JPS60254132A - Pattern forming material - Google Patents

Pattern forming material

Info

Publication number
JPS60254132A
JPS60254132A JP59109503A JP10950384A JPS60254132A JP S60254132 A JPS60254132 A JP S60254132A JP 59109503 A JP59109503 A JP 59109503A JP 10950384 A JP10950384 A JP 10950384A JP S60254132 A JPS60254132 A JP S60254132A
Authority
JP
Japan
Prior art keywords
formula
pattern
hydroxyl groups
forming material
silylating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59109503A
Other languages
Japanese (ja)
Other versions
JPH0414782B2 (en
Inventor
Shunichi Fukuyama
俊一 福山
Yasuhiro Yoneda
泰博 米田
Masashi Miyagawa
昌士 宮川
Kota Nishii
耕太 西井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59109503A priority Critical patent/JPS60254132A/en
Priority to EP85303811A priority patent/EP0163538B1/en
Priority to KR1019850003764A priority patent/KR900002364B1/en
Priority to DE8585303811T priority patent/DE3574418D1/en
Publication of JPS60254132A publication Critical patent/JPS60254132A/en
Priority to US06/835,741 priority patent/US4657843A/en
Priority to US07/027,089 priority patent/US4863833A/en
Publication of JPH0414782B2 publication Critical patent/JPH0414782B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To form a pattern good in heat stability by silylating intramolecular hydroxyl groups remaining unreacted after condensation reaction of 3-functional siloxane and removing them to form polysilylsesquioxane. CONSTITUTION:A pattern forming material is prepared by silylating polysilsesquioxane having unreacted hydroxide groups remaining in the molecule represented by formula I (in which R1-R4 are each alkyl, such as methyl, chloromethyl, or ethyl, or aryl, such as phenyl or chlorophenyl), with a silylating agent, such as formula II, X being halogen, to bring the hydroxyl groups of the compd. of formula I into reaction with the halogen of the compd. of formula II and to release them in the form of hydrogen halide. This material can form a thermally stable pattern while retaining high sensitivity, high resolution, etc., of the silicone resin.

Description

【発明の詳細な説明】 本発明はパターン形成材料に関する。本発明は、さらに
詳しく述べると、半導体集積回路(LSI等)、バブル
メモリー素子などの製造における微細なパターンの形成
に有用な、例えば電子線、X線、イオンビーム等の高エ
ネルギー輻射線に感応しかつ熱的に安定であるパターン
形成材料に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to patterning materials. More specifically, the present invention is sensitive to high-energy radiation such as electron beams, The present invention relates to a pattern-forming material which is also thermally stable.

従来の技術 従来、半導体、強誘電体、強磁性体結晶等を用いた各種
のデバイス、例えばLSI、バブルメモリー、弾性表面
波フィルターなどの素子において、極めて微細な回路構
成がなされており、また、これにはパターンF/fi1
μm以下の微細加工技術が必要であることは周知の通り
である。微細加工技術には、大別して、リソグラフィー
技術とエツチング技術とがあり、どちらの技術もめざま
しい進歩をみせている。例えば、リソグラフィー技術は
、光の回折、干渉等による解像性の低下を考慮して、よ
り波長の短い電子線、xtp等を露光源とする技術が実
用化されている。一方、エツチング技術は、リアクティ
ブイオンエツチング、スパッタエツチング等のドライエ
ツチング技術が最近用いられるようになったので、より
高精度でのエツチングが可能である。電子線等の高エネ
ルギー線に感応しかつ耐ドライエ、チング性や解像性に
すぐれたパターン形成材料(レジスト)としてラダー構
造をもったシリコーン樹脂、特にポリシルセスキオキサ
ンが考えられる。
2. Description of the Related Art Conventionally, various devices using semiconductors, ferroelectric materials, ferromagnetic crystals, etc., such as LSIs, bubble memories, surface acoustic wave filters, etc., have extremely fine circuit configurations. For this pattern F/fi1
It is well known that microfabrication technology of micrometers or less is required. Microfabrication technology can be broadly divided into lithography technology and etching technology, and both technologies are showing remarkable progress. For example, in lithography technology, a technology using an electron beam, XTP, or the like having a shorter wavelength as an exposure source has been put into practical use, taking into consideration the reduction in resolution due to light diffraction, interference, and the like. On the other hand, dry etching techniques such as reactive ion etching and sputter etching have recently come into use, making it possible to perform etching with higher precision. Silicone resins with a ladder structure, particularly polysilsesquioxane, are considered as pattern forming materials (resists) that are sensitive to high-energy beams such as electron beams and have excellent dryer resistance, anti-chiking properties, and resolution.

ポリシルセスキオキサンは、一般に、3官能性のシルキ
サンを縮合させて、容易に合成することができる。例え
ば、ポリメチルシルセスキオキサンは、次の反応式で示
されるように、メチルトリクロロシランを加水分解し、
これをさらに縮合させることによって、合成することが
できる:at 0H (I) (n) aH50H30H5(III) ところが、実際には、上式(III)のポリメチルシル
セスキオキサンは得られず、その代りとして、次式によ
り表わされるような、縮合反応に寄与できずに未反応の
ま\分子内に残された水酸基が分子の末端部もしくはそ
れ以外の部位に存在するポリメチルシルセスキオキサン
が得られる:このように未反応の水酸基が分子のラダー
構造内に存在しているシリコーン樹脂は熱硬化性樹脂と
なることができる。したがって、この樹脂は、レジスト
プロセスで被加工層上に塗布して溶剤の蒸発、すなわち
、成膜のために加熱する場合、その加熱によって容易に
硬化し、もはやパターン形成材料として使用し得なくな
る。溶剤の蒸発を低温度で実施することも提案されてい
るが、これでは時間がかかりすぎて好ましくない。上記
したタイプのシリコーン樹脂は、また、熱的に不安定で
あるために、長期間の保存に不向きである。
Polysilsesquioxanes can generally be easily synthesized by condensing trifunctional silxanes. For example, polymethylsilsesquioxane is produced by hydrolyzing methyltrichlorosilane as shown in the following reaction formula.
By further condensing this, it can be synthesized: at 0H (I) (n) aH50H30H5 (III) However, in reality, the polymethylsilsesquioxane of the above formula (III) cannot be obtained; As an alternative, polymethylsilsesquioxane in which the hydroxyl group that cannot contribute to the condensation reaction and remains unreacted within the molecule is present at the terminal end of the molecule or at other sites is used as an alternative. Obtained: A silicone resin in which unreacted hydroxyl groups are present in the molecular ladder structure can become a thermosetting resin. Therefore, when this resin is applied onto a processed layer in a resist process and heated for evaporation of the solvent, that is, for film formation, it is easily hardened by the heating and can no longer be used as a pattern forming material. It has also been proposed to carry out the evaporation of the solvent at low temperatures, but this is undesirably time consuming. Silicone resins of the type described above are also thermally unstable and therefore unsuitable for long-term storage.

以上の説明から理解されるように、3官能性シロキサン
の綜合によって合成したラダー構造のシリコーン樹脂に
は未反応の水酸基が分子内に残され、これが原因となっ
て、レジストプロセスで、その樹脂からなるレジスト液
を被加工層上に塗布した後、溶剤を乾燥したり被加工層
との密着性を高めたりするためにプリベータを行なうと
、その加熱によって容易に樹脂のゲル化が発生し、もは
やレジストとして使用し得なくなる。本発明は、このよ
うな従来のシリコーン樹脂の問題点を解決し、100C
以下のベリベーク温度においても発生することのある未
反応水酸基の縮合反応を完全に防止することができる改
良された熱安定なパターン形成材料を提供しようとする
ものである。
As can be understood from the above explanation, unreacted hydroxyl groups remain in the molecule of silicone resins with a ladder structure synthesized by synthesis of trifunctional siloxanes, and this causes the resin to be removed during the resist process. After applying a resist solution of It becomes unusable as a resist. The present invention solves the problems of conventional silicone resins and
The present invention aims to provide an improved thermally stable pattern forming material that can completely prevent the condensation reaction of unreacted hydroxyl groups that may occur even at veribake temperatures below.

問題点を解決するための手段 本発明者らは、上述の問題点を解決すべく研究の結果、
3官能性シ四キサンの縮合によってラダー構造のシリコ
ーン樹脂であるポリシルセスキオキサンを合成した後、
その分子の末端部及び(又は)それ以外の部位に残存す
る未反応水酸基を適当なシリル化剤、例えばモノハロゲ
ン化シラン、例えばトリメチルクロロシランなどでシリ
ル化することによって除去するのが最良であることを見
い出した。
Means for Solving the Problems As a result of research to solve the above-mentioned problems, the present inventors have found that
After synthesizing polysilsesquioxane, a silicone resin with a ladder structure, by condensation of trifunctional si-tetraxane,
It is best to remove unreacted hydroxyl groups remaining at the terminal end and/or other parts of the molecule by silylation with a suitable silylating agent, such as a monohalogenated silane, such as trimethylchlorosilane. I found out.

本発明において、6官能性シ四キサンの縮合によって得
られるラダー構造のポリシルセスキ:J″キサン、一般
に、次式により表わすことができる:(上式において、 RI R2R6及びR4は互いに同一もしくは異なって
いてもよくかつそれぞれ置換もしくは非置換のアルキル
基、例えばメチル基、クロロメチル基、エチル基など、
又は置換もしくは非置換の了り−ル基、Nえはフェニル
基、クロロフェニル基、トリル基などを表わす。)重量
平均分子量は、好ましくは3000〜10.0000で
ある。
In the present invention, the ladder-structured polysilsesqui:J''xane obtained by condensation of hexafunctional si-tetraxane can be generally represented by the following formula: (In the above formula, RI R2R6 and R4 are the same or different from each other and and each substituted or unsubstituted alkyl group, such as a methyl group, a chloromethyl group, an ethyl group,
or a substituted or unsubstituted teryl group; N represents a phenyl group, a chlorophenyl group, a tolyl group, etc.; ) The weight average molecular weight is preferably 3000 to 10.0000.

本発明によれば、上記式(V)により表わされかつ未反
応水酸基を分子内に有するポリシルセスキオキサンを例
えば次式により表わされるシリル化剤: X H2O−sl−OH3(VD 1J (式中のXはハロゲンである)でシリル化することの結
果、萌者に含まれる水酸基の水素と後者のハロゲンとを
化合させて、ハロゲン化水素の形で脱離させることがで
きる。
According to the present invention, polysilsesquioxane represented by the above formula (V) and having an unreacted hydroxyl group in the molecule is converted into a silylating agent represented by the following formula: X H2O-sl-OH3 (VD 1J ( As a result of the silylation (X in the formula is a halogen), the hydrogen of the hydroxyl group contained in the moe and the halogen of the latter can be combined and eliminated in the form of hydrogen halide.

実施例 以下に記載する実施例は、本発明をさらに説明するため
のものである。
EXAMPLES The examples set forth below serve to further illustrate the invention.

例1: メチルトリクロロシランの加水分解及び縮合を経て、前
記式CTV)により表わされるポリメチルシルセスキオ
キサンを合成した。このポリマーは20000の分子量
を有しかつ、未反応の水酸基を含むので、80C及び1
0分間のプリベータによって硬化してしまった。
Example 1: Polymethylsilsesquioxane represented by the above formula (CTV) was synthesized through hydrolysis and condensation of methyltrichlorosilane. This polymer has a molecular weight of 20,000 and contains unreacted hydroxyl groups, so 80C and 1
It was cured by pre-beta for 0 minutes.

上述のポリメチルシルセスキオキサン10?をトルエン
100Wに溶解し、ピリジン20のを添加し、そしてさ
らにトリメチルクロロシラン1022滴下してシリル化
を実施した。反応’It、60Cで2時間にわたって保
持した。反応完了後、水5(Inを加え、そしてピリジ
ン塩がすべて完全に水層に溶けるまで水洗を繰り返した
。水洗後、沈殿が生成しなくなるまでアセトニトリルを
添加した。得られたシリル化ポリメチルシルセスキオキ
サンは熱的に安定であり、200C’及び1時間のベー
キングによっても全く硬化することがなかった。
Polymethylsilsesquioxane 10 mentioned above? was dissolved in 100W of toluene, 20% of pyridine was added, and 1022% of trimethylchlorosilane was further added dropwise to carry out silylation. The reaction was held at 60C for 2 hours. After the reaction was completed, water 5 (In) was added and water washing was repeated until all the pyridine salt was completely dissolved in the aqueous layer. After water washing, acetonitrile was added until no precipitate was formed. The resulting silylated polymethylsil Sesquioxane was thermally stable and did not harden at all even when baked at 200 C' for 1 hour.

本例で、シリル化反応は次の通りに進行したものと考え
られる: OH5 5i(GH3ン3 上記のようにしてシリル化したポリメチルシルセスキオ
キサン(分子量20000.分散度1,5)のトルエン
溶液を膜厚が0.5μmとなるようにシリコンウェハー
上にスピンコードし、これを窒素気流中で80Cで15
分間にわたって乾燥させた。
In this example, the silylation reaction is considered to have proceeded as follows: OH5i(GH3-3) A toluene solution was spin-coded onto a silicon wafer to a film thickness of 0.5 μm, and this was coated at 80C for 15 minutes in a nitrogen stream.
Allowed to dry for minutes.

乾燥後、シリコンウェハーを電子線露光装置に入れ、加
速電圧20KVの電子線を照射してパターンを描画した
。これを、MよりK現像液を用いて、1分間にわたって
浸漬現像した。0.5μmライン%スペースのパターン
が得られた。感度7. OX10−’O/d0 例2: 前記例1に記載の手法を繰り返した。但し、本例の場合
、未反応の水酸基を末端部に含む低分子量(分子量40
00)のポリメチルシルセスキオキサンを使用した。得
られたシリル化ポリメチルシルセスキオキサンは前記例
1と同様に1500及び1時間のベーキングによっても
全く硬化することがなかった。ちなみに、シリル化前の
それは6DC及び10分間のプリベークによって硬化を
開始した。
After drying, the silicon wafer was placed in an electron beam exposure device, and a pattern was drawn by irradiating the silicon wafer with an electron beam at an acceleration voltage of 20 KV. This was immersed and developed for 1 minute using a M to K developer. A pattern of 0.5 μm line% space was obtained. Sensitivity 7. OX10-'O/d0 Example 2: The procedure described in Example 1 above was repeated. However, in the case of this example, low molecular weight (molecular weight 40
00) polymethylsilsesquioxane was used. The obtained silylated polymethylsilsesquioxane did not harden at all even after baking for 1500 and 1 hour as in Example 1 above. Incidentally, before silylation, curing was initiated by 6DC and prebaking for 10 minutes.

本例で、シリル化反応は次の通りに進行したものと考え
られる: f 0H3Si01.5)−OH十(OH3)3SiO
A上記のようにしてシリル化したポリメチルシルセスキ
オキサン(分子量4000、分散度1.2)のトルエン
溶液を膜厚が0.5μmとなるようにシリコンウェハー
上にスピンコードシ、これを窒素気流中で80Cで15
分間にわたって乾燥させた。
In this example, the silylation reaction appears to have proceeded as follows: f 0H3Si01.5)-OH(OH3)3SiO
A A toluene solution of polymethylsilsesquioxane (molecular weight 4000, dispersity 1.2) silylated as described above was spin-coated onto a silicon wafer so that the film thickness was 0.5 μm, and this was then heated with nitrogen. 15 at 80C in airflow
Allowed to dry for minutes.

乾燥後、シリコンウェハーを電子線露光装置に入れ、加
速電圧20にVの電子線を照射してパターンを描画した
。これをMよりK現像液を用いて、1分間にわたって浸
漬現像した。0.3μmライン番スペースのパターンが
得られた。感度4.0×1o−s O/Cft0 発明の効果 本発明によれば、3官能性シ四キサンの縮合によって得
られるシリコーン樹脂から残存水酸基を除失することが
できるので、そのシリコーン樹脂の高感度、高解像性及
び高耐ドライエツチング性を生かしつつ、熱的に安定な
パターン形成を実施することができる。さらに、本発明
によれば、レジストプルセスにおいて、温度及び時間を
気にせずにレジスト液をプリベークすることができる。
After drying, the silicon wafer was placed in an electron beam exposure device, and a pattern was drawn by irradiating the silicon wafer with an electron beam at an acceleration voltage of 20 V. This was immersed and developed for 1 minute using a M to K developer. A pattern with a 0.3 μm line number space was obtained. Sensitivity: 4.0 x 1 o-s O/Cft0 Effects of the Invention According to the present invention, residual hydroxyl groups can be removed from the silicone resin obtained by condensation of trifunctional siquaxane. A thermally stable pattern can be formed while taking advantage of sensitivity, high resolution, and high dry etching resistance. Further, according to the present invention, the resist solution can be prebaked in the resist process without worrying about temperature and time.

本発明によれば、未反応の水酸基を多く含むシリコーン
樹脂もシリル化後に容易に使用することができる。
According to the present invention, silicone resins containing many unreacted hydroxyl groups can also be easily used after silylation.

Claims (1)

【特許請求の範囲】[Claims] 1.6官能性シ四キサンを縮合させ、該縮合反応後に未
反応のま\残された分子内水酸基をシリル化で除失する
ことによって得たポリシルセスキオキサンからなる、パ
ターン形成材料。 2、 前記シリル化剤がモノハロゲン化シランである、
特許請求の範囲第1項に記載のパターン形成材料。
1. A pattern-forming material consisting of a polysilsesquioxane obtained by condensing a hexafunctional si-tetraxane and removing by silylation the intramolecular hydroxyl groups left unreacted after the condensation reaction. 2. The silylation agent is a monohalogenated silane,
A pattern forming material according to claim 1.
JP59109503A 1984-05-30 1984-05-31 Pattern forming material Granted JPS60254132A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59109503A JPS60254132A (en) 1984-05-31 1984-05-31 Pattern forming material
EP85303811A EP0163538B1 (en) 1984-05-30 1985-05-30 Pattern-forming material and its production and use
KR1019850003764A KR900002364B1 (en) 1984-05-30 1985-05-30 Pattern forming material
DE8585303811T DE3574418D1 (en) 1984-05-30 1985-05-30 Pattern-forming material and its production and use
US06/835,741 US4657843A (en) 1984-05-30 1986-03-03 Use of polysilsesquioxane without hydroxyl group for forming mask
US07/027,089 US4863833A (en) 1984-05-30 1987-03-16 Pattern-forming material and its production and use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59109503A JPS60254132A (en) 1984-05-31 1984-05-31 Pattern forming material

Publications (2)

Publication Number Publication Date
JPS60254132A true JPS60254132A (en) 1985-12-14
JPH0414782B2 JPH0414782B2 (en) 1992-03-13

Family

ID=14511912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59109503A Granted JPS60254132A (en) 1984-05-30 1984-05-31 Pattern forming material

Country Status (1)

Country Link
JP (1) JPS60254132A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62502071A (en) * 1985-03-07 1987-08-13 ヒュ−ズ・エアクラフト・カンパニ− Polysiloxane resists for ion beam and electron beam lithography
JPS63193956A (en) * 1987-02-06 1988-08-11 Nippon Zeon Co Ltd Resin solution composition
JPH02269771A (en) * 1989-04-12 1990-11-05 Shin Etsu Chem Co Ltd Heat-resistant silicone gel composition
JPH0443361A (en) * 1990-06-11 1992-02-13 Fujitsu Ltd Organic silicon polymer resist and production thereof
US8992806B2 (en) 2003-11-18 2015-03-31 Honeywell International Inc. Antireflective coatings for via fill and photolithography applications and methods of preparation thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388099A (en) * 1977-01-14 1978-08-03 Japan Synthetic Rubber Co Ltd Methylpolysiloxane
JPS5550645A (en) * 1978-10-06 1980-04-12 Hitachi Ltd Semiconductor device
JPS56827A (en) * 1979-06-15 1981-01-07 Japan Synthetic Rubber Co Ltd Production of block copolymer
JPS5649540A (en) * 1979-06-21 1981-05-06 Fujitsu Ltd Semiconductor device
JPS5760330A (en) * 1980-09-27 1982-04-12 Fujitsu Ltd Resin composition
JPS5958031A (en) * 1982-09-28 1984-04-03 Fujitsu Ltd Silicone resin and manufacture of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388099A (en) * 1977-01-14 1978-08-03 Japan Synthetic Rubber Co Ltd Methylpolysiloxane
JPS5550645A (en) * 1978-10-06 1980-04-12 Hitachi Ltd Semiconductor device
JPS56827A (en) * 1979-06-15 1981-01-07 Japan Synthetic Rubber Co Ltd Production of block copolymer
JPS5649540A (en) * 1979-06-21 1981-05-06 Fujitsu Ltd Semiconductor device
JPS5760330A (en) * 1980-09-27 1982-04-12 Fujitsu Ltd Resin composition
JPS5958031A (en) * 1982-09-28 1984-04-03 Fujitsu Ltd Silicone resin and manufacture of the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62502071A (en) * 1985-03-07 1987-08-13 ヒュ−ズ・エアクラフト・カンパニ− Polysiloxane resists for ion beam and electron beam lithography
JPS63193956A (en) * 1987-02-06 1988-08-11 Nippon Zeon Co Ltd Resin solution composition
JPH0516466B2 (en) * 1987-02-06 1993-03-04 Nippon Zeon Kk
JPH02269771A (en) * 1989-04-12 1990-11-05 Shin Etsu Chem Co Ltd Heat-resistant silicone gel composition
JPH0443361A (en) * 1990-06-11 1992-02-13 Fujitsu Ltd Organic silicon polymer resist and production thereof
US8992806B2 (en) 2003-11-18 2015-03-31 Honeywell International Inc. Antireflective coatings for via fill and photolithography applications and methods of preparation thereof

Also Published As

Publication number Publication date
JPH0414782B2 (en) 1992-03-13

Similar Documents

Publication Publication Date Title
US4985342A (en) Polysiloxane pattern-forming material with SiO4/2 units and pattern formation method using same
EP0076656B1 (en) Solvent-soluble organopolysilsesquioxanes, processes for producing the same, and compositions and semiconductor devices using the same
EP0231497B1 (en) Silicone resist materials containing polysiloxanes
JP3628098B2 (en) Radiation curable composition and method for producing cured product pattern using the same
US4603195A (en) Organosilicon compound and use thereof in photolithography
US6867325B2 (en) Organosiloxane polymer, photo-curable resin composition, patterning process, and substrate-protecting coat
KR100881544B1 (en) Composition Having Permitivity Being Radiation-Sensitively Changeable and Method for Forming Permitivity Pattern
KR900005404B1 (en) Polysiloxane resist for ion beam and electron beam lithography
JPH09268228A (en) Ultraviolet-curing composition and formation of cured material pattern using the same
KR20100126295A (en) Silsesquioxane resins
JPH06148895A (en) Photosensitive resin composition and pattern forming method using that
JPS60254132A (en) Pattern forming material
JPS6049647B2 (en) Light- or radiation-curable polyorganosiloxane composition
JPS5893240A (en) Semiconductor device and preparation thereof
JP3347936B2 (en) Photocurable organopolysiloxane composition
JPS6260418B2 (en)
JPS62215944A (en) Heat resistant photosensitive resin composition and formation of insulating layer
JPH054421B2 (en)
JPH04289865A (en) Manufacture for wiring structure
JPS6086018A (en) Silicone resin
RU2118964C1 (en) Polyorganosilanes and bilayer positive mask for polyorganosilane-base photolithography
KR900016811A (en) Photosensitive composition
JP2655580B2 (en) Polyorganosilsesquioxane, process for producing the same, and pattern forming material
JP3558369B2 (en) Method for adjusting sensitivity of photosensitive resin composition
JPH0263057A (en) Photosensitive heat resistant resin composition and production of integrated circuit

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term