated by A to I in FIG. 16, and this was input and processed as original image data.
  • the data processing apparatus to which the present frequency analysis method is applied is extremely effective when performing interpolation over a wide area.
  • the data processing apparatus to which this frequency analysis method is applied can interpolate the missing information over a wide range with high accuracy without generating block noise regardless of the shape and size of the missing portion. And can make the data after interpolation much more natural.
  • the data processing apparatus can extrapolate unknown information with high accuracy without generating block noise regardless of what texture image or any portion of the texture image is cut out.
  • this data processing device can reduce ringing because it can be rounded in accordance with the standard of data to be stored by extending the dynamic range at the time of data reconstruction. As a result, in this data processing apparatus, only a small number of spectra need be retained in order to reconstruct a texture image from which ringing has been removed. By extrapolating surrounding unknown information, a wide range of information can be obtained with less information.
  • a texture image can be expressed.
  • Such a data processing apparatus is applied to a purpose of highly accurately interpolating unknown information lost due to “whiteout” or “blackout” of captured image data based on surrounding information or remaining information. It is also possible to convert an image represented by 8 bits per color into an arbitrary dynamic range. Therefore, this data processing apparatus is extremely useful in view of the recent expansion trend of the digital camera market.
  • a data processing apparatus to which the frequency analysis method is applied is a photograph taken by a user with a digital camera or the like when generating a texture used in 3D modeling software or image processing software. It is possible to freely cut out an arbitrary part included in the image and paste it as a texture on the surface of a three-dimensional object or the like, and to bring a more realistic texture expression. Further, this data processing apparatus can be expanded to an arbitrary size by performing extrapolation processing even when the cut out texture is small, and can be mapped to an arbitrary surface. Thus, this data processing and insertion device is extremely useful in light of the demands of the computer graphics market.
  • the present invention is not limited to the embodiment described above.
  • the interpolation processing and / or extrapolation processing of image data has been described.
  • the present invention can be applied to audio data such as a purpose of repairing audio data in which a burst error has occurred due to noise mixing.
  • the present invention can be applied to interpolation processing and / or extrapolation processing of arbitrary data such as moving image data that is three-dimensional data as well as one-dimensional data such as data.
  • the present invention can perform interpolation by interpolation regardless of the shape and size of a portion where information is lost. For example, this can be performed by converting an analog signal into a digital signal. In this case, even when the sampling interval of the A / D converter becomes unequal due to the influence of the jitter of the sampling clock, it is shown that the processing can be performed with high accuracy. In other words, the present invention can interpolate the missing information with high accuracy over a wide range even when using an inexpensive A / D converter with low accuracy, and contributes to reduction of system cost. be able to.
  • the data processing apparatus has been described as performing frequency analysis by software.
  • the present invention implements an algorithm for data interpolation processing and / or extrapolation processing including this frequency analysis method. If a product-sum operation can be performed, such as a DSP (Digital Signal Processor), it can also be realized by hardware.
  • DSP Digital Signal Processor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

Provided is a data processing device in which, without the occurrence of block noise, each type of data can be analyzed and interpolated and/or extrapolated, and, post-interpolated and/or post-extrapolation data can be considerably natural. When the original image data, which becomes the processing target, is input, the data processing device calculates a frequency f', an amplitude A' and an initial phase φ as acyclic Fourier transform parameters such that the sum of squares of the difference between an arbitrary dimensional signal based on the original data and a sinusoidal model signal represented by the amplitude A' and a phase using the frequency f' and the initial phase φ, becomes the least value, and extracts a spectrum. The data processing device interpolates and/or extrapolates the data on the basis of the extracted spectrum and calculates the reconstruction data.

Description

データ処理方法、データ処理装置、及びデータ処理プログラムData processing method, data processing apparatus, and data processing program
 本発明は、画像データ等の各種データを解析して処理するデータ処理方法、データ処理装置、及びデータ処理プログラムに関し、特に、データの内挿処理及び/又は外挿処理によってデータの欠落部分を補正することができるデータ処理方法、データ処理装置、及びデータ処理プログラムに関する。 The present invention relates to a data processing method, a data processing apparatus, and a data processing program for analyzing and processing various types of data such as image data, and in particular, correcting missing portions of data by data interpolation processing and / or extrapolation processing. The present invention relates to a data processing method, a data processing apparatus, and a data processing program.
 例えば、被写体を撮像した場合において、得られた画像データ内の明度が高い領域については、撮像装置の過度の絞り等に起因していわゆる「白とび」が発生し、また、その逆の原因により、画像データ内の明度が低い領域については、いわゆる「黒つぶれ」等が発生し、本来有している情報を失ってしまうことがある。また、特に画像処理技術においては、圧縮符号化の際に、隣接するマクロブロックに基づいて欠落した情報を補間して予測画像等を生成したり、様々な画像補正を行ったりする処理が行われている。 For example, when a subject is imaged, an area with high brightness in the obtained image data causes so-called “overexposed” due to an excessive aperture of the imaging device, and vice versa. In a region with low lightness in image data, so-called “blackout” or the like may occur, and information that is inherently lost may be lost. In particular, in the image processing technique, a process of interpolating missing information based on adjacent macroblocks to generate a predicted image or performing various image corrections is performed during compression encoding. ing.
 このような補間技術としては、例えば特許文献1乃至特許文献6等に記載された技術のように内挿法を適用したものがある。 As such an interpolation technique, for example, there is a technique to which an interpolation method is applied like the techniques described in Patent Documents 1 to 6 and the like.
 特許文献1には、原画像から生成される内挿画像によってフレーム周波数を変換する画像補間装置において、低コストでジャダーによる画質の劣化を低減させる技術が開示されている。 Patent Document 1 discloses a technique for reducing image quality degradation due to judder at a low cost in an image interpolation device that converts a frame frequency using an interpolated image generated from an original image.
 また、特許文献2には、映像信号に対してフレーム内挿を行う際に、内挿フレームの画像のどの領域においても適切に画素を生成する技術が開示されている。 Further, Patent Document 2 discloses a technique for appropriately generating pixels in any region of an image of an interpolation frame when performing frame interpolation on a video signal.
 さらに、特許文献3には、時間的に隣接するフレーム間の補間フレーム面上に補間フレームを内挿補間する際に、補間フレームに画像の隙間や重なりが生じることがなく、さらにブロック歪の発生を少なくする技術が開示されている。 Furthermore, in Patent Document 3, when interpolating an interpolated frame on an interpolated frame surface between temporally adjacent frames, there is no gap or overlap between images in the interpolated frame, and further block distortion occurs. A technique for reducing the above is disclosed.
 さらにまた、特許文献4には、周波数解析を行ったフレーム内部の2点間を補間し、解像度を拡大させる技術が開示されている。 Furthermore, Patent Document 4 discloses a technique for expanding the resolution by interpolating between two points inside the frame subjected to frequency analysis.
 また、特許文献5には、RGB信号処理系の画像情報をYMCK信号処理系の画像情報に色変換する3次元色情報変換テーブルを作成する際に、内挿法を適用する技術が開示されている。 Patent Document 5 discloses a technique for applying an interpolation method when creating a three-dimensional color information conversion table for color-converting RGB signal processing system image information to YMCK signal processing system image information. Yes.
 さらに、特許文献6には、テクスチャ画像の周縁を平滑化する際に、内挿法を適用する技術が開示されている。 Furthermore, Patent Document 6 discloses a technique for applying an interpolation method when smoothing the periphery of a texture image.
 また、補間技術としては、例えば特許文献7乃至特許文献12等に記載された技術のように外挿法を適用したものもある。 In addition, as an interpolation technique, there is a technique that applies an extrapolation method, such as the technique described in Patent Document 7 to Patent Document 12, for example.
 特許文献7には、フレーム全体の総符号量を効率よく制御可能な画像圧縮を実現するために、量子化ステップ毎に演算された総符号量を外挿によって線形補間する技術が開示されている。 Patent Document 7 discloses a technique for linearly interpolating the total code amount calculated for each quantization step in order to realize image compression that can efficiently control the total code amount of the entire frame. .
 また、特許文献8には、外挿法を適用して画面内予測信号を生成する際に、複雑な絵柄を有する画像に対する予測信号を効率よく生成する技術が開示されている。 Also, Patent Document 8 discloses a technique for efficiently generating a prediction signal for an image having a complex pattern when generating an intra-screen prediction signal by applying an extrapolation method.
 さらに、特許文献9には、入力画像をブロック単位に分割し、イントラ予測を行って選択される予測モードにしたがって生成される予測画像との差分を符号化する際に、画素値を外挿して予測画像を生成する技術が開示されている。 Furthermore, in Patent Document 9, when an input image is divided into block units and a difference from a predicted image generated according to a prediction mode selected by intra prediction is encoded, pixel values are extrapolated. A technique for generating a predicted image is disclosed.
 さらにまた、特許文献10には、外挿によって圧縮画像からブロックアーティファクトを除去する技術が開示されている。 Furthermore, Patent Document 10 discloses a technique for removing block artifacts from a compressed image by extrapolation.
 また、特許文献11には、テクスチャ画像をマッピングする際に、使用可能でないミップマップの代わりに外挿を用いてテクスチャマップ値を求める技術が開示されている。 Patent Document 11 discloses a technique for obtaining a texture map value using extrapolation instead of a mipmap that cannot be used when mapping a texture image.
 さらに、特許文献12には、テクスチャ画像をマッピングして画像の補正処理を行う際に、外挿処理を行う技術が開示されている。 Further, Patent Document 12 discloses a technique for performing extrapolation processing when mapping a texture image and performing image correction processing.
 さらにまた、上述した特許文献5には、RGB信号処理系の画像情報をYMCK信号処理系の画像情報に色変換する3次元色情報変換テーブルを作成する際に、外挿法を適用する技術も開示されており、また、上述した特許文献6には、テクスチャ画像の周縁を平滑化する際に、外挿法を適用する技術も開示されている。 Furthermore, Patent Document 5 described above also discloses a technique for applying an extrapolation method when creating a three-dimensional color information conversion table for color-converting RGB signal processing system image information into YMCK signal processing system image information. In addition, Patent Document 6 described above also discloses a technique for applying an extrapolation method when smoothing the periphery of a texture image.
 また、被写体を撮像した場合において、ダイナミックレンジが小さいことに起因して不自然な画像が得られてしまうことがある。現在市販されているアプリケーションプログラム等においては、このような画像の不自然さを補正するためにガンマ補正を用いているのが一般的である。また、現存する規格の多くは、1色あたり8ビットで画像を記述したものであるが、近年では、JPEG XR等、8ビット以上を有する規格が登場しており、そのような規格に合わせて、既に撮像された画像のダイナミックレンジを拡張することも要求されつつある。 Also, when a subject is imaged, an unnatural image may be obtained due to a small dynamic range. In application programs and the like currently on the market, gamma correction is generally used to correct such unnaturalness of the image. Many existing standards describe images with 8 bits per color, but in recent years, standards with more than 8 bits, such as JPEG XR, have appeared. There is also a demand for extending the dynamic range of an already captured image.
特開2009-253626号公報JP 2009-253626 A 特開2009-200760号公報Japanese Patent Laid-Open No. 2009-200760 特開2004-357215号公報JP 2004-357215 A 特開2000-299862号公報JP 2000-299862 A 特開2005-354219号公報JP 2005-354219 A 特表2003-504697号公報Japanese translation of PCT publication No. 2003-504697 特開2008-42943号公報JP 2008-42943 A 特開2007-300380号公報JP 2007-300380 A 特開2006-295408号公報JP 2006-295408 A 特表平11-504173号公報Japanese National Patent Publication No. 11-504173 特開2008-305408号公報JP 2008-305408 A 特開2004-206672号公報JP 2004-206672 A
 しかしながら、上述した特許文献1乃至特許文献6に記載された内挿に関する従来の技術は、線形補間、3次畳み込み補間、ベクトル情報を利用して補間する手法であり、内挿可能な範囲が限定的であり、広範囲を予測するには適さず、ブロックノイズが発生するという問題があった。 However, the conventional techniques related to interpolation described in Patent Document 1 to Patent Document 6 described above are linear interpolation, cubic convolution interpolation, and interpolation using vector information, and the range in which interpolation is possible is limited. There is a problem that block noise occurs because it is not suitable for predicting a wide range.
 また、上述した特許文献5及び特許文献7乃至特許文献10に記載された外挿に関する従来の技術は、2次線形外挿やそれ以外の関数を用いた外挿法を適用したものであることから、外挿可能な範囲が限定的であるという問題があった。 In addition, the conventional technique related to extrapolation described in Patent Document 5 and Patent Document 7 to Patent Document 10 described above applies a quadratic linear extrapolation or an extrapolation method using other functions. Therefore, there is a problem that the extrapolable range is limited.
 さらに、上述した特許文献6、特許文献11及び特許文献12に記載された従来の技術は、高い解像度を得るために周波数領域で高い周波成分を外挿する技術であり、また、符号化する際の性能を高めるために、隣接するマクロブロックから予測し、その誤差を符号化するといったものであり、広範囲を予測するには適さず、ブロックノイズが発生するという問題があった。 Furthermore, the conventional techniques described in Patent Document 6, Patent Document 11, and Patent Document 12 described above are techniques for extrapolating high frequency components in the frequency domain in order to obtain high resolution. In order to improve the performance, prediction is performed from adjacent macroblocks, and the error is encoded. This is not suitable for predicting a wide range, and there is a problem that block noise occurs.
 ここで、画像データをフーリエ変換して得られるスペクトルを補正することにより、ブロックノイズを低減する手法もあり、工学分野において広く用いられている離散フーリエ変換(Discrete Fourier Transform;DFT)や離散コサイン変換(Discrete Cosine Transform;DCT)を適用した外挿処理に応用されている。また、特開2007-188721号公報に記載された技術のように、フーリエ変換を行って最適周波数成分を抽出し、得られた像に逆フーリエ変換を施す技術も存在する。 Here, there is also a technique to reduce block noise by correcting the spectrum obtained by Fourier transform of image data. Discrete Fourier transform (DFT) and discrete cosine transform widely used in the engineering field. It is applied to extrapolation processing using (Discrete Cosine Transform; DCT). There is also a technique for extracting an optimum frequency component by performing Fourier transform and performing inverse Fourier transform on the obtained image, as in the technique described in Japanese Patent Application Laid-Open No. 2007-188721.
 しかしながら、このようなフーリエ変換に基づく処理においては、f/k(fはサンプリング周波数、kは解析窓長)の整数倍の周波数を有する信号しか正確な解析を行うことができず、それ以外の周波数を有する信号を解析した場合には、スペクトル漏れによって誤差が発生するという問題があった。また、フーリエ変換に基づく処理においては、解析するフレームが無限に繰り返されることを仮定していることから、隣接するフレームにも解析したフレームと全く同じ情報が内挿又は外挿される。そのため、かかる技術においては、内挿又は外挿する際にフレーム間で誤差が発生するという問題があった。 However, in such processing based on Fourier transform, only a signal having a frequency that is an integral multiple of f s / k (f s is the sampling frequency, k is the analysis window length) can be accurately analyzed. When a signal having a frequency other than is analyzed, there is a problem that an error occurs due to spectrum leakage. In the process based on the Fourier transform, since it is assumed that the analyzed frame is repeated infinitely, the same information as the analyzed frame is also interpolated or extrapolated in the adjacent frame. Therefore, in such a technique, there is a problem that an error occurs between frames when interpolation or extrapolation is performed.
 本発明は、このような実情に鑑みてなされたものであり、ブロックノイズを発生させることなく各種データを解析して広範囲にわたって内挿及び/又は外挿することができ、且つ、内挿及び/又は外挿後のデータを大幅に自然なものとすることができるデータ処理方法、データ処理装置、及びデータ処理プログラムを提供することを目的とする。 The present invention has been made in view of such circumstances, and can analyze various data without generating block noise, and can perform interpolation and / or extrapolation over a wide range. Alternatively, it is an object to provide a data processing method, a data processing device, and a data processing program that can make data after extrapolation significantly natural.
 本願発明者の一部は、国際公開第2009/038056号において、新たな周波数解析手法として、非周期信号の解析手法であるNon-Harmonic Analysis(NHA)を開示している。このNHAは、解析対象信号と、周波数f’及び初期位相φ’を用いた位相と振幅A’とによって表される正弦波モデル信号との差の二乗和が最小値になるような周波数f’、振幅A’、及び初期位相φ’を、非周期信号のフーリエ変換式のパラメータとして算出するものである。本発明は、このような周波数分解能が高く且つ解析窓長の影響が少ないNHAを利用することにより、切り出したデータのスペクトルを正確に抽出して内挿及び/又は外挿し、この技術分野の問題を本質的に解決する技術を確立したものである。 Some of the inventors of the present application disclosed Non-Harmonic Analysis (NHA), which is an aperiodic signal analysis technique, as a new frequency analysis technique in International Publication No. 2009/038056. This NHA has a frequency f ′ at which the sum of squares of the difference between the signal to be analyzed and the sine wave model signal represented by the phase using the frequency f ′ and the initial phase φ ′ and the amplitude A ′ becomes a minimum value. , Amplitude A ′, and initial phase φ ′ are calculated as parameters of the Fourier transform equation of the aperiodic signal. The present invention uses NHA having a high frequency resolution and a small influence on the analysis window length, thereby accurately extracting and interpolating and / or extrapolating the spectrum of the cut out data. The technology that essentially solves the problem is established.
 すなわち、上述した目的を達成する本発明にかかるデータ処理方法は、各種データを解析して処理するデータ処理方法であって、処理対象となる元データをデータ処理装置に入力し、メモリに記憶させるデータ入力工程と、前記データ処理装置の演算手段が、前記データ入力工程にて入力されて前記メモリに記憶された前記元データを読み出し、当該元データに基づく任意次元信号と、周波数f’及び初期位相φ’を用いた位相と振幅A’とによって表される正弦波モデル信号との差の二乗和が最小値になるような前記周波数f’、前記振幅A’、及び前記初期位相φ’を、非周期信号のフーリエ変換式のパラメータとして求めてスペクトルを抽出し、抽出したスペクトルに基づいてデータの内挿処理及び/又は外挿処理を行って再構成データを求める内挿及び/又は外挿工程とを備えることを特徴としている。 That is, the data processing method according to the present invention that achieves the above-described object is a data processing method that analyzes and processes various data, and inputs the original data to be processed to the data processing device and stores it in the memory. A data input step and an arithmetic means of the data processing device reads the original data inputted in the data input step and stored in the memory, and an arbitrary dimension signal based on the original data, a frequency f ′ and an initial value The frequency f ′, the amplitude A ′, and the initial phase φ ′ at which the sum of squares of the difference between the phase using the phase φ ′ and the sinusoidal model signal represented by the amplitude A ′ is minimized. The spectrum is extracted as a Fourier transform parameter of the aperiodic signal, the data is interpolated and / or extrapolated based on the extracted spectrum, and the reconstructed data is extracted. Including an interpolation and / or extrapolation step for obtaining the data.
 また、上述した目的を達成する本発明にかかるデータ処理装置は、各種データを解析して処理するデータ処理装置であって、処理対象となる元データを入力するデータ入力手段と、前記データ入力手段を介して入力された前記元データに基づく任意次元信号と、周波数f’及び初期位相φ’を用いた位相と振幅A’とによって表される正弦波モデル信号との差の二乗和が最小値になるような前記周波数f’、前記振幅A’、及び前記初期位相φ’を、非周期信号のフーリエ変換式のパラメータとして求めてスペクトルを抽出し、抽出したスペクトルに基づいてデータの内挿処理及び/又は外挿処理を行って再構成データを求める演算手段とを備えることを特徴としている。 A data processing apparatus according to the present invention that achieves the above-described object is a data processing apparatus that analyzes and processes various data, and includes data input means for inputting original data to be processed, and the data input means. The sum of squares of the difference between the arbitrary dimension signal based on the original data inputted via the sine wave model signal represented by the phase using the frequency f ′ and the initial phase φ ′ and the amplitude A ′ is the minimum value A spectrum is extracted by obtaining the frequency f ′, the amplitude A ′, and the initial phase φ ′ as follows as parameters of a Fourier transform formula of an aperiodic signal, and data interpolation processing is performed based on the extracted spectrum And / or an extrapolation process to obtain reconstruction data.
 さらに、上述した目的を達成する本発明にかかるデータ処理プログラムは、各種データを解析して内挿するコンピュータ実行可能なデータ処理プログラムであって、前記コンピュータを、処理対象となる元データを入力するデータ入力手段、及び、前記データ入力手段を介して入力された前記元データに基づく任意次元信号と、周波数f’及び初期位相φ’を用いた位相と振幅A’とによって表される正弦波モデル信号との差の二乗和が最小値になるような前記周波数f’、前記振幅A’、及び前記初期位相φ’を、非周期信号のフーリエ変換式のパラメータとして求めてスペクトルを抽出し、抽出したスペクトルに基づいてデータの内挿処理及び/又は外挿処理を行って再構成データを求める演算手段として機能させることを特徴としている。 Furthermore, a data processing program according to the present invention that achieves the above-described object is a computer-executable data processing program that analyzes and interpolates various data, and inputs the original data to be processed to the computer. A sine wave model represented by a data input means, an arbitrary dimension signal based on the original data input via the data input means, and a phase and an amplitude A ′ using a frequency f ′ and an initial phase φ ′ The frequency f ′, the amplitude A ′, and the initial phase φ ′ that minimize the sum of squares of the difference from the signal are obtained as parameters of the Fourier transform equation of the aperiodic signal, and a spectrum is extracted and extracted. It is characterized by functioning as an arithmetic means for obtaining reconstructed data by performing data interpolation processing and / or extrapolation processing based on the spectrum obtained. The
 このような本発明にかかるデータ処理方法、データ処理装置、及びデータ処理プログラムが実装された装置は、高い周波数分解能を有し且つ解析窓長による影響が少ない周波数解析手法を適用していることから、元データの特徴を損なうことなく、また、フレーム間で誤差が発生することなく、元データに基づいた内挿及び/又は外挿を行うことができる。 The data processing method, the data processing apparatus, and the apparatus in which the data processing program according to the present invention is mounted use a frequency analysis method that has a high frequency resolution and is less affected by the analysis window length. In addition, interpolation and / or extrapolation based on the original data can be performed without impairing the characteristics of the original data and without causing an error between frames.
 以上のような本発明においては、情報が欠落した部分の形状及び大きさにかかわらず、ブロックノイズを発生させることなく高精度に欠落した情報を広範囲にわたって内挿することができ、内挿後のデータを大幅に自然なものとすることができる。同様に、本発明においては、いかなるデータであっても、また、データのどの部分を切り出しても、ブロックノイズを発生させることなく高精度に未知の情報を外挿することができる。また、少ないスペクトルによって画像を構成すると、高周波数成分が不足し、エッジの立ち上がりでリンギングが発生するが、本発明においては、データの再構成時のダイナミックレンジを拡張することにより、保存するデータの規格に合わせて丸め込むことができることから、かかるリンギングの発生を低減することができる。したがって、本発明においては、リンギングが除去されたデータを再構成するために必要な所定本数のスペクトルとして少数のスペクトルのみを保持すればよく、周囲の未知の情報を内挿及び/又は外挿することにより、少ない情報で広範囲のデータを表現することが可能となる。 In the present invention as described above, it is possible to interpolate the missing information with high accuracy without generating block noise regardless of the shape and size of the portion where the information is missing. Data can be significantly more natural. Similarly, in the present invention, it is possible to extrapolate unknown information with high accuracy without generating block noise regardless of any data and any portion of the data. In addition, when an image is configured with a small spectrum, high frequency components are insufficient and ringing occurs at the rising edge of the edge.In the present invention, the dynamic range at the time of data reconstruction is expanded to save the data to be stored. Since rounding can be performed according to the standard, occurrence of such ringing can be reduced. Therefore, in the present invention, only a small number of spectra need be retained as a predetermined number of spectra necessary for reconstructing data from which ringing has been removed, and surrounding unknown information is interpolated and / or extrapolated. Thus, a wide range of data can be expressed with a small amount of information.
本発明の実施の形態として示すデータ処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the data processor shown as embodiment of this invention. 本周波数解析手法とDFTとGHAとの違いを説明するための図であり、各手法の誤差を求めた結果を示す図である。It is a figure for demonstrating the difference between this frequency analysis method, DFT, and GHA, and is a figure which shows the result of having calculated | required the error of each method. 本発明の実施の形態として示すデータ処理装置において、元画像データに基づく内挿及び/又は外挿によって画像データの再構成を行う際の一連の処理を示すフローチャートである。6 is a flowchart showing a series of processing when image data is reconstructed by interpolation and / or extrapolation based on original image data in the data processing apparatus shown as an embodiment of the present invention. 本発明の実施の形態として示すデータ処理装置において処理される画像データについて説明するための図であり、(a)は、一部の情報が欠落した画像データを示し、(b)は、(a)に示す画像データに対応するマスクデータを示し、(c)は、(a)に示す画像データの平均値を未知の領域に対して代入した画像データを示す図である。It is a figure for demonstrating the image data processed in the data processor shown as embodiment of this invention, (a) shows the image data in which some information was missing, (b) shows (a (C) is a figure which shows the image data which substituted the average value of the image data shown to (a) with respect to an unknown area | region. 本発明の実施の形態として示すデータ処理装置における内挿処理の有効性について説明するための図であり、(a)は、有効性を検証するために使用した画像データを示す図であり、(b)は、(a)に示す画像データから情報を欠落した画像データを示す図であり、(c)は、(b)に示す画像データに基づいて本周波数解析手法を適用して再構成した画像データを示す図である。It is a figure for demonstrating the effectiveness of the interpolation process in the data processor shown as embodiment of this invention, (a) is a figure which shows the image data used in order to verify effectiveness, ( (b) is a diagram showing image data in which information is missing from the image data shown in (a), and (c) is reconstructed by applying this frequency analysis method based on the image data shown in (b). It is a figure which shows image data. 本発明の実施の形態として示すデータ処理装置における内挿処理の有効性について説明するための図であり、(a)は、形状及び大きさが異なる3つの欠落部分を設けた画像データを示す図であり、(b)は、(a)に示す画像データに基づいて本周波数解析手法を適用して再構成した画像データを示す図である。It is a figure for demonstrating the effectiveness of the interpolation process in the data processor shown as embodiment of this invention, (a) is a figure which shows the image data which provided three missing parts from which a shape and a magnitude | size differ (B) is a diagram showing image data reconstructed by applying this frequency analysis method based on the image data shown in (a). 本発明の実施の形態として示すデータ処理装置における内挿処理の有効性について説明するための図であり、(a)は、図5(a)に示す3つの欠落部分の拡大図であり、(b)は、図6(b)に示す再構成画像データのうち、(a)に示す欠落部分に対応する部分を示す図である。It is a figure for demonstrating the effectiveness of the interpolation process in the data processor shown as embodiment of this invention, (a) is an enlarged view of three missing parts shown to (a) of FIG. FIG. 6B is a diagram showing a portion corresponding to the missing portion shown in FIG. 6A in the reconstructed image data shown in FIG. 本発明の実施の形態として示すデータ処理装置における外挿処理の有効性を検証するために使用した画像データを示す図である。It is a figure which shows the image data used in order to verify the effectiveness of the extrapolation process in the data processor shown as embodiment of this invention. 図8に示す画像データのうち矩形枠線で囲った部分を切り出した元画像データを示す図である。It is a figure which shows the original image data which cut out the part enclosed with the rectangular frame line among the image data shown in FIG. 図9に示す元画像データに基づいてFFTを適用して外挿処理によって再構成した画像データを示す図である。FIG. 10 is a diagram showing image data reconstructed by extrapolation processing by applying FFT based on the original image data shown in FIG. 9. 図9に示す元画像データに基づいて本周波数解析手法を適用して外挿処理によって再構成した画像データを示す図である。It is a figure which shows the image data reconfigure | reconstructed by the extrapolation process by applying this frequency analysis method based on the original image data shown in FIG. 他の元画像データに基づいて本周波数解析手法を適用して外挿処理によって再構成した画像データを示す図である。It is a figure which shows the image data reconfigure | reconstructed by extrapolation processing by applying this frequency analysis method based on other original image data. 図9に示す元画像データに基づいて本周波数解析手法を適用して外挿処理によって再構成した画像データを示す図であり、(a)は、図9に示す元画像データと同一の画像データを示し、(b)は、(a)に示す画像データを本周波数解析手法によって解析して抽出した50本のスペクトルに基づいて再構成した画像データを示し、(c)は、定数を(a)に示す画像データから差し引いた後に、本周波数解析手法によって解析して抽出した50本のスペクトルに基づいて再構成した画像データを示し、(d)は、(c)に示す画像データを再構成する際のダイナミックレンジを拡張して再構成した画像データを示す。It is a figure which shows the image data reconfigure | reconstructed by extrapolation processing by applying this frequency analysis method based on the original image data shown in FIG. 9, (a) is the same image data as the original image data shown in FIG. (B) shows image data reconstructed based on 50 spectra extracted by analyzing the image data shown in (a) by this frequency analysis method, and (c) shows constants (a ) Shows the image data reconstructed based on the 50 spectra extracted by the frequency analysis method after being subtracted from the image data shown in (), and (d) shows the reconstructed image data shown in (c) The reconstructed image data is shown by expanding the dynamic range at the time. “exemplar based method”アルゴリズムの一連の処理を示すフローチャートである。It is a flowchart which shows a series of processes of the "exemplar" based "method" algorithm. “exemplar based method”アルゴリズムに本周波数解析手法を適用した場合の有効性について説明するための図であり、元の画像データを示す図である。It is a figure for demonstrating the effectiveness at the time of applying this frequency-analysis method to an "exemplar (base) based (method)" algorithm, and is a figure which shows the original image data. “exemplar based method”アルゴリズムに本周波数解析手法を適用した場合の有効性について説明するための図であり、図15に示す画像データについて広い領域にわたって情報を欠落させた画像データを示す図である。FIG. 16 is a diagram for explaining the effectiveness when this frequency analysis method is applied to the “exemplar based method” algorithm, and is a diagram showing image data obtained by deleting information over a wide area with respect to the image data shown in FIG. 15. “exemplar based method”アルゴリズムに本周波数解析手法を適用した場合の有効性について説明するための図であり、“exemplar based method”アルゴリズムによって補間した画像データを示す図である。It is a figure for demonstrating the effectiveness at the time of applying this frequency-analysis method to the "exemplar" based "method" algorithm, and is a figure which shows the image data interpolated by the "exemplar" based "method" algorithm. “exemplar based method”アルゴリズムに本周波数解析手法を適用した場合の有効性について説明するための図であり、本周波数解析手法を適用して補間した画像データを示す図である。It is a figure for demonstrating the effectiveness at the time of applying this frequency-analysis method to an "exemplar-based-method" algorithm, and is a figure which shows the image data interpolated by applying this frequency-analysis method.
 以下、本発明を適用した具体的な実施の形態について図面を参照しながら詳細に説明する。 Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings.
 この実施の形態は、画像データ等の各種データを解析して内挿及び/又は外挿するデータ処理装置である。特に、このデータ処理装置は、非線形方程式を解くことでフーリエ係数を推定することによって周波数分解能が解析窓長に依存しない新たな周波数解析手法を適用してデータの内挿及び/又は外挿を行うものである。なお、ここでは、主として、内挿処理及び/又は外挿処理を行うことによって元画像データに基づいて補間して再構成する場合について説明する。 This embodiment is a data processing device that analyzes and / or extrapolates various data such as image data. In particular, this data processing apparatus applies a new frequency analysis method in which the frequency resolution does not depend on the analysis window length by estimating a Fourier coefficient by solving a nonlinear equation, and performs data interpolation and / or extrapolation. Is. Here, a case will be mainly described in which reconstruction is performed by performing interpolation based on original image data by performing interpolation processing and / or extrapolation processing.
 [データ処理装置の構成]
 データ処理装置は、例えばコンピュータ等から構成され、図1に示すように、各部を統括的に制御するCPU(Central Processing Unit)11と、各種プログラムを含む各種情報を格納する読み取り専用のROM(Read Only Memory)12と、ワークエリアとして機能するRAM(Random
Access Memory)13と、各種情報を読み出し及び/又は書き込み可能に記憶する記憶部14と、ユーザインターフェースとしての図示しない所定の操作デバイスを介した入力操作の処理及び制御を行う入力操作制御部15と、各種情報を表示する表示部16とを備える。
[Data processor configuration]
The data processing apparatus is composed of, for example, a computer or the like. As shown in FIG. 1, a CPU (Central Processing Unit) 11 that centrally controls each unit and a read-only ROM (Read Read ROM that stores various types of information including various programs). Only Memory 12 and RAM (Random) that functions as a work area
(Access Memory) 13, a storage unit 14 that stores various information in a readable and / or writable manner, an input operation control unit 15 that performs processing and control of an input operation via a predetermined operation device (not shown) as a user interface, And a display unit 16 for displaying various information.
 CPU11は、記憶部14等に格納されている各種アプリケーションプログラムをはじめとする各種プログラムを実行し、各部を統括的に制御する。 The CPU 11 executes various programs including various application programs stored in the storage unit 14 and the like, and comprehensively controls each unit.
 ROM12は、各種プログラムをはじめとする各種情報を格納している。このROM12に格納されている情報は、CPU11の制御のもとに読み出される。 The ROM 12 stores various information including various programs. Information stored in the ROM 12 is read under the control of the CPU 11.
 RAM13は、CPU11が各種プログラムを実行する際のワークエリアとして機能し、CPU11の制御のもとに、各種情報を一時記憶するとともに、記憶している各種情報を読み出す。 The RAM 13 functions as a work area when the CPU 11 executes various programs. Under the control of the CPU 11, the RAM 13 temporarily stores various information and reads the stored various information.
 記憶部14は、本発明にかかるデータ処理プログラム等のアプリケーションプログラムの他、処理対象となる元画像データやマスクデータをはじめとする各種情報を記憶する。この記憶部14としては、例えば、ハードディスクや不揮発性メモリ等を用いることができる。また、記憶部14には、本体に対して着脱可能とされるフレキシブルディスクやメモリカード等の記憶媒体に対して、各種情報の読み出し及び/又は書き込みを行うドライブ装置も含まれる。この記憶部14に記憶されている各種情報は、CPU11の制御のもとに読み出される。 The storage unit 14 stores various types of information including original image data and mask data to be processed in addition to application programs such as a data processing program according to the present invention. For example, a hard disk or a non-volatile memory can be used as the storage unit 14. The storage unit 14 also includes a drive device that reads and / or writes various types of information on a storage medium such as a flexible disk or a memory card that can be attached to and detached from the main body. Various types of information stored in the storage unit 14 are read out under the control of the CPU 11.
 入力操作制御部15は、例えば、キーボード、マウス、キーパッド、赤外線リモートコントローラ、スティックキー、又はプッシュボタンといった、ユーザインターフェースとしての図示しない所定の操作デバイスを介した入力操作を受け付け、操作内容を示す制御信号をCPU11に対して供給する。 The input operation control unit 15 accepts an input operation via a predetermined operation device (not shown) as a user interface such as a keyboard, a mouse, a keypad, an infrared remote controller, a stick key, or a push button, for example, and indicates operation contents. A control signal is supplied to the CPU 11.
 表示部16は、例えば、液晶ディスプレイ(Liquid Crystal
Display;LCD)、プラズマ・ディスプレイ・パネル(Plasma Display Panel;PDP)、有機エレクトロルミネッセンス(Organic ElectroLuminescent)ディスプレイ、又はCRT(Cathode Ray Tube)といった、各種表示デバイスであり、CPU11の制御のもとに各種情報を表示する。例えば、表示部16は、CPU11によってデータ処理プログラムが起動されると、その画面を表示し、入力された処理対象としての元画像データや内挿及び/又は外挿結果としての補間後の画像データ等を表示する。
The display unit 16 is, for example, a liquid crystal display (Liquid Crystal).
Various display devices such as a display (LCD), a plasma display panel (PDP), an organic electroluminescence (Organic ElectroLuminescent) display, or a CRT (Cathode Ray Tube). Display information. For example, when the data processing program is activated by the CPU 11, the display unit 16 displays the screen, and the input original image data as the processing target and the image data after interpolation as the interpolation and / or extrapolation result Etc. are displayed.
 このような各部を備えるデータ処理装置は、CPU11の制御のもとに、データ処理プログラムを実行すると、CPU11の制御のもとに、入力された画像データの周波数解析を行うことによってスペクトルを抽出し、得られたスペクトルに基づいて画像データを再構成する。なお、周波数解析の対象となる信号、すなわち、処理対象となる画像データは、図示しないデータ入力部を介してCPU11に入力される。例えば、データ処理装置は、ディジタルカメラ等の撮像装置によって撮像された画像データを内挿処理及び/又は外挿処理によって補間する場合には、当該データ処理装置と撮像装置とを接続する所定のインターフェースを介して処理対象信号としての画像データを記憶部14に記憶させることによって入力する。その他、データ処理装置は、ユーザが作成した任意のデータを処理対象信号として記憶部14に記憶させることによって入力するようにしてもよい。すなわち、データ入力部は、処理対象としての画像データをCPU11に入力させる機能を有する部位である。なお、データ入力部は、アナログ信号を入力した場合には、A/D変換を行ってディジタル信号に変換する機能をあわせ持つことはいうまでもない。このとき、データ入力部は、必要に応じてアンチエイリアシングフィルタを含むA/D変換器としてもよい。データ処理装置は、CPU11の制御のもとに、このようにして入力された処理対象としての画像データの周波数解析を行うことによって内挿処理及び/又は外挿処理を行い、再構成した画像データ等を、図示しない出力部を介して記憶部14に記憶させたり、その他の機器に出力したりする。 When the data processing apparatus including each unit executes a data processing program under the control of the CPU 11, the spectrum is extracted by performing frequency analysis of the input image data under the control of the CPU 11. Then, the image data is reconstructed based on the obtained spectrum. Note that a signal to be subjected to frequency analysis, that is, image data to be processed is input to the CPU 11 via a data input unit (not shown). For example, when the data processing apparatus interpolates image data captured by an imaging apparatus such as a digital camera by interpolation processing and / or extrapolation processing, a predetermined interface that connects the data processing apparatus and the imaging apparatus The image data as the signal to be processed is input by storing it in the storage unit 14. In addition, the data processing apparatus may input arbitrary data created by the user by storing it in the storage unit 14 as a processing target signal. That is, the data input unit is a part having a function of causing the CPU 11 to input image data as a processing target. Needless to say, the data input unit also has a function of performing A / D conversion and converting it into a digital signal when an analog signal is input. At this time, the data input unit may be an A / D converter including an anti-aliasing filter as necessary. Under the control of the CPU 11, the data processing apparatus performs interpolation processing and / or extrapolation processing by performing frequency analysis of the image data as the processing target input in this manner, and reconstructed image data. And the like are stored in the storage unit 14 via an output unit (not shown) or output to other devices.
 [周波数解析アルゴリズム]
 まず、データ処理装置における一連のデータ処理アルゴリズムの説明に先立って、データ内挿及び/又は外挿を行う際に利用する周波数解析アルゴリズムについて詳述する。なお、画像データは2次元信号であることはいうまでもないが、ここでは、説明の便宜上、1次元の解析対象信号に対する周波数解析アルゴリズムについて説明するものとする。
[Frequency analysis algorithm]
First, prior to description of a series of data processing algorithms in the data processing device, a frequency analysis algorithm used when performing data interpolation and / or extrapolation will be described in detail. Needless to say, the image data is a two-dimensional signal, but here, for convenience of explanation, a frequency analysis algorithm for a one-dimensional analysis target signal will be described.
 データ処理装置に適用する周波数解析手法(以下、本周波数解析手法という。)においては、次式(1)に示す非周期信号のフーリエ変換式の周波数パラメータを求める問題を非線形方程式の最適解を求める問題に置き換えている。 In the frequency analysis method applied to the data processing apparatus (hereinafter referred to as the present frequency analysis method), the problem of obtaining the frequency parameter of the Fourier transform equation of the non-periodic signal shown in the following equation (1) is obtained as the optimal solution of the nonlinear equation. Replaced with a problem.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 具体的には、本周波数解析手法においては、次式(2)に示すように、解析対象信号x(n)と正弦波モデル信号との差の二乗和で表される非線形方程式の最適解として、この非線形方程式の右辺が最小値になるような周波数f’、振幅A’、及び初期位相φ’を求める。なお、次式(2)において、Lはフレーム長(解析窓長)であり、fはサンプリング周波数[Hz]である。本周波数解析手法においては、このような最小二乗法によって非線形方程式の最適解を求める問題に帰着させることにより、解析窓の影響やエイリアシングの影響がなくなり、解析窓長が、1周期未満であってもよく、周期の整数倍でなくてもよく、さらには、不等間隔であってもよい等、柔軟な周波数解析処理を実現することが可能となる。 Specifically, in this frequency analysis method, as shown in the following equation (2), as an optimal solution of the nonlinear equation represented by the sum of squares of the difference between the analysis target signal x (n) and the sine wave model signal: Then, the frequency f ′, the amplitude A ′, and the initial phase φ ′ are obtained so that the right side of the nonlinear equation becomes the minimum value. In the following equation (2), L is a frame length (analysis window length), and f s is a sampling frequency [Hz]. In this frequency analysis method, the effect of the analysis window and aliasing are eliminated by reducing the problem of finding the optimal solution of the nonlinear equation by the least square method, and the analysis window length is less than one cycle. In addition, it is not necessary to be an integral multiple of the period, and furthermore, it is possible to realize flexible frequency analysis processing such as unequal intervals.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 さて、上式(2)に示す非線形方程式の最適解を実際に求めるにあたっては、以下のような方法をとることができる。 Now, in order to actually obtain the optimal solution of the nonlinear equation shown in the above equation (2), the following method can be taken.
 本周波数解析手法においては、振幅A’、周波数f’、及び初期位相φ’のそれぞれについて適切な初期値を求め、これら初期値から非線形方程式の解法を用いて最適解に収束させる。この非線形問題では、上式(2)をコスト関数とする最小化問題とする。なお、適切な初期値は、離散フーリエ変換(Discrete Fourier Transform;DFT)やウェーブレット変換等の任意の周波数変換を行ったり、フィルタリングを行うことによっておおよその見当をつけたりする等、既存の任意の方法を適用して求めることができる。 In this frequency analysis method, appropriate initial values are obtained for each of the amplitude A ′, the frequency f ′, and the initial phase φ ′, and the initial value is converged to an optimal solution using a nonlinear equation solving method. In this nonlinear problem, the above equation (2) is a minimization problem with a cost function. Appropriate initial values can be obtained by performing any arbitrary method such as discrete Fourier transform (DFT) or wavelet transform, or obtaining an approximate register by filtering. Can be obtained by applying.
 まず、本周波数解析手法においては、上式(2)における正弦波モデル信号の位相を構成する周波数パラメータf’,φ’について、いわゆる最急降下法を適用し、周波数パラメータf’,φ’を次式(3)及び次式(4)によって求める。 First, in this frequency analysis method, the so-called steepest descent method is applied to the frequency parameters f ′ and φ ′ constituting the phase of the sine wave model signal in the above equation (2), and the frequency parameters f m ′ and φ m ′ are applied. Is obtained by the following equations (3) and (4).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 なお、上式(3)及び上式(4)においては、次式(5)と略している。また、μは、いわゆる減速法に基づく重み係数であり、各漸化式によって求められるコスト関数を単調減少数列にするために、適時0~1の値をとる。 In the above formulas (3) and (4), the following formula (5) is abbreviated. Further, mu m, a weighting factor based on the so-called reduction method, to a cost function determined by the recursion formula monotonically decreasing sequence takes a value of timely 0-1.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 周波数パラメータf’,φ’を求めることができれば、上式(2)における正弦波モデル信号の係数としての周波数パラメータA’を一意に求めることができるため、本周波数解析手法においては、次式(6)によって周波数パラメータA’を収束させる。 If the frequency parameters f m ′ and φ m ′ can be obtained, the frequency parameter A ′ as a coefficient of the sine wave model signal in the above equation (2) can be uniquely obtained. The frequency parameter A m ′ is converged by equation (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 本周波数解析手法においては、これら一連の計算を反復して行うことにより、振幅A’、周波数f’、及び初期位相φ’を高精度に収束させることができる。特に、本周波数解析手法においては、上式(2)における正弦波モデル信号の位相を構成する周波数パラメータf’,φ’と、係数としての周波数パラメータA’とを別個に求めることにより、計算を簡便に行うことができる。 In this frequency analysis method, it is possible to converge the amplitude A ′, the frequency f ′, and the initial phase φ ′ with high accuracy by repeatedly performing these series of calculations. In particular, in this frequency analysis method, the calculation is performed by separately obtaining the frequency parameters f ′ and φ ′ constituting the phase of the sine wave model signal in the above equation (2) and the frequency parameter A ′ as a coefficient. It can be performed simply.
 しかしながら、最急降下法は、比較的広い範囲から収束するものの、1回の反復では精度が低く、収束するまでに時間を要する。 However, although the steepest descent method converges from a relatively wide range, accuracy is low in one iteration and it takes time to converge.
 そこで、本周波数解析手法においては、最急降下法を適用して周波数パラメータf’,φ’をある程度まで収束させた後、さらに、いわゆるニュートン法を適用して高精度に収束させるのが望ましい。具体的には、本周波数解析手法においては、ニュートン法として、次式(7)及び次式(8)に示す漸化式によって周波数パラメータf’,φ’を求める。 Therefore, in this frequency analysis method, it is desirable to converge the frequency parameters f m ′ and φ m ′ to some extent by applying the steepest descent method, and then to converge with high accuracy by applying the so-called Newton method. . Specifically, in this frequency analysis method, the frequency parameters f m ′ and φ m ′ are obtained by the recurrence formulas shown in the following equations (7) and (8) as the Newton method.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 ただし、上式(7)及び上式(8)において、Jは次式(9)とし、次式(10)と略している。また、νもμと同様に減速法に基づく重み係数であり、適時0~1の値をとる。 However, in the above formulas (7) and (8), J is the following formula (9) and is abbreviated as the following formula (10). Also, [nu m is also a weighting coefficient based on the reduction method in the same manner as mu m, taking the value of timely 0-1.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 本周波数解析手法においては、上式(7)及び上式(8)によって周波数パラメータf’,φ’を求めた後、最急降下法と同様に、上式(6)によって周波数パラメータA’を収束させ、この一連の計算をさらに反復して行う。 In the present frequency analysis technique, the above equation (7) and the equation (8) frequency parameter f m by ', phi m' sought after, like the steepest descent method, frequency parameter by the above equation (6) A m 'Is converged and this series of calculations is repeated further.
 このように、本周波数解析手法においては、最急降下法とニュートン法とを組み合わせたハイブリッド型の解法を用いることにより、高速に且つ高精度に周波数パラメータA’,f’,φ’を推定することができる。 As described above, in this frequency analysis method, the frequency parameters A ′, f ′, and φ ′ are estimated at high speed and with high accuracy by using a hybrid method combining the steepest descent method and the Newton method. Can do.
 また、本周波数解析手法においては、解析対象信号x(n)が複合正弦波の場合であっても、逐次減算処理することにより、近似的にスペクトルパラメータを導出することができる。ここで、解析対象信号x(n)が複数の正弦波の和であり、次式(11)のように表されているとする。 Further, in this frequency analysis method, even when the analysis target signal x (n) is a composite sine wave, the spectral parameter can be approximately derived by performing successive subtraction processing. Here, it is assumed that the analysis target signal x (n) is the sum of a plurality of sine waves and is expressed as the following equation (11).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 パーセヴァル(Parseval)の定理より、解析対象信号x(n)の周波数fと正弦波モデル信号の周波数パラメータf’とが全く一致しない場合、すなわち、次式(12)である場合には、上式(2)に示す非線形方程式は次式(13)となる。また、周波数パラメータf’,φ’の組が、周波数f及び初期位相φの組のいずれかに一致する場合には、上式(2)に示す非線形方程式は次式(14)となる。さらに、振幅Aが周波数パラメータA’とも一致した場合には、解析対象信号から推定スペクトルに関する周波数成分を完全に消去することができる。そのため、最適解を求める問題は、周波数に対して独立であり、解析対象信号から順次個別に推定すれば、複数の正弦波で表される信号にも応用することができる。 According to the Parseval theorem, if the frequency fk of the signal to be analyzed x (n) and the frequency parameter f ′ of the sine wave model signal do not coincide at all, that is, if The nonlinear equation shown in the equation (2) becomes the following equation (13). When the set of frequency parameters f ′ and φ ′ matches either of the set of the frequency f k and the initial phase φ k , the nonlinear equation shown in the above equation (2) becomes the following equation (14). . Furthermore, when the amplitude A j matches the frequency parameter A ′, the frequency component related to the estimated spectrum can be completely eliminated from the analysis target signal. Therefore, the problem of obtaining the optimum solution is independent of the frequency, and can be applied to signals represented by a plurality of sine waves if individually estimated from the analysis target signal.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 すなわち、本周波数解析手法においては、解析対象信号x(n)が複合正弦波の場合であっても、逐次残差信号に対して同様に処理を行い、複数の正弦波を抽出することができる。 That is, in this frequency analysis method, even if the analysis target signal x (n) is a composite sine wave, it is possible to extract a plurality of sine waves by performing the same process on the residual signal successively. .
 音声信号や音響信号等の信号を複合正弦波によって表現するためには、これまで多くのスペクトル数(正弦波の数)が必要であったが、本周波数解析手法においては、そのような信号であっても僅かなスペクトル数で誤差なく表現することができる。すなわち、信号をより少ないスペクトル数で表現可能であることは、情報圧縮の用途に有効であることを示している。 In order to express a signal such as an audio signal or an acoustic signal with a composite sine wave, a large number of spectra (the number of sine waves) has been required so far. Even if it exists, it can express with few errors and without an error. That is, being able to express a signal with a smaller number of spectra indicates that it is effective for information compression.
 [本周波数解析手法の有効性]
 以下、本周波数解析手法の有効性について具体的に説明する。
[Effectiveness of this frequency analysis method]
Hereinafter, the effectiveness of this frequency analysis method will be specifically described.
 本周波数解析手法は、非線形方程式の最適解を求めることにより、正弦波モデル信号の周波数f’、振幅A’、及び初期位相φ’を高速に且つ高精度に求めることができる。具体的な精度を立証するために、本願発明者は、DFTと、DFTの発展型のうち最も解析精度が高いといわれているGHA(Generalized Harmonic Analysis)とを比較対象として精度の検証を行った。 This frequency analysis method can determine the frequency f ′, the amplitude A ′, and the initial phase φ ′ of the sine wave model signal at high speed and with high accuracy by obtaining the optimal solution of the nonlinear equation. In order to verify the specific accuracy, the inventor of the present application verified accuracy by comparing DFT and GHA (Generalized Harmonic Analysis), which is said to have the highest analysis accuracy among the developed types of DFT. .
 なお、DFTやGHAは、1つの解析窓長に見かけ上複数の窓長を持たせていることから、周波数分解能が解析窓長に依存するが、その分解周波数が有限長であり、解析対象信号の周波数が分解周波数以外の周波数となった場合には解析することができず、解析対象信号が正確に解析できる周波数と異なる場合には、最も近い分解周波数の他に、その周辺に小さなスペクトルの周波数(側帯波成分)が現れ、複数の周波数が出現してしまう。 Note that DFT and GHA apparently have a plurality of window lengths in one analysis window length, so the frequency resolution depends on the analysis window length, but the resolution frequency is finite, and the signal to be analyzed If the analysis signal is different from the frequency that can be analyzed accurately, the analysis signal cannot be analyzed when the frequency is other than the decomposition frequency. A frequency (sideband component) appears, and a plurality of frequencies appear.
 このような現象が本周波数解析手法においても生じるか否かについて、すなわち、本周波数解析手法の周波数分解能を検証するために、解析窓長を1秒(1024サンプル)とした1次元の非常に短い単一正弦波を解析し、各手法によって正弦波を1本抽出して元の信号との二乗誤差を調べた。その結果を図2に示す。 Whether or not such a phenomenon occurs also in the present frequency analysis method, that is, in order to verify the frequency resolution of the present frequency analysis method, the analysis window length is one second (1024 samples) and is very short. A single sine wave was analyzed, one sine wave was extracted by each method, and the square error from the original signal was examined. The result is shown in FIG.
 図2に示すように、DFTにおいては、基本周波数の整数倍以外の周波数における解析精度の悪化がみられた。また、GHAにおいては、1Hz以上の周波数ではDFTと比べて2~5桁程度の精度向上がみられた。これに対して、本周波数解析手法においては、1Hz以上の周波数ではDFTと比べて10桁以上、GHAと比べて5桁以上の精度向上がみられた。すなわち、本周波数解析手法は、既存の周波数解析手法と比べて10万~100億倍以上の精度向上がみられた。特に、1Hz以下の周波数を正確に推定することができるということは、解析窓長を超えた長い周期信号であっても解析可能であることを示している。 As shown in FIG. 2, in DFT, analysis accuracy deteriorated at frequencies other than integer multiples of the fundamental frequency. In GHA, the accuracy was improved by about 2 to 5 digits compared to DFT at a frequency of 1 Hz or higher. On the other hand, in this frequency analysis method, an accuracy improvement of 10 digits or more compared to DFT and 5 digits or more compared to GHA was observed at a frequency of 1 Hz or more. That is, this frequency analysis method showed an improvement in accuracy of 100,000 to 10 billion times or more compared with the existing frequency analysis method. In particular, the fact that a frequency of 1 Hz or less can be accurately estimated indicates that even a long periodic signal exceeding the analysis window length can be analyzed.
 このように、本周波数解析手法は、最も解析精度が高いといわれているGHAと比べても驚くべき高精度に解析を行うことができるものである。データ処理装置は、2次元信号である元画像データに基づく内挿及び/又は外挿によって画像データの再構成を行う場合には、このような本周波数解析手法を適用して、図3に示すような一連の処理を行う。 Thus, this frequency analysis method can perform analysis with surprisingly high accuracy even compared to GHA, which is said to have the highest analysis accuracy. When the data processing apparatus reconstructs image data by interpolation and / or extrapolation based on the original image data which is a two-dimensional signal, this frequency analysis method is applied and shown in FIG. A series of processes are performed.
 まず、データ処理装置は、図3に示すように、ステップS1において、CPU11の制御のもとに、図示しないデータ入力部を介して元画像データIorg(n,n)を2次元信号からなる画像データI(n,n)として入力してRAM13等のメモリに記憶すると、ステップS2において、CPU11の制御のもとに、画像データを再構成するために最低限必要となるL本のスペクトルを抽出したか否かを判定する。データ処理装置は、L本のスペクトルを全て抽出していない場合には、ステップS3において、CPU11の制御のもとに、画像データI(n,n)のうち情報が欠落している部分を処理対象から除くために、次式(15)に示すように、画像データI(n,n)に対して欠落した情報に対応するマスクデータM(n,n)をかけ、新たな画像データI’(n,n)を生成する。 First, as shown in FIG. 3, the data processing apparatus converts the original image data I org (n 1 , n 2 ) into a two-dimensional signal via a data input unit (not shown) under the control of the CPU 11 in step S1. When image data I (n 1 , n 2 ) is input and stored in a memory such as the RAM 13, the minimum L required to reconstruct the image data under the control of the CPU 11 in step S 2. It is determined whether or not a book spectrum has been extracted. When the data processing apparatus has not extracted all the L spectra, in step S3, the portion of the image data I (n 1 , n 2 ) that lacks information under the control of the CPU 11 To the image data I (n 1 , n 2 ), the mask data M (n 1 , n 2 ) corresponding to the missing information is applied to the image data I (n 1 , n 2 ) as shown in the following equation (15): New image data I ′ (n 1 , n 2 ) is generated.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 なお、マスクデータM(n,n)は、画像データI(n,n)のうち、未知の領域についてはM(n,n)=0、既知の領域についてはM(n,n)=1の値をとるものであり、任意のマスクデータ生成アルゴリズムを使用したり、画像処理ソフトウェア等を使用したりすることによって生成することができるものである。また、上式(15)において、M’は、マスクデータMの反転データである。さらに、Kは、所定の定数であり、内挿処理の場合には画像データIの平均値又は中央値をとるものである。一方、外挿処理の場合における定数Kは、反転データM’が常に0の値をとることから、事実上用いることはないが、内挿処理と同様のアルゴリズムを実装するために、ここでは画像データIの平均値又は中央値等、任意の値をとるものとする。すなわち、データ処理装置は、画像データI(n,n)のうち、未知の領域に対して値Kを代入して処理を進めることになる。具体的には、データ処理装置は、例えば図4(a)に示すように一部の情報が欠落した画像データI(n,n)に対する処理を行う場合には、マスクデータM(n,n)として、図4(b)に示すような情報が欠落した未知の領域については0の値をとり、既知の領域については1の値をとるデータを用意する。そして、データ処理装置は、画像データI(n,n)のうち、未知の領域に対して画像データIの平均値K(=149.33)を代入する場合には、図4(c)に示すような画像データI’(n,n)を生成することになる。なお、図4(a)に示す画像データは、後述する図7(a)の右上に示す画像データ領域と同じである。また、データ処理装置は、CPU11の制御のもとに、データI・M+K・M’から定数Cを差し引いてもよい。すなわち、データ処理装置は、情報量を削減しつつ、外挿する情報に不必要な情報を除去したテクスチャの交流成分のみのスペクトルを抽出して広域の外挿を可能とするために、視覚的に劣化の少ない低周波数成分を量子化によって除去する。 Note that the mask data M (n 1 , n 2 ) is M (n 1 , n 2 ) = 0 for unknown regions and M (n () for known regions in the image data I (n 1 , n 2 ). n 1 , n 2 ) = 1 and can be generated by using an arbitrary mask data generation algorithm, image processing software, or the like. In the above equation (15), M ′ is the inverted data of the mask data M. Further, K is a predetermined constant, and takes the average value or median value of the image data I in the case of interpolation processing. On the other hand, the constant K in the case of extrapolation processing is not practically used because the inverted data M ′ always takes a value of 0. However, in order to implement an algorithm similar to the interpolation processing, an image is used here. An arbitrary value such as an average value or a median value of the data I is assumed. That is, the data processing apparatus substitutes the value K for an unknown area in the image data I (n 1 , n 2 ) and proceeds with the process. Specifically, for example, as shown in FIG. 4A, the data processing apparatus performs mask data M (n) when processing the image data I (n 1 , n 2 ) with some information missing. 1 , n 2 ), data is prepared that takes a value of 0 for an unknown region lacking information as shown in FIG. 4B and a value of 1 for a known region. When the data processing apparatus substitutes the average value K (= 149.33) of the image data I for the unknown area in the image data I (n 1 , n 2 ), the data processing apparatus shown in FIG. The image data I ′ (n 1 , n 2 ) as shown in FIG. Note that the image data shown in FIG. 4A is the same as the image data area shown in the upper right of FIG. The data processing apparatus may subtract the constant C from the data I · M + K · M ′ under the control of the CPU 11. In other words, the data processing apparatus is able to perform extrapolation over a wide area by extracting a spectrum of only the AC component of the texture from which information unnecessary for extrapolated information is removed while reducing the amount of information. The low-frequency component with little deterioration is removed by quantization.
 さらに、データ処理装置においては、複数のスペクトルを抽出する際に、上式(2)乃至上式(10)の演算を行うために、スペクトルの抽出毎に新たな初期値を設定する必要がある。そこで、データ処理装置は、ステップS4において、CPU11の制御のもとに、初期値を設定した後、ステップS5において、2次元信号からなるステップS3にて得られた画像データI’(n,n)に対して上述した本周波数解析手法を適用し、上式(2)乃至上式(10)の演算を行う。 Further, in the data processing apparatus, when extracting a plurality of spectra, it is necessary to set a new initial value for each spectrum extraction in order to perform the calculations of the above equations (2) to (10). . Therefore, after setting an initial value under the control of the CPU 11 in step S4, the data processing apparatus sets the image data I ′ (n 1 , n 1 , n 2 , obtained in step S3 consisting of a two-dimensional signal in step S5. The frequency analysis method described above is applied to n 2 ), and the above formulas (2) to (10) are calculated.
 つぎに、データ処理装置は、ステップS6において、CPU11の制御のもとに、次式(16)に示すようにl本目のスペクトルを抽出する。なお、次式(16)において、fxs,fysは、それぞれ、画像データの横軸方向、縦軸方向のサンプリング周波数[Hz]であり、A’,fxl’,fyl’,φ’は、それぞれ、抽出するスペクトルの振幅、画像データの各軸に対応する周波数、初期位相である。ここで、データ処理装置は、振幅A’、周波数fxl’,fyl’、及び初期位相φ’のそれぞれについて、上述したように、DFTや高速フーリエ変換(Fast Fourier Transform;FFT)等を用いて適切な初期値を求める際に、情報が欠落している部分を処理対象から除く必要がある。そこで、データ処理装置は、画像データI’(n,n)のうち、マスクデータM(n,n)の画素値がゼロではない部分に対して上述した本周波数解析手法を適用してスペクトルを抽出する。データ処理装置は、2次元信号である画像データを正弦波モデル関数を用いて表し、実際の信号と、正弦波モデル信号との差が最小となるようにパラメータを変化させ、各周波数を求める。 Next, in step S6, the data processing apparatus extracts the l-th spectrum as shown in the following equation (16) under the control of the CPU 11. In the following equation (16), f xs and f ys are sampling frequencies [Hz] in the horizontal axis direction and the vertical axis direction of the image data, respectively, and A l ′, f xl ′, f yl ′, φ l ′ is the amplitude of the spectrum to be extracted, the frequency corresponding to each axis of the image data, and the initial phase, respectively. Here, as described above, for each of the amplitude A l ′, the frequencies f xl ′, f yl ′, and the initial phase φ l ′, the data processing apparatus performs DFT, Fast Fourier Transform (FFT), etc. When obtaining an appropriate initial value using, it is necessary to remove a portion where information is missing from the processing target. Therefore, the data processing apparatus applies the frequency analysis method described above to a portion of the image data I ′ (n 1 , n 2 ) where the pixel value of the mask data M (n 1 , n 2 ) is not zero. To extract a spectrum. The data processing device expresses image data that is a two-dimensional signal using a sine wave model function, changes parameters so that the difference between the actual signal and the sine wave model signal is minimized, and obtains each frequency.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 そして、データ処理装置は、ステップS7において、CPU11の制御のもとに、抽出したスペクトルによって表される画像データI’’(n,n)を画像データI(n,n)から減算した残差信号を画像データI(n,n)に代入するとともに、ステップS8において、画像データI’(n,n)と画像データI’’(n,n)とを加算した信号を画像データI’(n,n)に代入し、ステップS9において、lをインクリメントした上で、定数Kを更新してステップS2からの処理を繰り返す。すなわち、データ処理装置において、1本目のスペクトルを抽出する場合には、画像データI(n,n)は元画像データIorg(n,n)そのものであるが、2本目以降のスペクトルを抽出する場合には、画像データI(n,n)は元の画像データI(n,n)とそれまでに抽出されたスペクトルによって構成される画像データI’’(n,n)との残差となる。 In step S7, the data processing device converts the image data I ″ (n 1 , n 2 ) represented by the extracted spectrum from the image data I (n 1 , n 2 ) under the control of the CPU 11. The subtracted residual signal is substituted for the image data I (n 1 , n 2 ), and in step S8, the image data I ′ (n 1 , n 2 ) and the image data I ″ (n 1 , n 2 ) Is added to the image data I ′ (n 1 , n 2 ), and in step S9, l is incremented, the constant K is updated, and the processing from step S2 is repeated. That is, in the data processing apparatus, when the first spectrum is extracted, the image data I (n 1 , n 2 ) is the original image data I org (n 1 , n 2 ) itself, but the second and subsequent ones are extracted. In the case of extracting a spectrum, the image data I (n 1 , n 2 ) is the image data I ″ (n) composed of the original image data I (n 1 , n 2 ) and the spectrum extracted so far. 1 , n 2 ).
 データ処理装置は、画像データを再構成するために最低限必要となるL本のスペクトル(A’,fxl’,fyl’,φ’;l=1~L)を抽出するまでこのような処理を行い、L本のスペクトルを抽出すると、ステップS10において、CPU11の制御のもとに、次式(17)に示すように画像データの内挿処理及び/又は外挿処理を行って再構成画像データI’’’(n,n)を出力し、一連の処理を終了する。この際、データ処理装置は、除去した量子化ビット数分の定数CをデータI・M+K・M’から差し引いている場合には、定数C’をL本のスペクトルに基づいて再構成した画像データに対して加算する。ここで、定数C’=Cであってもよい。これは、ダイナミックレンジの拡張を画像のエッジ部分の補正のために用いており、出力する画像を入力した画像と同じ階調(8ビットの場合、0~255の256階調)で表示させるため、定数C’=Cとなることによる。例えば、256階調(0~255)の画像を512階調(0~511)にする場合には、定数C’=2Cとすればよい。 The data processing apparatus does not extract this L spectrums (A l ′, f xl ′, f yl ′, φ l ′; l = 1 to L) that are at least necessary for reconstructing the image data. When the above processing is performed and L spectra are extracted, in step S10, under the control of the CPU 11, the interpolation and / or extrapolation processing of the image data is performed as shown in the following equation (17). The reconstructed image data I ′ ″ (n 1 , n 2 ) is output, and the series of processes is terminated. At this time, if the data processing apparatus subtracts the constant C corresponding to the number of removed quantization bits from the data I · M + K · M ′, the image data is obtained by reconstructing the constant C ′ based on the L spectra. Add to. Here, the constant C ′ = C may be satisfied. This is because the expansion of the dynamic range is used to correct the edge portion of the image, and the output image is displayed with the same gradation as the input image (256 gradations of 0 to 255 in the case of 8 bits). , Because constant C ′ = C. For example, when an image having 256 gradations (0 to 255) is changed to 512 gradations (0 to 511), the constant C ′ = 2C may be set.
 なお、本周波数解析手法を適用して少ない本数のスペクトルのみを抽出して画像を構成した場合には、その情報に基づいて再構成される画像データの高周波数成分が不足し、エッジの立ち上がりでリンギングが発生しやすくなる。そこで、データ処理装置は、画像データを再構成する際のダイナミックレンジを拡張して画像強度を強調し、所定の閾値で丸め込むことにより、テクスチャ画像のリンギングの除去を行う。すなわち、データ処理装置は、例えば8ビットで量子化された画像データの場合には、0と255とを閾値とするように、抽出されたスペクトルによって構成される画像データに対して任意の定数kを乗算することにより、画像データのダイナミックレンジを拡張しながら画像データの再構成を行うのが望ましい。 Note that when the image is constructed by extracting only a small number of spectra by applying this frequency analysis method, the high frequency components of the image data reconstructed based on the information are insufficient, and the edge rises. Ringing is likely to occur. Therefore, the data processing device removes the ringing of the texture image by extending the dynamic range when reconstructing the image data to enhance the image intensity and rounding it with a predetermined threshold. That is, the data processing apparatus, for example, in the case of image data quantized with 8 bits, an arbitrary constant k is applied to the image data constituted by the extracted spectrum so that 0 and 255 are set as threshold values. It is desirable to reconstruct the image data while expanding the dynamic range of the image data by multiplying.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 データ処理装置は、このような一連の処理を行うことにより、元画像データIorg(n,n)に基づいて、画像データI’’’(n,n)を再構成することができる。再構成された画像データI’’’(n,n)のダイナミックレンジは、画像データの規格に合わせて丸め込まれるため、リンギングを低減することができる。また、データ処理装置は、(n,n)のとり得る範囲を、測定領域を超える長さに広げることにより、測定領域外の情報を外挿することが可能となる。 The data processing apparatus reconstructs the image data I ′ ″ (n 1 , n 2 ) based on the original image data I org (n 1 , n 2 ) by performing such a series of processes. Can do. Since the dynamic range of the reconstructed image data I ′ ″ (n 1 , n 2 ) is rounded according to the standard of the image data, ringing can be reduced. In addition, the data processing apparatus can extrapolate information outside the measurement region by extending the possible range of (n 1 , n 2 ) to a length exceeding the measurement region.
 [データ処理装置の有効性]
 本願発明者は、このようなデータ処理装置を用いて実際に画像データを解析し、内挿処理及び外挿処理を行った。
[Effectiveness of data processing equipment]
The inventor of the present application actually analyzed image data using such a data processing apparatus, and performed interpolation processing and extrapolation processing.
 まず、内挿処理を行った例について説明する。 First, an example of performing interpolation processing will be described.
 図5(a)に示すような画像データに対して、図5(b)に示すように、画像領域全体にわたって分散した複数のドットによって情報が欠落した画像データを用意した。なお、図5(a)に示す画像データに対する図5(b)に示す画像データのピークSN比は、21.2079dBである。また、マスクデータは、これらドットに対応する値からなるものを用意した。そして、この画像データのうち情報が欠落している部分の周囲の情報に基づいて、欠落している情報を内挿することによって再構成画像データを求めた。 For the image data as shown in FIG. 5 (a), as shown in FIG. 5 (b), image data in which information is lost due to a plurality of dots dispersed over the entire image area was prepared. The peak SNR of the image data shown in FIG. 5B with respect to the image data shown in FIG. 5A is 21.2079 dB. Further, mask data having values corresponding to these dots was prepared. Then, reconstructed image data was obtained by interpolating the missing information based on information around the portion of the image data where the information is missing.
 この結果を図5(c)に示す。高い周波数分解能を有し且つ解析窓長による影響が少ない解析が可能である本周波数解析手法を適用したデータ処理装置においては、図5(c)に示すように、元画像データの特徴を損なうことなく、また、フレーム間で誤差が発生することなく、元画像データに基づいた内挿が行われた。なお、図5(a)に示す画像データに対する図5(c)に示す画像データのピークSN比は、43.5708dBと、高い値であった。 This result is shown in FIG. In a data processing apparatus to which the present frequency analysis method that has high frequency resolution and can be analyzed with little influence by the analysis window length, the characteristics of the original image data are impaired as shown in FIG. In addition, interpolation based on the original image data was performed without causing an error between frames. The peak SN ratio of the image data shown in FIG. 5C with respect to the image data shown in FIG. 5A was a high value of 43.5708 dB.
 また、本願発明者は、本周波数解析手法を適用した場合において、情報が欠落している部分の形状や大きさの影響についても調べた。具体的には、図5(a)に示した画像データと同じ画像データに対して、図6(a)に示すように、形状及び大きさが異なる3つの欠落部分を設けた画像データを用意した。そして、この画像データのうち情報が欠落している部分の周囲の情報に基づいて、欠落している情報を内挿することによって再構成画像データを求めた。 The inventor of the present application also examined the influence of the shape and size of a portion where information is missing when the frequency analysis method is applied. Specifically, for the same image data as the image data shown in FIG. 5 (a), as shown in FIG. 6 (a), image data provided with three missing portions having different shapes and sizes are prepared. did. Then, reconstructed image data was obtained by interpolating the missing information based on information around the portion of the image data where the information is missing.
 その結果、データ処理装置においては、図6(b)に示すように、欠落部分の形状及び大きさにかかわらず、元画像データの特徴を損なうことなく、また、フレーム間で誤差が発生することなく、元画像データに基づいた内挿を行うことができた。より詳細には、図7(a)に示す3つの欠落部分の全てについて、図7(b)に示すように、元画像データと略同様の地模様や濃淡が反映された再構成画像データが得られた。すなわち、データ処理装置においては、いかなる形状及び大きさの欠落部分であっても、また、画像領域のどの部分に欠落部分があっても、元画像データの特徴を損なうことなく正確な解析を行うことができ、欠落した情報を内挿によって補間する際にもフレーム間で誤差を発生させることがない。 As a result, in the data processing apparatus, as shown in FIG. 6B, regardless of the shape and size of the missing part, the characteristics of the original image data are not impaired, and errors occur between frames. And interpolation based on the original image data could be performed. More specifically, as shown in FIG. 7 (b), reconstructed image data reflecting ground patterns and shades substantially the same as the original image data for all three missing portions shown in FIG. 7 (a). Obtained. In other words, in the data processing apparatus, an accurate analysis is performed without impairing the characteristics of the original image data, regardless of the shape and size of the missing part, and any part of the image area. Even when the missing information is interpolated by interpolation, no error is generated between frames.
 このように、本周波数解析手法を適用したデータ処理装置は、従来の周波数解析手法の適用ではなし得なかったブロックノイズの発生をなくした内挿処理を行い、大幅に自然な再構成画像データを得ることが可能である。 In this way, the data processing apparatus to which this frequency analysis method is applied performs interpolation processing that eliminates the generation of block noise that could not be achieved by applying the conventional frequency analysis method, and significantly reconstructed image data is obtained. It is possible to obtain.
 つぎに、外挿処理を行った例について説明する。 Next, an example of performing extrapolation processing will be described.
 図8に示すような同じパターンが連続する画像データを用意し、このうち矩形枠線で囲った部分(図9)を切り出して解析対象、すなわち、元画像データとし、この元画像データに基づいて、その周囲の未知の情報を外挿することによって再構成画像データを求めた。なお、図9に示す元画像データの大きさは、140ピクセル×140ピクセルであり、これに基づいて、420ピクセル×420ピクセルの大きさの再構成画像データを求めた。 Image data having the same pattern as shown in FIG. 8 is prepared, and a portion surrounded by a rectangular frame (FIG. 9) is cut out as an analysis object, that is, original image data. Based on this original image data Then, the reconstructed image data was obtained by extrapolating the surrounding unknown information. Note that the size of the original image data shown in FIG. 9 is 140 pixels × 140 pixels, and based on this, reconstructed image data having a size of 420 pixels × 420 pixels was obtained.
 また、従来の外挿法は、2次線形予測やそれ以外の関数等を用いて未知の情報を外挿したり、テクスチャ画像が有する周期性に着目して離散フーリエ変換等の周波数解析手法を適用してスペクトルを抽出し、その周囲の未知の情報を外挿したりするものである。そこで、本願発明者は、比較のため、本周波数解析手法の代わりにFFTを用いて同一の元画像データを解析して再構成画像データを求めた。 Conventional extrapolation methods extrapolate unknown information using quadratic linear prediction or other functions, or apply frequency analysis methods such as discrete Fourier transform focusing on the periodicity of texture images. Then, the spectrum is extracted, and unknown information around it is extrapolated. Therefore, for comparison, the inventor of the present application analyzed the same original image data using FFT instead of the present frequency analysis method to obtain reconstructed image data.
 これらの結果を図10及び図11に示す。まず、FFTを適用した場合には、図10に示すように、元画像データの解析結果と全く同じ情報が周囲においても繰り返し外挿されることから、フレーム間で不自然な再構成画像データとなる。なお、解析を行う際に、窓関数を用いることによってフレーム間の誤差を小さくすることもできるが、この場合においても、画像データの再構成時に元の信号を得ることはできない。すなわち、FFT等の従来の周波数解析手法を適用した外挿法においては、解析区間、すなわち、テクスチャ画像のどの部分を切り出して解析するかといった事項や、フレーム長をどのように決めるかが問題となり、これを解決することは非常に困難である。 These results are shown in FIG. 10 and FIG. First, when FFT is applied, the same information as the analysis result of the original image data is repeatedly extrapolated in the surroundings as shown in FIG. 10, resulting in unnatural reconstructed image data between frames. . Note that, when performing analysis, an error between frames can be reduced by using a window function. However, even in this case, the original signal cannot be obtained when the image data is reconstructed. In other words, in the extrapolation method to which the conventional frequency analysis method such as FFT is applied, there is a problem of how to determine the analysis section, that is, which part of the texture image is cut out and analyzed and the frame length. It is very difficult to solve this.
 これに対して、本周波数解析手法を適用したデータ処理装置においては、図11に示すように、元画像データの特徴を損なうことなく、また、フレーム間で誤差が発生することなく、元画像データに基づいた外挿が行われている。また、他の元画像データとして図12における矩形枠線で囲った部分を切り出し、本周波数解析手法を適用したデータ処理装置によって周囲の未知の情報を外挿した場合においても、元画像データの特徴を損なうことなく、また、フレーム間で誤差が発生することなく、元画像データに基づいた外挿を行うことができた。すなわち、データ処理装置においては、いかなるテクスチャ画像であっても、また、テクスチャ画像のどの部分を切り出しても、元画像データの特徴を損なうことなく正確な解析を行うことができ、その未知の情報を外挿する際にもフレーム間で誤差を発生させることがない。なお、上述したように、データ処理装置は、(n,n)のとり得る範囲を、測定領域を超える長さに広げることにより、測定領域外の情報を外挿することができる。図9に示した画像データは、(n,n)が0~1の範囲の値であるが、図11に示した画像データは、(n,n)が-1~2の範囲で再構成した結果である。 On the other hand, in the data processing apparatus to which the present frequency analysis method is applied, as shown in FIG. 11, the original image data is not lost without losing the characteristics of the original image data and without generating an error between frames. Extrapolation based on In addition, even when a portion surrounded by a rectangular frame line in FIG. 12 is cut out as other original image data and surrounding unknown information is extrapolated by a data processing apparatus to which the present frequency analysis method is applied, the characteristics of the original image data The extrapolation based on the original image data can be performed without impairing the image quality and without causing an error between frames. In other words, the data processing apparatus can perform accurate analysis without damaging the characteristics of the original image data, regardless of what texture image or any portion of the texture image is cut out. No error is generated between frames when extrapolating. As described above, the data processing apparatus can extrapolate information outside the measurement region by extending the range that (n 1 , n 2 ) can take beyond the measurement region. The image data shown in FIG. 9 has a value in the range of (n 1 , n 2 ) from 0 to 1, whereas the image data shown in FIG. 11 has a value of (n 1 , n 2 ) from −1 to 2. It is the result of restructuring by range.
 また、本願発明者は、本周波数解析手法を適用した場合において、上述した図3中ステップS3における低周波数成分の除去及びステップS4におけるダイナミックレンジの拡張による影響についても調べた。 In addition, when the present frequency analysis method is applied, the inventor of the present application also examined the influence of the removal of the low frequency component in step S3 in FIG. 3 and the expansion of the dynamic range in step S4.
 図13(a)に、図9に示したものと同一の140ピクセル×140ピクセルからなる元画像データを示す。この元画像データを本周波数解析手法によって解析して抽出した50本のスペクトルに基づいて再構成した画像データは、図13(b)に示すように、高周波数成分が不足してリンギングが発生したものとなる。 FIG. 13A shows the same original image data consisting of 140 pixels × 140 pixels as shown in FIG. Image data reconstructed based on the 50 spectra extracted by analyzing the original image data by the frequency analysis method, as shown in FIG. 13B, lacks high frequency components and ringing occurs. It will be a thing.
 また、図3中ステップS3に示したように、量子化ビット数/2の定数Cを元画像データから差し引いた後に、本周波数解析手法によって解析して抽出した50本のスペクトルに基づいて再構成し、差し引いた定数Cを加算して求めると、図13(c)に示すように、画像のエッジ部分においてリンギングが発生した画像データが得られた。 Further, as shown in step S3 in FIG. 3, after subtracting the constant C of the number of quantization bits / 2 from the original image data, reconstruction is performed based on 50 spectra extracted by analysis by this frequency analysis method. Then, by adding the subtracted constant C, image data in which ringing occurred at the edge portion of the image was obtained as shown in FIG.
 これに対して、図13(c)に示す画像データを再構成する際のダイナミックレンジを拡張した場合には、図13(d)に示すように、リンギングが低減した画像データが得られた。このことから、データ処理装置においては、画像データを再構成する際のダイナミックレンジを拡張することにより、保存する画像データの規格に合わせて丸め込むことができ、周波数解析によって抽出したスペクトルの本数の少なさに起因する高周波数成分の不足によるリンギング、及び、量子化による低周波数成分の除去によるリンギングの双方とも低減した画像データを得ることができることがわかる。 On the other hand, when the dynamic range at the time of reconstructing the image data shown in FIG. 13C is expanded, as shown in FIG. 13D, image data with reduced ringing was obtained. For this reason, in the data processing apparatus, by expanding the dynamic range when reconstructing the image data, it can be rounded according to the standard of the image data to be stored, and the number of spectra extracted by frequency analysis can be reduced. It can be seen that it is possible to obtain image data in which both ringing due to lack of high frequency components due to lack and ringing due to removal of low frequency components by quantization are reduced.
 このように、本周波数解析手法を適用したデータ処理装置は、従来の周波数解析手法の適用ではなし得なかったブロックノイズの発生をなくした外挿処理を行い、大幅に自然な再構成画像データを得ることが可能である。 In this way, the data processing apparatus to which this frequency analysis method is applied performs extrapolation processing that eliminates the generation of block noise that could not be achieved by applying the conventional frequency analysis method, and significantly reconstructed image data is obtained. It is possible to obtain.
 さらに、本願発明者は、「Antonio
Criminisi, Patrick Perez and Kentaro Toyama, “Region Filling and Object Removal by Exemplar-Based Image
Inpainting”, IEEE Trans. on Image Process., Vol.
13, No. 9, 2004年, p.1200-1212」に記載された手法であって広い領域の補間を行う技術として知られている“exemplar based method”アルゴリズムに本周波数解析手法を適用し、その有効性を検証した。
Further, the inventor of the present application stated that “Antonio
Criminisi, Patrick Perez and Kentaro Toyama, “Region Filling and Object Removal by Exemplar-Based Image
Inpainting ”, IEEE Trans. On Image Process., Vol.
13, No. 9, 2004, p.1200-1212 ”, and this frequency analysis method is applied to the“ exemplar based method ”algorithm known as a technique for performing wide area interpolation. The effectiveness was verified.
 ここで、“exemplar based method”アルゴリズムは、図14に示すようなものである。すなわち、“exemplar based method”アルゴリズムは、元データについて選択された補間対象となる領域Ωの初期の輪郭δΩを抽出すると、ステップS21において、t回目の反復処理において輪郭δΩを特定し、優先度P(p)を算出する。なお、“exemplar based method”アルゴリズムにおいては、輪郭δΩが0である場合には一連の処理を終了する。また、優先度P(p)は、画素pの周囲における信頼度情報である信頼度項(confidence term)C(p)と、輪郭δΩに達する等輝度線の強度の関数であるデータ項(data term)D(p)とを用いてP(p)=C(p)D(p)で表され、∀p∈δΩの関係を満たす。 Here, the “exemplar based method” algorithm is as shown in FIG. That is, when the “exemplar based method” algorithm extracts the initial contour δΩ 0 of the region Ω selected as the interpolation target for the original data, the contour δΩ t is identified and prioritized in the t-th iteration in step S21. The degree P (p) is calculated. In the "exemplar based method" algorithm, if the contour [Delta] [omega t is 0 and ends the series of processes. Further, the priority P (p) is a data term (data) that is a function of a confidence term (confidence term) C (p) that is reliability information around the pixel p and the intensity of the isoluminance line reaching the contour δΩ. term) D (p) and P (p) = C (p) D (p), which satisfies the relationship ∀pεδΩ t .
 続いて、“exemplar based method”アルゴリズムは、ステップS22において、最大優先度を有する点p’、すなわち、p’=argmaxp∈δΩt P(p)における正方形のテンプレートであるパッチΨp’を求め、ステップS23において、2つのパッチΨp’,Ψq’間の距離d(Ψp’,Ψq’)を最小化する標本Ψq’∈Φを探索し、ステップS24において、パッチΨq’からパッチΨp’へと画像データをコピーする。なお、∀p∈Ψp’∩Ωの関係を満たす。 Subsequently, in step S22, the “exemplar based method” algorithm obtains a point p ′ having the highest priority, that is, a patch Ψ p ′ that is a square template at p ′ = argmax pεδΩt P (p), In step S23, a sample Ψ q ′ ∈Φ that minimizes the distance d (Ψ p ′ , Ψ q ′ ) between the two patches Ψ p ′ and Ψ q ′ is searched, and in step S24, from the patch Ψ q ′. Copy the image data to the patch Ψ p ′ . Note that the relationship of ∀p∈Ψ p ′ Ω is satisfied.
 そして、“exemplar based method”アルゴリズムは、ステップS25において、∀p∈Ψp’∩Ωとなるように信頼度項C(p)を更新する。“exemplar based method”アルゴリズムは、このような処理をt=T回反復し、情報が欠落した領域を補間した画像データを生成する。 Then, "exemplar based method" algorithm, in step S25, the updated reliability term C a (p) such that ∀p∈Ψ p '∩Ω. The “exemplar based method” algorithm repeats such processing t = T times, and generates image data obtained by interpolating a region lacking information.
 本願発明者は、このような“exemplar based method”アルゴリズムにおけるステップS22乃至ステップS24の処理を本周波数解析手法に代えることにより、本周波数解析手法を適用した広い領域の補間を試みた。 The inventor of the present application tried to interpolate over a wide area by applying this frequency analysis method by replacing the processing of step S22 to step S24 in the “exemplar based method” algorithm with this frequency analysis method.
 図15に示す画像データを加工し、図16中A~Iに示すように、広い領域にわたって情報を欠落させた画像データを作成し、これを元画像データとして入力して処理した。 The image data shown in FIG. 15 was processed to create image data in which information was lost over a wide area, as indicated by A to I in FIG. 16, and this was input and processed as original image data.
 その結果、“exemplar based method”アルゴリズムによって補間した画像データは、図17に示すように、図16中A~Iに示した欠落部分が十分に再現されていないものとなったが、本周波数解析手法を適用して補間した画像データは、図18に示すように、いずれの欠落部分も高精度に再現し、図15に示した画像データに極めて近いものとなった。 As a result, in the image data interpolated by the “exemplar based method” algorithm, as shown in FIG. 17, the missing portions shown in A to I in FIG. 16 are not sufficiently reproduced. As shown in FIG. 18, the image data interpolated by applying the method reproduced any missing portions with high accuracy and became very close to the image data shown in FIG.
 このように、本周波数解析手法を適用したデータ処理装置は、広い領域の補間を行う際にも極めて有効である。 Thus, the data processing apparatus to which the present frequency analysis method is applied is extremely effective when performing interpolation over a wide area.
 [データ処理装置の効果]
 以上説明したように、本周波数解析手法を適用したデータ処理装置は、情報が欠落した部分の形状及び大きさにかかわらず、ブロックノイズを発生させることなく高精度に欠落した情報を広範囲にわたって内挿することができ、内挿後のデータを大幅に自然なものとすることができる。また、データ処理装置は、いかなるテクスチャ画像であっても、また、テクスチャ画像のどの部分を切り出しても、ブロックノイズを発生させることなく高精度に未知の情報を外挿することができる。また、このデータ処理装置は、データの再構成時のダイナミックレンジを拡張することにより、保存するデータの規格に合わせて丸め込むことができることからリンギングを低減することができる。これにより、このデータ処理装置においては、リンギングが除去されたテクスチャ画像を再構成するために少数のスペクトルのみを保持すればよく、周囲の未知の情報を外挿することにより、少ない情報で広範囲のテクスチャ画像を表現することが可能となる。
[Effect of data processing device]
As described above, the data processing apparatus to which this frequency analysis method is applied can interpolate the missing information over a wide range with high accuracy without generating block noise regardless of the shape and size of the missing portion. And can make the data after interpolation much more natural. In addition, the data processing apparatus can extrapolate unknown information with high accuracy without generating block noise regardless of what texture image or any portion of the texture image is cut out. In addition, this data processing device can reduce ringing because it can be rounded in accordance with the standard of data to be stored by extending the dynamic range at the time of data reconstruction. As a result, in this data processing apparatus, only a small number of spectra need be retained in order to reconstruct a texture image from which ringing has been removed. By extrapolating surrounding unknown information, a wide range of information can be obtained with less information. A texture image can be expressed.
 このようなデータ処理装置は、撮像した画像データの「白とび」や「黒つぶれ」等によって失われた未知の情報を周囲の情報又は残りの情報に基づいて高精度に補間する用途に適用して極めて好適であり、また、1色あたり8ビットで表現されている画像を任意のダイナミックレンジに変換することも可能である。したがって、このデータ処理装置は、近年のディジタルカメラ市場の拡大傾向に照らして極めて有益なものである。 Such a data processing apparatus is applied to a purpose of highly accurately interpolating unknown information lost due to “whiteout” or “blackout” of captured image data based on surrounding information or remaining information. It is also possible to convert an image represented by 8 bits per color into an arbitrary dynamic range. Therefore, this data processing apparatus is extremely useful in view of the recent expansion trend of the digital camera market.
 さらに、近年では、映画やゲームの製作等にコンピュータ・グラフィックス技術が欠かせないものとなっており、より現実的なコンピュータ・グラフィックスによる表現が求められている。そのためには、3次元オブジェクト表面に貼り付けられる模様であるテクスチャ等もより現実的なものである必要があり、当該分野の研究が多く行われている。このような背景を考慮すると、本周波数解析手法を適用したデータ処理装置は、3次元モデリングソフトウェアや画像加工ソフトウェア等において用いられるテクスチャを生成する際に、ユーザが、ディジタルカメラ等によって撮像された写真内に含まれる任意の部分を自由に切り出してテクスチャとして3次元オブジェクト表面等に貼り付けて使用するのを可能とし、より現実に近いテクスチャの表現をもたらすことができる。また、このデータ処理装置は、切り出したテクスチャが小さい場合であっても、外挿処理を施すことによって任意の大きさに拡張することができ、任意の面にマッピングすることも可能である。このように、このデータ処理挿装置は、コンピュータ・グラフィックス市場の要求に照らしても極めて有益なものである。 Furthermore, in recent years, computer graphics technology has become indispensable for the production of movies and games, and there is a need for more realistic expression using computer graphics. For this purpose, the texture or the like that is a pattern to be pasted on the surface of the three-dimensional object needs to be more realistic, and much research in this field has been conducted. Considering such a background, a data processing apparatus to which the frequency analysis method is applied is a photograph taken by a user with a digital camera or the like when generating a texture used in 3D modeling software or image processing software. It is possible to freely cut out an arbitrary part included in the image and paste it as a texture on the surface of a three-dimensional object or the like, and to bring a more realistic texture expression. Further, this data processing apparatus can be expanded to an arbitrary size by performing extrapolation processing even when the cut out texture is small, and can be mapped to an arbitrary surface. Thus, this data processing and insertion device is extremely useful in light of the demands of the computer graphics market.
 なお、本発明は、上述した実施の形態に限定されるものではない。例えば、上述した実施の形態では、画像データの内挿処理及び/又は外挿処理について説明したが、本発明は、例えばノイズの混入等によってバーストエラーが生じた音声データを修復する用途等、音声データ等の1次元データは勿論のこと、3次元データである動画像データ等、任意のデータの内挿処理及び/又は外挿処理に適用することができる。 Note that the present invention is not limited to the embodiment described above. For example, in the above-described embodiments, the interpolation processing and / or extrapolation processing of image data has been described. However, the present invention can be applied to audio data such as a purpose of repairing audio data in which a burst error has occurred due to noise mixing. The present invention can be applied to interpolation processing and / or extrapolation processing of arbitrary data such as moving image data that is three-dimensional data as well as one-dimensional data such as data.
 また、本発明は、上述したように、情報が欠落した部分の形状及び大きさにかかわらず内挿による補間を行うことができるが、これは、例えばアナログ信号をディジタル信号に変換して処理を行う場合に、A/D変換器のサンプリング間隔がサンプリングクロックのジッタ等の影響によって不等間隔になった場合であっても高精度に処理を行うことができることを示している。換言すれば、本発明は、安価で精度が低いA/D変換器を用いた場合であっても、高精度に欠落した情報を広範囲にわたって内挿することができ、システムコストの低減に寄与することができる。 In addition, as described above, the present invention can perform interpolation by interpolation regardless of the shape and size of a portion where information is lost. For example, this can be performed by converting an analog signal into a digital signal. In this case, even when the sampling interval of the A / D converter becomes unequal due to the influence of the jitter of the sampling clock, it is shown that the processing can be performed with high accuracy. In other words, the present invention can interpolate the missing information with high accuracy over a wide range even when using an inexpensive A / D converter with low accuracy, and contributes to reduction of system cost. be able to.
 さらに、図3に示した処理においては、抽出したスペクトルを合成しながら処理を進めるものとして説明したが、本発明は、L本全てのスペクトルを抽出した後に、これらを合成してもよく、データの解析及びスペクトルの抽出と、抽出したスペクトルの合成とのタイミングに限定されるものではない。 Furthermore, in the process shown in FIG. 3, it has been described that the process proceeds while synthesizing the extracted spectra, but the present invention may synthesize these after extracting all L spectra, and the data It is not limited to the timing of the analysis and the extraction of the spectrum and the synthesis of the extracted spectrum.
 さらに、上述した実施の形態では、データ処理装置によってソフトウェアによる周波数解析を行うものとして説明したが、本発明は、本周波数解析手法を含むデータ内挿処理及び/又は外挿処理のアルゴリズムを実装したDSP(Digital Signal Processor)等、積和演算を行うことが可能であればハードウェアによっても実現することができる。 Furthermore, in the above-described embodiment, the data processing apparatus has been described as performing frequency analysis by software. However, the present invention implements an algorithm for data interpolation processing and / or extrapolation processing including this frequency analysis method. If a product-sum operation can be performed, such as a DSP (Digital Signal Processor), it can also be realized by hardware.
 このように、本発明は、その趣旨を逸脱しない範囲で適宜変更が可能であることはいうまでもない。 Thus, it goes without saying that the present invention can be modified as appropriate without departing from the spirit of the present invention.

Claims (10)

  1.  各種データを解析して処理するデータ処理方法であって、
     処理対象となる元データをデータ処理装置に入力し、メモリに記憶させるデータ入力工程と、
     前記データ処理装置の演算手段が、前記データ入力工程にて入力されて前記メモリに記憶された前記元データを読み出し、当該元データに基づく任意次元信号と、周波数f’及び初期位相φ’を用いた位相と振幅A’とによって表される正弦波モデル信号との差の二乗和が最小値になるような前記周波数f’、前記振幅A’、及び前記初期位相φ’を、非周期信号のフーリエ変換式のパラメータとして求めてスペクトルを抽出し、抽出したスペクトルに基づいてデータの内挿処理及び/又は外挿処理を行って再構成データを求める内挿及び/又は外挿工程とを備えること
     を特徴とするデータ処理方法。
    A data processing method for analyzing and processing various data,
    A data input step of inputting original data to be processed into a data processing device and storing it in a memory;
    The calculation means of the data processing device reads the original data input in the data input step and stored in the memory, and uses an arbitrary dimension signal based on the original data, the frequency f ′, and the initial phase φ ′. The frequency f ′, the amplitude A ′, and the initial phase φ ′ such that the sum of squares of the difference between the phase and the amplitude A ′ expressed by the phase and the amplitude A ′ is the minimum value are set to An interpolation and / or extrapolation step for obtaining reconstructed data by performing a data interpolation process and / or extrapolation process based on the extracted spectrum and obtaining a spectrum obtained as a Fourier transform parameter. A data processing method characterized by the above.
  2.  前記内挿及び/又は外挿工程では、前記演算手段が、前記メモリから読み出した前記元データに対して欠落した情報に対応するマスクデータをかけ、前記マスクデータをかけたデータの任意次元信号と、周波数f’及び初期位相φ’を用いた位相と振幅A’とによって表される正弦波モデル信号との差の二乗和が最小値になるような前記周波数f’、前記振幅A’、及び前記初期位相φ’を、非周期信号のフーリエ変換式のパラメータとして求めてスペクトルを抽出すること
     を特徴とする請求項1記載のデータ処理方法。
    In the interpolation and / or extrapolation step, the calculation means applies mask data corresponding to the missing information to the original data read from the memory, and an arbitrary dimension signal of the data multiplied by the mask data The frequency f ′, the amplitude A ′, and the sum of squares of the differences between the phase using the frequency f ′ and the initial phase φ ′ and the sinusoidal model signal represented by the amplitude A ′, and The data processing method according to claim 1, wherein a spectrum is extracted by obtaining the initial phase φ 'as a parameter of a Fourier transform formula of an aperiodic signal.
  3.  前記内挿及び/又は外挿工程では、前記演算手段が、前記マスクデータをかけたデータのうち、前記マスクデータの値がゼロではない部分についてスペクトルを抽出すること
     を特徴とする請求項2記載のデータ処理方法。
    The said interpolation means and / or extrapolation process WHEREIN: The said calculating means extracts a spectrum about the part in which the value of the said mask data is not zero among the data which applied the said mask data. Data processing method.
  4.  前記内挿及び/又は外挿工程では、前記演算手段が、抽出したスペクトルによって構成されるデータに対して任意の定数kを乗算してデータのダイナミックレンジを拡張しながらデータの内挿処理及び/又は外挿処理を行い、再構成データを求めること
     を特徴とする請求項1乃至請求項3のうちいずれか1項記載のデータ処理方法。
    In the interpolation and / or extrapolation step, the calculation means multiplies the data constituted by the extracted spectrum by an arbitrary constant k to expand the dynamic range of the data and / or The data processing method according to any one of claims 1 to 3, wherein the reconstruction data is obtained by performing extrapolation processing.
  5.  前記内挿及び/又は外挿工程では、前記演算手段が、前記メモリから読み出した前記元データに基づく任意次元信号から定数Cを差し引いて低周波数成分を量子化によって除去し、前記定数Cが差し引かれたデータについて、前記周波数f’、前記振幅A’、及び前記初期位相φ’を求めてスペクトルを抽出し、抽出したスペクトルに基づいて再構成したデータに対して定数C’を加算して前記再構成データを求めること
     を特徴とする請求項1乃至請求項4のうちいずれか1項記載のデータ処理方法。
    In the interpolation and / or extrapolation step, the calculation means subtracts a constant C from the arbitrary dimension signal based on the original data read from the memory to remove low frequency components by quantization, and subtracts the constant C. For the obtained data, the spectrum is extracted by obtaining the frequency f ′, the amplitude A ′, and the initial phase φ ′, and a constant C ′ is added to the data reconstructed based on the extracted spectrum. The data processing method according to any one of claims 1 to 4, wherein reconstructed data is obtained.
  6.  前記内挿及び/又は外挿工程では、前記演算手段が、前記メモリから読み出した前記元データについて選択された補間対象となる領域の輪郭を特定し、この輪郭に基づいて、前記元データに基づく任意次元信号と、周波数f’及び初期位相φ’を用いた位相と振幅A’とによって表される正弦波モデル信号との差の二乗和が最小値になるような前記周波数f’、前記振幅A’、及び前記初期位相φ’を、非周期信号のフーリエ変換式のパラメータとして求めてスペクトルを抽出すること
     を特徴とする請求項1乃至請求項5のうちいずれか1項記載のデータ処理方法。
    In the interpolation and / or extrapolation step, the calculation means specifies the contour of the region to be interpolated selected for the original data read from the memory, and based on the contour, based on the original data The frequency f ′ and the amplitude such that the sum of squares of the difference between the arbitrary dimension signal and the sine wave model signal represented by the phase using the frequency f ′ and the initial phase φ ′ and the amplitude A ′ becomes a minimum value. The data processing method according to any one of claims 1 to 5, wherein a spectrum is extracted by obtaining A 'and the initial phase φ' as parameters of a Fourier transform equation of an aperiodic signal. .
  7.  前記データは、2次元信号である画像データであること
     を特徴とする請求項1乃至請求項6のうちいずれか1項記載のデータ処理方法。
    The data processing method according to any one of claims 1 to 6, wherein the data is image data that is a two-dimensional signal.
  8.  前記データは、1次元信号である音声データであること
     を特徴とする請求項1乃至請求項6のうちいずれか1項記載のデータ処理方法。
    The data processing method according to any one of claims 1 to 6, wherein the data is audio data which is a one-dimensional signal.
  9.  各種データを解析して処理するデータ処理装置であって、
     処理対象となる元データを入力するデータ入力手段と、
     前記データ入力手段を介して入力された前記元データに基づく任意次元信号と、周波数f’及び初期位相φ’を用いた位相と振幅A’とによって表される正弦波モデル信号との差の二乗和が最小値になるような前記周波数f’、前記振幅A’、及び前記初期位相φ’を、非周期信号のフーリエ変換式のパラメータとして求めてスペクトルを抽出し、抽出したスペクトルに基づいてデータの内挿処理及び/又は外挿処理を行って再構成データを求める演算手段とを備えること
     を特徴とするデータ処理装置。
    A data processing device that analyzes and processes various data,
    Data input means for inputting the original data to be processed;
    The square of the difference between the arbitrary dimension signal based on the original data input via the data input means and the phase and amplitude A ′ using the frequency f ′ and the initial phase φ ′. The spectrum f is extracted by obtaining the frequency f ′, the amplitude A ′, and the initial phase φ ′ such that the sum becomes the minimum value as a parameter of the Fourier transform formula of the aperiodic signal, and data is obtained based on the extracted spectrum. A data processing apparatus comprising: an arithmetic means for performing reconstruction processing and / or extrapolation processing to obtain reconstruction data.
  10.  各種データを解析して内挿するコンピュータ実行可能なデータ処理プログラムであって、
     前記コンピュータを、
     処理対象となる元データを入力するデータ入力手段、及び、
     前記データ入力手段を介して入力された前記元データに基づく任意次元信号と、周波数f’及び初期位相φ’を用いた位相と振幅A’とによって表される正弦波モデル信号との差の二乗和が最小値になるような前記周波数f’、前記振幅A’、及び前記初期位相φ’を、非周期信号のフーリエ変換式のパラメータとして求めてスペクトルを抽出し、抽出したスペクトルに基づいてデータの内挿処理及び/又は外挿処理を行って再構成データを求める演算手段として機能させること
     を特徴とするデータ処理プログラム。
    A computer-executable data processing program that analyzes and interpolates various data,
    The computer,
    Data input means for inputting the original data to be processed; and
    The square of the difference between the arbitrary dimension signal based on the original data input via the data input means and the phase and amplitude A ′ using the frequency f ′ and the initial phase φ ′. The spectrum f is extracted by obtaining the frequency f ′, the amplitude A ′, and the initial phase φ ′ such that the sum becomes the minimum value as a parameter of the Fourier transform formula of the aperiodic signal, and data is obtained based on the extracted spectrum. A data processing program that functions as an arithmetic means for performing reconstruction processing and / or extrapolation processing to obtain reconstruction data.
PCT/JP2011/050534 2010-01-14 2011-01-14 Data processing method, data processing device and data processing program WO2011087083A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010-006234 2010-01-14
JP2010006234A JP2013084019A (en) 2010-01-14 2010-01-14 Data extrapolation method, data extrapolation device, and data extrapolation program
JP2010-007679 2010-01-18
JP2010007679 2010-01-18
JP2010214591 2010-09-25
JP2010-214591 2010-09-25

Publications (1)

Publication Number Publication Date
WO2011087083A1 true WO2011087083A1 (en) 2011-07-21

Family

ID=44304352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050534 WO2011087083A1 (en) 2010-01-14 2011-01-14 Data processing method, data processing device and data processing program

Country Status (1)

Country Link
WO (1) WO2011087083A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104504660A (en) * 2014-12-23 2015-04-08 北京数码大方科技股份有限公司 Data processing method and data processing device used for removing voids in grid model
CN106530223A (en) * 2016-11-28 2017-03-22 清华大学 Fast Fourier ghost imaging method and system based on frequency domain modulation
JPWO2021039180A1 (en) * 2019-08-28 2021-03-04

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1153534A (en) * 1997-07-31 1999-02-26 Sony Corp Method and device for reparing image
WO2009038056A1 (en) * 2007-09-20 2009-03-26 National University Corporation University Of Toyama Signal analysis method, signal analysis device, and signal analysis program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1153534A (en) * 1997-07-31 1999-02-26 Sony Corp Method and device for reparing image
WO2009038056A1 (en) * 2007-09-20 2009-03-26 National University Corporation University Of Toyama Signal analysis method, signal analysis device, and signal analysis program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CRIMINISI, A. ET AL.: "Region filling and object removal by exemplar-based image inpainting", IEEE TRANSACTIONS ON IMAGE PROCESSING, vol. 13, no. 9, September 2004 (2004-09-01), pages 1200 - 1208 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104504660A (en) * 2014-12-23 2015-04-08 北京数码大方科技股份有限公司 Data processing method and data processing device used for removing voids in grid model
CN106530223A (en) * 2016-11-28 2017-03-22 清华大学 Fast Fourier ghost imaging method and system based on frequency domain modulation
CN106530223B (en) * 2016-11-28 2020-01-10 清华大学 Fast Fourier ghost imaging method and system based on frequency domain modulation
JPWO2021039180A1 (en) * 2019-08-28 2021-03-04
WO2021039180A1 (en) * 2019-08-28 2021-03-04 日本電気株式会社 Image processing device, image processing method, and computer-readable recording medium
JP7218812B2 (en) 2019-08-28 2023-02-07 日本電気株式会社 Image processing device, image processing method, and program

Similar Documents

Publication Publication Date Title
US8639056B2 (en) Contrast enhancement
JP6432214B2 (en) Image processing apparatus, image processing method, storage medium, and program
JPH11505350A (en) Image Noise Reduction System Using Wiener Deformation Filter in Pyramid Image Display
JP4776705B2 (en) Image processing apparatus and method
JP2012060517A (en) Image processing apparatus and image processing method
Vishnukumar et al. Single image super-resolution based on compressive sensing and improved TV minimization sparse recovery
JPH08294001A (en) Image processing method and image processing unit
Agrawal et al. Image resolution enhancement using lifting wavelet and stationary wavelet transform
WO2011087083A1 (en) Data processing method, data processing device and data processing program
JP6276596B2 (en) Spatial super-resolution / tone interpolation device and program
JP2019087778A (en) Image restoration filter and learning apparatus
JP6174903B2 (en) Spatial / gradation super-resolution device and program
JP6202725B2 (en) Image difference amount calculation device, image encoding device, and program
KR101341617B1 (en) Apparatus and method for super-resolution based on error model of single image
Ono et al. Optimized JPEG image decompression with super-resolution interpolation using multi-order total variation
JP6532151B2 (en) Super-resolution device and program
JP2002183727A (en) Image processing device
JP2002074356A (en) Method and device for processing picture and recording medium
JP2013084019A (en) Data extrapolation method, data extrapolation device, and data extrapolation program
Thai et al. Image tone mapping approach using essentially non-oscillatory bi-quadratic interpolations combined with a weighting coefficients strategy
JP2011049696A (en) Image processing device, and image processing method
JP5837844B2 (en) Pseudo contour region detection device and program
KR101803065B1 (en) Method and apparatus for processing image
JP2000312294A (en) Image processor
JP2001056856A (en) Method and device for image processing and recording medium

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11732953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP