JPH0414782B2 - - Google Patents

Info

Publication number
JPH0414782B2
JPH0414782B2 JP59109503A JP10950384A JPH0414782B2 JP H0414782 B2 JPH0414782 B2 JP H0414782B2 JP 59109503 A JP59109503 A JP 59109503A JP 10950384 A JP10950384 A JP 10950384A JP H0414782 B2 JPH0414782 B2 JP H0414782B2
Authority
JP
Japan
Prior art keywords
pattern
polymethylsilsesquioxane
silylation
hydroxyl groups
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59109503A
Other languages
Japanese (ja)
Other versions
JPS60254132A (en
Inventor
Shunichi Fukuyama
Yasuhiro Yoneda
Masashi Myagawa
Kota Nishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59109503A priority Critical patent/JPS60254132A/en
Priority to DE8585303811T priority patent/DE3574418D1/en
Priority to KR1019850003764A priority patent/KR900002364B1/en
Priority to EP85303811A priority patent/EP0163538B1/en
Publication of JPS60254132A publication Critical patent/JPS60254132A/en
Priority to US06/835,741 priority patent/US4657843A/en
Priority to US07/027,089 priority patent/US4863833A/en
Publication of JPH0414782B2 publication Critical patent/JPH0414782B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds

Description

【発明の詳細な説明】 産業上の利用分野 本発明はパターン形成材料に関する。本発明
は、さらに詳しく述べると、半導体集積回路
(LSI等)、バブルメモリー素子などの製造におけ
る微細なパターンの形成に有用な、例えば電子
線、X線、イオンビーム等の高エネルギー輻射線
に感応しかつ熱的に安定であるパターン形成材料
に関する。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to pattern-forming materials. More specifically, the present invention is sensitive to high-energy radiation such as electron beams, The present invention relates to a pattern-forming material which is also thermally stable.

従来の技術 従来、半導体、強誘電体、強磁性体結晶等を用
いた各種のデバイス、例えばLSI、バブルメモリ
ー、弾性表面波フイルターなどの素子において、
極めて微細な回路構成がなされており、また、こ
れにはパターン幅1μm以下の微細加工技術が必要
であることは周知の通りである。微細加工技術に
は、大別して、リソグラフイー技術とエツチング
技術とがあり、どちらの技術もめざましい進歩を
みせている。例えば、リソグラフイー技術は、光
の回折、干渉等による解像性の低下を考慮して、
より波長の短い電子線、X線等を露光源とする技
術が実用化されている。一方、エツチング技術
は、リアクテイブイオンエツチング、スパツタエ
ツチング等のドライエツチング技術が最近用いら
れるようになつたので、より高精度でのエツチン
グが可能である。電子線等の高エネルギー線に感
応しかつ耐ドライエツチング性や解像性にすぐれ
たパターン形成材料(レジスト)としてラダー構
造をもつたシリコーン樹脂、特にポリシルセスキ
オキサンが考えられる。
Conventional technology Conventionally, in various devices using semiconductors, ferroelectric materials, ferromagnetic crystals, etc., such as LSIs, bubble memories, surface acoustic wave filters, etc.,
It is well known that the circuit configuration is extremely fine, and that this requires microfabrication technology with a pattern width of 1 μm or less. Microfabrication technology can be broadly divided into lithography technology and etching technology, and both technologies are showing remarkable progress. For example, lithography technology takes into account the reduction in resolution due to light diffraction, interference, etc.
Techniques that use electron beams, X-rays, etc. with shorter wavelengths as exposure sources have been put into practical use. On the other hand, dry etching techniques such as reactive ion etching and sputter etching have recently come into use, making it possible to perform etching with higher precision. Silicone resins with a ladder structure, particularly polysilsesquioxane, are considered as pattern forming materials (resists) that are sensitive to high-energy rays such as electron beams and have excellent dry etching resistance and resolution.

ポリシルセスキオキサンは、一般に、3官能性
のシロキサンを縮合させて、容易に合成すること
ができる。例えば、ポリメチルシルセスキオキサ
ンは、次の反応式で示されるように、メチルトリ
クロロシランを加水分解し、これをされに縮合さ
せることによつて、合成することができる: ところが、実際には、上式()のポリメチル
シルセスキオキサンは得られず、その代りとし
て、次式により表わされるような、縮合反応に寄
与できずに未反応のまゝ分子内に残された水酸基
が分子の末端部もしくはそれ以外の部位に存在す
るポリメチルシルセスキオキサンが得られる。
Polysilsesquioxanes can generally be easily synthesized by condensing trifunctional siloxanes. For example, polymethylsilsesquioxane can be synthesized by hydrolyzing methyltrichlorosilane and condensing it with the following reaction scheme: However, in reality, the polymethylsilsesquioxane of the above formula () cannot be obtained; instead, polymethylsilsesquioxane of the above formula () cannot be obtained and remains unreacted in the molecule, as shown by the following formula, which cannot contribute to the condensation reaction. A polymethylsilsesquioxane in which the hydroxyl group is present at the terminal end of the molecule or at other sites is obtained.

このように未反応の水酸基が分子のラダー構造
内に存在しているシリコーン樹脂は熱硬化性樹脂
となることができる。したがつて、この樹脂は、
レジストプロセスで被加工層上に塗布して溶剤の
蒸発、すなわち、成膜のために加熱する場合、そ
の加熱によつて容易に硬化し、もはやパターン形
成材料として使用し得なくなる。溶剤の蒸発を低
温度で実施することも提案されているが、これで
は時間がかかりすぎて好ましくない。上記したタ
イプのシリコーン樹脂は、また、熱的に不安定で
あるために、長期間の保存に不向きである。
A silicone resin in which unreacted hydroxyl groups are present in the molecular ladder structure can become a thermosetting resin. Therefore, this resin is
When it is applied onto a layer to be processed in a resist process and heated to evaporate the solvent, that is, to form a film, it is easily hardened by the heating and can no longer be used as a pattern forming material. It has also been proposed to carry out the evaporation of the solvent at low temperatures, but this is undesirably time consuming. Silicone resins of the type described above are also thermally unstable and therefore unsuitable for long-term storage.

発明が解決しようとする問題点 以上の説明から理解されるように、3官能性シ
ロキサンの縮合によつて合成したラダー構造のシ
リコーン樹脂には未反応の水酸基が分子内に残さ
れ、これが原因となつて、レジストプロセスで、
その樹脂からなるレジスト液を被加工層上に塗布
した後、溶剤を乾燥したり被加工層との密着性を
高めたりするためにプリベークを行なうと、その
加熱によつて容易に樹脂のゲル化が発生し、もは
やレジストとして使用し得なくなる。本発明は、
このような従来のシリコーン樹脂の問題点を解決
し、100℃以下のペリベーク温度においても発生
することのある未反応水酸基の縮合反応を完全に
防止することができる改良された熱安定なパター
ン形成材料を提供しようとするものである。
Problems to be Solved by the Invention As can be understood from the above explanation, unreacted hydroxyl groups remain in the molecule of silicone resins with a ladder structure synthesized by condensation of trifunctional siloxanes, and this may be the cause. In the resist process,
After applying a resist solution made of the resin onto the layer to be processed, prebaking is performed to dry the solvent and increase adhesion to the layer to be processed, and the heating easily causes the resin to gel. occurs, and it can no longer be used as a resist. The present invention
An improved thermally stable pattern-forming material that solves these problems with conventional silicone resins and completely prevents the condensation reaction of unreacted hydroxyl groups, which can occur even at peribaking temperatures below 100°C. This is what we are trying to provide.

問題点を解決するための手段 本発明者らは、上述の問題点を解決すべく研究
の結果、3官能性シロキサンの縮合によつてラダ
ー構造のシリコーン樹脂であるポリシルセスキオ
キサンを合成した後、その分子の末端部及び(又
は)それ以外の部位に残存する未反応水酸基を適
当なシリル化剤、例えばモノハロゲン化シラン、
例えばトリメチルクロロシランなどでシリル化す
ることによつて除去するのが最良であることを見
い出した。
Means for Solving the Problems As a result of research to solve the above problems, the present inventors synthesized polysilsesquioxane, which is a silicone resin with a ladder structure, by condensation of trifunctional siloxane. After that, the unreacted hydroxyl groups remaining at the terminal end and/or other parts of the molecule are removed using a suitable silylating agent, such as monohalogenated silane,
We have found that it is best removed by silylation, such as with trimethylchlorosilane.

本発明において、3官能性シロキサンの縮合に
よつて得られるラダー構造のポリシルセスキオキ
サンは、一般に、次式により表わすことができ
る: (上式において、 R1,R2,R3及びR4は互いに同一もしくは異な
つていてもよくかつそれぞれ置換もしくは非置換
のアルキル基、例えばメチル基、クロロメチル
基、エチル基など、又は置換もしくは非置換のア
リール基、例えばフエニル基、クロロフエニル
基、トリル基などを表わす。)重量平均分子量は、
好ましくは3000〜100000である。
In the present invention, the ladder-structured polysilsesquioxane obtained by condensation of trifunctional siloxane can generally be represented by the following formula: (In the above formula, R 1 , R 2 , R 3 and R 4 may be the same or different from each other, and each is a substituted or unsubstituted alkyl group, such as a methyl group, a chloromethyl group, an ethyl group, or a substituted or represents an unsubstituted aryl group, such as a phenyl group, chlorophenyl group, tolyl group, etc.) The weight average molecular weight is
Preferably it is 3000-100000.

本発明によれば、上記式()により表わされ
かつ未反応水酸基を分子内に有するポリシルセス
キオキサンを例えば次式により表わされるシリル
化剤: (式中のXはハロゲンである)でシリル化する
ことの結果、前者に含まれる水酸基の水素と後者
のハロゲンとを化合させて、ハロゲン化水素の形
で脱離させることができる。
According to the present invention, a silylating agent represented by the following formula: As a result of silylation with (X in the formula is halogen), the hydrogen of the hydroxyl group contained in the former and the halogen of the latter can be combined and eliminated in the form of hydrogen halide.

実施例 以下に記載する実施例は、本発明をさらに説明
するためのものである。
EXAMPLES The examples set forth below serve to further illustrate the invention.

例 1: メチルトリクロロシランの加水分解及び縮合を
経て、前記式()により表わされるポリメチル
シルセスキオキサンを合成した。このポリマーは
20000の分子量を有しかつ、未反応の水酸基を含
むので、80℃及び10分間のプリベークによつて硬
化してしまつた。
Example 1: Polymethylsilsesquioxane represented by the above formula () was synthesized through hydrolysis and condensation of methyltrichlorosilane. This polymer is
Since it has a molecular weight of 20,000 and contains unreacted hydroxyl groups, it was cured by prebaking at 80°C for 10 minutes.

上述のポリメチルシルセスキオキサン10gをト
ルエン100c.c.に溶解し、ピリジン20c.c.を添加し、
そしてさらにトリメチルクロロシラン10gを滴下
してシリル化を実施した。反応を、60℃で2時間
にわたつて保持した。反応完了後、水50c.c.を加
え、そしてピリジン塩がすべて完全に水層に溶け
るまで水洗を繰り返した。水洗後、沈殿が生成し
なくなるまでアセトニトリルを添加した。得られ
たシリル化ポリメチルシルセスキオキサンは熱的
に安定であり、200℃及び1時間のペーキングに
よつても全く硬化することがなかつた。
Dissolve 10 g of the above polymethylsilsesquioxane in 100 c.c. of toluene, add 20 c.c. of pyridine,
Then, 10 g of trimethylchlorosilane was added dropwise to carry out silylation. The reaction was held at 60°C for 2 hours. After the reaction was completed, 50 c.c. of water was added and water washing was repeated until all the pyridine salt was completely dissolved in the aqueous layer. After washing with water, acetonitrile was added until no precipitate was formed. The obtained silylated polymethylsilsesquioxane was thermally stable and did not harden at all even after paking at 200°C for 1 hour.

本例で、シリル化反応は次の通りに進行したも
のと考えられる: 上記のようにしてシリル化したポリメチルシル
セスキオキサン(分子量20000,分散度1.5)のト
ルエン溶液を膜厚が0.5μmとなるようにシリコン
ウエハー上にスピンコートし、これを窒素気流中
で80℃で15分間にわたつて乾燥させた。乾燥後、
シリコンウエハーを電子線露光装置に入れ、加速
電圧20KVの電子線を照射してパターンを描画し
た。これを、MIBK現像液を用いて、1分間にわ
たつて浸漬現像した。0.5μmライン&スペースの
パターンが得られた。感度7.0×10-6C/cm2
In this example, the silylation reaction appears to have proceeded as follows: A toluene solution of polymethylsilsesquioxane (molecular weight 20,000, dispersity 1.5) silylated as described above was spin-coated onto a silicon wafer to a film thickness of 0.5 μm, and this was coated for 80 min in a nitrogen stream. Dry at ℃ for 15 minutes. After drying,
A silicon wafer was placed in an electron beam exposure device, and a pattern was drawn by irradiating it with an electron beam at an acceleration voltage of 20 KV. This was immersed and developed for 1 minute using MIBK developer. A 0.5 μm line and space pattern was obtained. Sensitivity 7.0×10 -6 C/cm 2 .

例 2: 前記例1に記載の手法を繰り返した。但し、本
例の場合、未反応の水酸基を末端部に含む低分子
量(分子量4000)のポリメチルシルセスキオキサ
ンを使用した。得られたシリル化ポリメチルシル
セスキオキサンは前記例1と同様に150℃及び1
時間のベーキングによつても全く硬化することが
なかつた。ちなみに、シリル化前のそれは60℃及
び10分間のプリベークによつて硬化を開始した。
Example 2: The procedure described in Example 1 above was repeated. However, in the case of this example, low molecular weight (molecular weight 4000) polymethylsilsesquioxane containing unreacted hydroxyl groups at the end was used. The obtained silylated polymethylsilsesquioxane was heated at 150°C and 1°C in the same manner as in Example 1 above.
It did not harden at all even after baking for hours. Incidentally, before silylation, curing was started by prebaking at 60°C for 10 minutes.

本例で、シリル化反応は次の通りに進行したも
のと考えられる: 上記のようにしてシリル化したポリメチルシル
セスキオキサン(分子量4000、分散度1.2)のト
ルエン溶液を膜厚が0.5μmとなるようにシリコン
ウエハー上にスピンコートし、これを窒素気流中
で80℃で15分間にわたつて乾燥させた。乾燥後、
シリコンウエハーを電子線露光装置に入れ、加速
電圧20KVの電子線を照射してパターンを描画し
た。これをMIBK現像液を用いて、1分間にわた
つて浸漬現像した。0.3μmライン&スペースのパ
ターンが得られた。感度4.0×10-5C/cm2
In this example, the silylation reaction appears to have proceeded as follows: A toluene solution of polymethylsilsesquioxane (molecular weight 4000, dispersity 1.2) silylated as described above was spin-coated onto a silicon wafer to a film thickness of 0.5 μm, and this was coated for 80 min in a nitrogen stream. Dry at ℃ for 15 minutes. After drying,
A silicon wafer was placed in an electron beam exposure device, and a pattern was drawn by irradiating it with an electron beam at an acceleration voltage of 20 KV. This was immersed and developed for 1 minute using MIBK developer. A 0.3μm line and space pattern was obtained. Sensitivity 4.0×10 -5 C/cm 2 .

発明の効果 本発明によれば、3官能性シロキサンの縮合に
よつて得られるシリコーン樹脂から残存水酸基を
除去することができるので、そのシリコーン樹脂
の高感度、高解像性及び高耐ドライエツチング性
を生かしつつ、熱的に安定なパターン形成を実施
することができる。さらに、本発明によれば、レ
ジストプロセスにおいて、温度及び時間を気にせ
ずにレジスト液をプリベークすることができる。
本発明によれば、未反応の水酸基を多く含むシリ
コーン樹脂もシリル化後に容易に使用することが
できる。
Effects of the Invention According to the present invention, residual hydroxyl groups can be removed from the silicone resin obtained by condensation of trifunctional siloxane, resulting in high sensitivity, high resolution, and high dry etching resistance of the silicone resin. It is possible to form a thermally stable pattern while taking advantage of the Further, according to the present invention, the resist solution can be prebaked in the resist process without worrying about temperature and time.
According to the present invention, silicone resins containing many unreacted hydroxyl groups can also be easily used after silylation.

Claims (1)

【特許請求の範囲】 1 3官能性シロキサンを縮合させ、該縮合反応
後に未反応のまゝ残された分子内水酸基をシリル
化で除去することによつて得たポリシルセスキオ
キサンからなる、パターン形成材料。 2 前記シリル化剤がモノハロゲン化シランであ
る、特許請求の範囲第1項に記載のパターン形成
材料。
[Scope of Claims] 1 Consisting of a polysilsesquioxane obtained by condensing trifunctional siloxanes and removing by silylation the intramolecular hydroxyl groups left unreacted after the condensation reaction. Pattern-forming material. 2. The pattern forming material according to claim 1, wherein the silylation agent is a monohalogenated silane.
JP59109503A 1984-05-30 1984-05-31 Pattern forming material Granted JPS60254132A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59109503A JPS60254132A (en) 1984-05-31 1984-05-31 Pattern forming material
DE8585303811T DE3574418D1 (en) 1984-05-30 1985-05-30 Pattern-forming material and its production and use
KR1019850003764A KR900002364B1 (en) 1984-05-30 1985-05-30 Pattern forming material
EP85303811A EP0163538B1 (en) 1984-05-30 1985-05-30 Pattern-forming material and its production and use
US06/835,741 US4657843A (en) 1984-05-30 1986-03-03 Use of polysilsesquioxane without hydroxyl group for forming mask
US07/027,089 US4863833A (en) 1984-05-30 1987-03-16 Pattern-forming material and its production and use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59109503A JPS60254132A (en) 1984-05-31 1984-05-31 Pattern forming material

Publications (2)

Publication Number Publication Date
JPS60254132A JPS60254132A (en) 1985-12-14
JPH0414782B2 true JPH0414782B2 (en) 1992-03-13

Family

ID=14511912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59109503A Granted JPS60254132A (en) 1984-05-30 1984-05-31 Pattern forming material

Country Status (1)

Country Link
JP (1) JPS60254132A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986005284A1 (en) * 1985-03-07 1986-09-12 Hughes Aircraft Company Polysiloxane resist for ion beam and electron beam lithography
JPS63193956A (en) * 1987-02-06 1988-08-11 Nippon Zeon Co Ltd Resin solution composition
JPH0660282B2 (en) * 1989-04-12 1994-08-10 信越化学工業株式会社 Heat resistant silicone gel composition
JPH0443361A (en) * 1990-06-11 1992-02-13 Fujitsu Ltd Organic silicon polymer resist and production thereof
US8053159B2 (en) 2003-11-18 2011-11-08 Honeywell International Inc. Antireflective coatings for via fill and photolithography applications and methods of preparation thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388099A (en) * 1977-01-14 1978-08-03 Japan Synthetic Rubber Co Ltd Methylpolysiloxane
JPS5550645A (en) * 1978-10-06 1980-04-12 Hitachi Ltd Semiconductor device
JPS56827A (en) * 1979-06-15 1981-01-07 Japan Synthetic Rubber Co Ltd Production of block copolymer
JPS5649540A (en) * 1979-06-21 1981-05-06 Fujitsu Ltd Semiconductor device
JPS5760330A (en) * 1980-09-27 1982-04-12 Fujitsu Ltd Resin composition
JPS5958031A (en) * 1982-09-28 1984-04-03 Fujitsu Ltd Silicone resin and manufacture of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388099A (en) * 1977-01-14 1978-08-03 Japan Synthetic Rubber Co Ltd Methylpolysiloxane
JPS5550645A (en) * 1978-10-06 1980-04-12 Hitachi Ltd Semiconductor device
JPS56827A (en) * 1979-06-15 1981-01-07 Japan Synthetic Rubber Co Ltd Production of block copolymer
JPS5649540A (en) * 1979-06-21 1981-05-06 Fujitsu Ltd Semiconductor device
JPS5760330A (en) * 1980-09-27 1982-04-12 Fujitsu Ltd Resin composition
JPS5958031A (en) * 1982-09-28 1984-04-03 Fujitsu Ltd Silicone resin and manufacture of the same

Also Published As

Publication number Publication date
JPS60254132A (en) 1985-12-14

Similar Documents

Publication Publication Date Title
KR900002364B1 (en) Pattern forming material
US5041358A (en) Negative photoresist and use thereof
US4603195A (en) Organosilicon compound and use thereof in photolithography
KR100214111B1 (en) Photodelineable coatings from hydrogen silsesquioxane resin
JP2003043682A (en) Radiation sensitive composition with variable dielectric constant and method for varying dielectric constant
KR900005404B1 (en) Polysiloxane resist for ion beam and electron beam lithography
JPH0414782B2 (en)
JPH06148895A (en) Photosensitive resin composition and pattern forming method using that
US5200487A (en) Process for the synthesis of polysilsesquioxanes and application of the compounds obtained
JPS5893240A (en) Semiconductor device and preparation thereof
JP2606321B2 (en) Photosensitive heat-resistant resin composition and method for manufacturing semiconductor device
JPS6086018A (en) Silicone resin
JP2655580B2 (en) Polyorganosilsesquioxane, process for producing the same, and pattern forming material
JPH04289865A (en) Manufacture for wiring structure
JP2705646B2 (en) Fine pattern forming method
JP2572073B2 (en) Pattern forming material
CA1278635C (en) Organosilicon polymer composition and use thereof for photolithography
JP2628597B2 (en) Silicone compound
KR900016811A (en) Photosensitive composition
JP2623780B2 (en) Organosilicon polymer resist composition
JPH0263057A (en) Photosensitive heat resistant resin composition and production of integrated circuit
JPH046563A (en) Material for intermediate layer in three-layer resist and formation of pattern
JPH10209585A (en) Conductive circuit board and manufacturing method thereof
JPS63106649A (en) Pattern forming method
JPH04233544A (en) Resist composition and method for pattern forming

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term