JPS6025391B2 - Method for manufacturing ceramic sheet sintered body - Google Patents
Method for manufacturing ceramic sheet sintered bodyInfo
- Publication number
- JPS6025391B2 JPS6025391B2 JP14498579A JP14498579A JPS6025391B2 JP S6025391 B2 JPS6025391 B2 JP S6025391B2 JP 14498579 A JP14498579 A JP 14498579A JP 14498579 A JP14498579 A JP 14498579A JP S6025391 B2 JPS6025391 B2 JP S6025391B2
- Authority
- JP
- Japan
- Prior art keywords
- porcelain
- sheet
- firing
- raw
- container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Description
【発明の詳細な説明】
本発明はセラミックシート競結体の製造方法に関するも
のであり、特に平滑で高密度なセラミックシート焼結体
を安定に容易に製造のできる方法を提供しようとするも
のである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a ceramic sheet composite body, and in particular, it is an object of the present invention to provide a method that can stably and easily manufacture a smooth, high-density ceramic sheet sintered body. be.
最近、電子部品の分野において、セラミックシートを利
用した応用製品の開発および実用化がさかんに行なわれ
ている。Recently, in the field of electronic components, applied products using ceramic sheets have been actively developed and put into practical use.
そのなかで、セラミックシートの精度向上についての要
求が大きくなっている。そのコスト低減の期待も大きく
なる一方である。従来、用途に応じた所定形状のアルミ
ナ磁器、ジルコニア磁器などの電気絶縁材料や、セラミ
ック共振子、セラミックフィル夕、スピーカ用/ゞィモ
ルフなどの圧電導板素子は、競結体もしくは単結晶を切
断し、それに研磨加工などを施すことによって得られて
いた。ところが、この方法には加工歪みによる電気的特
性の袷化、加工費が高く量産性にかけるなどの問題点が
ある。そして、シート状のセラミック競結体を得ること
も検討され、一部実施されてはいるものの、その平滑性
は十分でなく、研磨加工により寸法精度向上を図らなけ
ればならないのが実情である。特に鉛を含む圧電性シー
ト暁結体の場合、糠絹時における鈴の磁発やシートの収
縮に伴なつて反りが生じ、研磨加工のできないものが多
く発生し、歩留りが低下し、容易に製造できなかった。
そのため、焼成工程におけるさや詰めで生シートの上に
適度の荷重を加えるか、または適度な間隙に生シートを
設置して焼成することにより、反りを減少させる改善が
なされてきた。しかしながら、いずれの方法を採用して
もシート暁結体の反りが大きく、厳しい寸法精度を満し
得るものでなく、そのため研磨工程を除くことができな
いものであり、量産性に乏しい方法であった。本発明は
、これらの問題を解決するもので、容易にかつ安定にセ
ラミックシート焼結体の平滑性を向上させると同時に量
産することができ、かつ歩留りも高く、安価に製造でき
る方法を実現したものである。すなわち、鉛系誘電体セ
ラミックス,アルミナ,ジルコニア,あるいはフェライ
トの原料に有機成分である結合剤、可塑剤および溶媒を
所定量加えて混糠し、泥鰍を作る。Under these circumstances, there is an increasing demand for improving the precision of ceramic sheets. Expectations for cost reduction are also increasing. Conventionally, electrically insulating materials such as alumina porcelain and zirconia porcelain and piezoelectric conductive plate elements such as ceramic resonators, ceramic filters, and speakers/dimorphs are produced by cutting competitive bodies or single crystals into predetermined shapes depending on the application. It was obtained by subjecting it to a polishing process. However, this method has problems such as deterioration of electrical characteristics due to processing distortion and high processing costs that hinder mass production. Although the production of sheet-shaped ceramic compacts has been considered and some efforts have been made, the reality is that the smoothness is not sufficient and dimensional accuracy must be improved by polishing. In particular, in the case of lead-containing piezoelectric sheet compacts, warping occurs due to magnetization of the bell during brazing and shrinkage of the sheet, resulting in many products that cannot be polished, resulting in lower yields and easier processing. Could not be manufactured.
Therefore, improvements have been made to reduce warping by applying an appropriate load on the raw sheet during pod filling in the firing process, or by placing the raw sheet in an appropriate gap and firing. However, no matter which method is used, the sheet crystals are highly warped, unable to meet strict dimensional accuracy, and the polishing process cannot be removed, making these methods difficult to mass-produce. . The present invention solves these problems, and has realized a method that can easily and stably improve the smoothness of ceramic sheet sintered bodies, and at the same time can be mass-produced, has a high yield, and can be manufactured at low cost. It is something. That is, a predetermined amount of organic components such as a binder, a plasticizer, and a solvent are added to raw materials such as lead-based dielectric ceramics, alumina, zirconia, or ferrite and mixed to form a bran.
この泥酸を用いてドクターフレード法により0.05〜
2.0肌の厚みの範囲で目的に応じた一定厚みの生シー
トを作製し、任意の形状に打抜き加工した後、高融点酸
化物(たとえば、酸化ジルコニウム、酸化マグネシウム
、酸化アルミニウム)の粉末を生シートに均一に付着さ
せる。このシートを複数枚頭重ねて反応性の小さい材質
の平滑性のよい敷板上にのせる。生シートの素材が鉛系
またはそれ以外の高温において蒸発する元素を含む場合
には、るつぼをかぶせて電気炉に設置し、生シートに含
有する樹脂を所定の温度で分解した後、所定の温度で焼
成する。無論、蒸発のおそれのないときには、るつぼを
かぶせる必要はない。この焼成において、シート屍給体
を量産するには、積重ねる生シートの枚数をできるだけ
多くすることがコスト的に好ましい。生シートを積重ね
て焼成すると、上部のシート焼結体に比べて下部のシー
ト暁結体の方が反り、量は小さいということが認められ
た。0.05~ by the Dr.Frede method using this muddy acid.
After producing a raw sheet with a certain thickness depending on the purpose within the range of 2.0 skin thickness and punching it into an arbitrary shape, powder of a high melting point oxide (for example, zirconium oxide, magnesium oxide, aluminum oxide) is added. Apply it evenly to the raw sheet. A plurality of these sheets are stacked one on top of the other and placed on a smooth floor plate made of a material with low reactivity. If the raw sheet material contains lead or other elements that evaporate at high temperatures, place it in an electric furnace with a crucible over it, decompose the resin contained in the raw sheet at a predetermined temperature, and then heat it to a predetermined temperature. Fire it with Of course, there is no need to cover the crucible when there is no risk of evaporation. In this firing, in order to mass-produce sheet carcass feeders, it is preferable in terms of cost to stack as many raw sheets as possible. When raw sheets were stacked and fired, it was observed that the lower sheet sintered body warped more than the upper sheet sintered body, and the amount was smaller.
この理由として、生シートの自重で下部のものほど上部
からの総重量により反り量が抑制されるためであると考
えられる。しかしながら、この焼成方法でのシート競結
体は反り量のばらつきが多く、歩留りの低いものである
。発明者は、積重ねたシート焼結体の下部において反り
量が小さいことに着目し、荷重によって反り量を抑えら
れると判断して、一定枚数の生シートを積重ね、さらに
その上に敷板と同材質の板をのせて荷重を加えながら焼
成するという実験を繰り返した。The reason for this is thought to be that the lower the raw sheet is due to its own weight, the more the amount of warping is suppressed due to the total weight from the top. However, the sheet compacts obtained by this firing method have a large variation in the amount of warpage and have a low yield. The inventor noticed that the amount of warping was small at the bottom of the stacked sintered sheets, and determined that the amount of warping could be suppressed by the load, so he stacked a certain number of raw sheets, and then placed a sheet made of the same material as the bottom plate on top of it. The experiment was repeated by placing a board on top of the material and firing it while applying a load.
その結果、積重ねたシート暁結体に反りが発生しない程
度の荷重を加えた場合、反りの発生するものはなくなっ
たが、積重ねたシート暁給体の下層部において融着不良
が発生した。これらの結果から次のことが明らかとなっ
た。すなわち、さや詰め当初から凝結までの過程におい
て積重ねたシ−トに加える荷重を一定にしておく方法で
は、反りおよび融着不良が必ず発生するということであ
る。本発明は、積重ねた生シートに一定の荷重を加えた
状態で焼結するのではなく、鱗絹反応過程におけるシー
トの収縮を積極的に利用し、各温度での収縮率とシート
の強度を考慮した適度な荷重をあらかじめ設定しておき
、焼成の過程でシートの収縮に応じて荷重を自動的に選
ぶことのできる糠成用磁器容器を使用することにより、
シート焼成体の反りや轍着,亀裂などの発生を除去でき
るようにしたものである。As a result, when a load was applied to the stacked sheet material to prevent warping, no warpage occurred, but poor fusion occurred in the lower layer of the stacked sheet material. These results revealed the following. In other words, in a method in which the load applied to the stacked sheets is kept constant during the process from the beginning of filling to setting, warping and failure of fusion will inevitably occur. Rather than sintering stacked raw sheets under a constant load, the present invention actively utilizes sheet contraction during the scale-silk reaction process to adjust the shrinkage rate and sheet strength at each temperature. By using a porcelain container for rice bran formation, a suitable load can be set in advance and the load can be automatically selected according to the shrinkage of the sheet during the firing process.
It is designed to eliminate warping, rutting, cracking, etc. in the fired sheet body.
以下、本発明にかかる方法について、実施例をあげて説
明する。Hereinafter, the method according to the present invention will be explained by giving examples.
〔実施例 1〕
まず、0.992〔Pb(Mg,/3NQ/3)o.側
TiM57Zro.即03〕十0.00約o0の組成の
仮焼粉末を、公知の方法で作成した。[Example 1] First, 0.992[Pb(Mg,/3NQ/3)o. Side TiM57Zro. 03] A calcined powder having a composition of about 10.00 o0 was prepared by a known method.
この仮焼粉末に、結合剤としてポリビニルブチラールを
0.5〜1.の重量%加え、さらに仮焼粉末に対して3
0〜6の重量%のメチルアルコールを加えて、ボールミ
ルを用いて16〜24時間混合して泥鰍を作った。この
泥鰍をポリエステルフィルム上に流し、ドクターブレー
ド法でシート状に成形してから、自然乾燥させて生シー
トを作製した。上述のようにして得られた生シートを、
打抜き成形機を用いて、直径3Q奴0、厚み0.5肋の
円板状に打抜いた。To this calcined powder, 0.5 to 1.0% polyvinyl butyral is added as a binder. In addition, 3% by weight is added to the calcined powder.
Methyl alcohol of 0-6% by weight was added and mixed using a ball mill for 16-24 hours to make mudfish. This mudfish was poured onto a polyester film, formed into a sheet using a doctor blade method, and then air-dried to produce a green sheet. The raw sheet obtained as described above,
Using a punching machine, it was punched out into a disc shape with a diameter of 3Q and a thickness of 0.5 ribs.
円板状の生シートの表面に酸化ジルコニウム粉末を付着
させてから、第1図aに示すように、焼成用敷板3上に
4の女横車ね、それを筒状の焼成用磁器容器2で囲んだ
。この焼成用磁器容器2は、内壁面の上方ほど径が大き
くなるよう段階状に構成されている。なお、図において
、1は積重ねられた円板状の生シートである。生シート
1上には、3枚の径の異なる荷重用磁器板4a,4b,
4cが配置されている。荷重用磁器板4aの直径は70
収め、厚み3肋、重さ350gで、焼成用磁器容器2の
内壁面段部5においてのみ係止されるよう選ばれている
。また、荷重用磁器板4bは直径6仇炊ぐ、厚み2柳、
重さ170gで内壁面段部6においてのみ係止され、同
4cは直径50側め、厚み2帆、重さ14雌で容器上面
部7において孫止されるように、それぞれの径が選ばれ
ている。また、焼成用磁器容器2の全葛さは4W肋であ
り、内壁面段部5と内壁面段部6との高さは3肋、内壁
面段部6と内壁面段部7との高さは3柳、内壁面段部7
と焼成用敷板3との高さは34柵になるように構成され
ているものである。第2図の−部破断斜視図に上述の構
造を示す。After attaching zirconium oxide powder to the surface of the disc-shaped green sheet, as shown in Fig. 1a, place a horizontal wheel (4) on a firing base plate 3, and place it in a cylindrical porcelain firing container 2. Surrounded by The firing porcelain container 2 is structured in stages such that the diameter increases toward the top of the inner wall surface. In the figure, numeral 1 indicates stacked disc-shaped raw sheets. On the raw sheet 1, there are three load-bearing porcelain plates 4a, 4b, with different diameters.
4c is placed. The diameter of the load porcelain plate 4a is 70
It has a thickness of 3 ribs and a weight of 350 g, and is selected so that it can be locked only at the stepped portion 5 of the inner wall surface of the porcelain container 2 for firing. In addition, the load porcelain plate 4b has a diameter of 6 mm and a thickness of 2 willow.
The respective diameters were selected so that it weighs 170 g and is locked only at the inner wall step 6, and the container 4c has a diameter of 50 mm, a thickness of 2 sails, and a weight of 14 mm, and is locked at the container top section 7. ing. The total height of the firing porcelain container 2 is 4W ribs, the height of the inner wall stepped portion 5 and the inner wall stepped portion 6 is three ribs, and the height of the inner wall stepped portion 6 and the inner wall stepped portion 7 is 4W. Saha 3 willow, inner wall step 7
The height of the firing base plate 3 is 34 fences. The above-mentioned structure is shown in the perspective view cut away at the - part in FIG.
次に、上述のように設置した状態で電気炉にセットし、
通電して、20000/時の昇温速度で400午0まで
高め、その温度を3時間保持して、樹脂抜きをした。そ
れから再び200℃/時の速度で昇温させた。すると、
115000付近で生シートの収縮が始まり、同時にそ
の上に置いた荷重用磁器板4a,4b,4cが下降して
、まずそのうちの最上部の荷重用磁器板4aが、第1図
bに示すように、焼成用磁器容器2の上面部5に係止さ
れた。これにより、シートーには2枚の荷重用磁器板4
b,4cによる荷重が加えられる。さらに温度を上昇さ
せると、シート1の収縮が進行し、荷重用磁器4bが焼
成用磁器容器2の内壁面の段部6にて係止された。13
0000の温度において、シート1は第1図cに示すよ
うになり、荷重用磁器板4cも焼成用磁器容器2の下段
7にて係止され、シートーには荷重用磁器板4a,4b
,4cによる荷重は加わらなくなる。Next, set it in the electric furnace with the installation as described above,
Electricity was applied to raise the temperature to 400:00 at a rate of 20,000/hour, and this temperature was maintained for 3 hours to remove the resin. Then, the temperature was raised again at a rate of 200°C/hour. Then,
At around 115,000, the raw sheet begins to shrink, and at the same time the loading porcelain plates 4a, 4b, and 4c placed above it descend, and the topmost one of them, the loading porcelain plate 4a, begins to shrink as shown in Figure 1b. Then, it was secured to the upper surface portion 5 of the porcelain container 2 for firing. As a result, the seat has two load porcelain plates 4.
Loads b and 4c are applied. When the temperature was further increased, the shrinkage of the sheet 1 progressed, and the load porcelain 4b was locked at the step 6 on the inner wall surface of the porcelain container 2 for firing. 13
At a temperature of 0000, the sheet 1 becomes as shown in FIG.
, 4c is no longer applied.
この状態で2時間保持してから、20000/時の速度
で室温まで冷却させて、焼成を完了した。このように、
焼成過程において、暁結させるべきシートの収縮の度合
に応じて、それに加える荷重を適切に選ぶことによって
、平滑性のよいセラミックシートを得ることができる。This state was maintained for 2 hours and then cooled to room temperature at a rate of 20,000/hour to complete the firing. in this way,
In the firing process, a ceramic sheet with good smoothness can be obtained by appropriately selecting the load to be applied depending on the degree of shrinkage of the sheet to be solidified.
〔実施例 2〕
この実施例では、焼成用磁器容器2として、第3図およ
び第4図に示すように、径が上部ほど大きくなるよう三
つの磁器環状体2a,2b,2cを積重ねて構成したも
のを使用している。[Example 2] In this example, the porcelain container 2 for firing is constructed by stacking three porcelain annular bodies 2a, 2b, and 2c such that the diameter increases toward the top, as shown in FIGS. 3 and 4. I am using the one that I made.
2aは外径10仇肋中、内径65肋少、厚み3肋、2b
は外径100肌め、内径55側め、厚み3肋、2cは外
径10仇仰ぐ、内径45側め、厚み34肋である。2a has an outer diameter of 10 ribs, an inner diameter of 65 ribs, a thickness of 3 ribs, 2b
2C has an outer diameter of 100 mm, an inner diameter of 55 mm, and a thickness of 3 ribs. 2c has an outer diameter of 10 mm, an inner diameter of 45 mm, and a thickness of 34 ribs.
他の構成要素については、実施例1と同じものを使用し
た。まず、PbTi03とP舷の3とが重量比で468
54の割合の組成のPb(Ti,Zr)03仮焼粉末に
、結合剤としてポリビニルブチラールを0.5〜1.の
重量%を加え、さらに仮暁粉末に対して30〜6の重量
%のメチルアルコールを加えて、ボールミルで16〜2
4時間混合して泥※を作製した。この泥凝をポリエステ
ルフィルム上に流し、ドクターブレード法にてシート状
に成形してから、自然乾燥させて、生シートを作製した
。この生シートを打ち抜き成形機を用いて直径3仇舷、
厚み0.5側の円板状に打抜き、円板状生シートの表面
に酸化ジルコニウム粉末を付着させてから、4の女積重
ねた。この生シートーを第3図aに示すように、焼成用
敷板3の上に置き、焼成用磁器容器2で囲んだものであ
る。そして、さらに生シート1上に荷重用磁器板4a,
4b,4cをそれぞれが分離できるように載せた。第4
図はこのときの一部被断斜視図である。図のように戦遣
した状態で電気炉にセットし、通電して20000/時
の速度で35030の温度まで昇温させた。35000
の温度を4時間保持して樹脂抜きを行ない、さらに20
0q0/時で昇温すると、1150oo付近でシート1
の収縮が始まり、第3図bに示すように焼成用磁器容器
2の最上環状体2cに荷重用磁器板4aが係止された。Regarding other components, the same ones as in Example 1 were used. First, the weight ratio of PbTi03 and P3 is 468.
Pb(Ti,Zr)03 calcined powder with a composition of 54% and 0.5 to 1% of polyvinyl butyral as a binder. % by weight, and further added methyl alcohol in an amount of 30 to 6% by weight based on the false light powder, and then milled it in a ball mill to 16 to 2% by weight.
Mud* was prepared by mixing for 4 hours. This mud curd was poured onto a polyester film, formed into a sheet by a doctor blade method, and then air-dried to produce a green sheet. This raw sheet is punched and molded into a shape with a diameter of 3 m,
After punching into a disc shape with a thickness of 0.5 and adhering zirconium oxide powder to the surface of the disc-shaped raw sheet, 4 sheets were stacked. As shown in FIG. 3a, this raw sheet is placed on a baking board 3 and surrounded by a porcelain container 2 for baking. Further, on the raw sheet 1, a load porcelain plate 4a,
4b and 4c were mounted so that they could be separated. Fourth
The figure is a partially cutaway perspective view at this time. It was set in an electric furnace in the state shown in the figure, and electricity was applied to raise the temperature to 35,030 degrees Celsius at a rate of 20,000 degrees/hour. 35000
The temperature was maintained for 4 hours to remove the resin, and then the temperature was maintained for 20
When the temperature is raised at 0q0/hour, sheet 1 reaches around 1150oo.
started to shrink, and the loading porcelain plate 4a was locked to the uppermost annular body 2c of the porcelain firing container 2, as shown in FIG. 3b.
これにより、シート1に対する荷重は荷重用磁器板4b
,4cの重量に軽減する。さらに温度が上昇させると、
シートーの収縮が増し、これに伴って荷重用磁器板4b
,4cが下降して、焼成用磁器容器2の中段環状体2b
荷重用磁器板4bが係止され、シートーに加わる荷重は
荷重用磁器板4cの重量のみに軽減する。さらに昇温し
、130000の温度に達すると、第3図cに示すよう
に、荷重用磁器板4cは焼成用磁器容器2の最下段環状
体2cに係止されて、シートーに加わる荷重は完全に除
去される。この状態で2時間保持した後、降温速度20
0℃/時で室温まで冷却して焼成を終了した。このよう
に焼成過程において暁結体シートの収縮に応じて適度な
荷重を選ぶことによって高平滑なセラミックシートを得
ることができる。この実施例では蚤の連なる環状体を積
重ねて焼成用磁器容器を構成しているが、その環状体の
寸法を適宜選択して組合わせることにより、種々のシー
ト暁結体を作製することができる。As a result, the load on the seat 1 is reduced to the load porcelain plate 4b.
, the weight is reduced to 4c. As the temperature increases further,
The shrinkage of the seat increases, and along with this, the loading porcelain plate 4b
, 4c descend, and the middle annular body 2b of the firing porcelain container 2
The load porcelain plate 4b is locked, and the load applied to the seat is reduced to only the weight of the load porcelain plate 4c. When the temperature increases further and reaches a temperature of 130,000 ℃, the loading porcelain plate 4c is locked to the lowermost annular body 2c of the firing porcelain container 2, and the load applied to the sheet is completely removed. will be removed. After holding this state for 2 hours, the temperature decrease rate is 20
The calcination was completed by cooling to room temperature at 0° C./hour. In this manner, a highly smooth ceramic sheet can be obtained by selecting an appropriate load depending on the shrinkage of the compacted sheet during the firing process. In this example, a porcelain container for firing is constructed by stacking a series of ring-shaped bodies, but by appropriately selecting and combining the dimensions of the ring-shaped bodies, various sheet compacts can be produced. .
本発明の方法を用いることにより、上述したような圧電
性シート以外に磁性体磁器やァルミナ磁器、ジルコニア
磁器などの焼成過程における熱膨張収縮曲線を実験で求
め、焼成過程での収縮率とシート強度に応じた荷重用磁
器板と焼成用磁器容器を雛合せることによって、反り、
融着、亀裂のない高平滑なセラミックシートを得ること
ができる。By using the method of the present invention, the thermal expansion and contraction curves of magnetic porcelain, alumina porcelain, zirconia porcelain, etc., in addition to the piezoelectric sheets described above, during the firing process can be experimentally determined, and the shrinkage rate and sheet strength during the firing process can be determined. By matching the porcelain plate for loading and the porcelain container for firing according to the
A highly smooth ceramic sheet without fusion or cracks can be obtained.
第1図a,b,cは本発明のセラミックシート暁結体の
製造方法の一実施例を説明するための図であり、第2図
は第1図aの構成の一部破断斜視図である。
第3図a,b,cは同じく他の実施例を説明するための
図であり、第4図は第3図aの構成の一部破断斜視図で
ある。1・・・・・・積重ねた生シート、2・・・・・
・焼成用磁器容器、2a,2b,2c・・・・・・磁器
環状体、3・・・・・・敷板、4a,4b,4c・・・
・・・荷重用磁器板、5・・・・・・焼成用磁器容器2
の上面部、6,7…・・・同段部。
第1図第2図
第3図
第3図
第4図Figures 1a, b, and c are diagrams for explaining an embodiment of the method for manufacturing a ceramic sheet crystal body of the present invention, and Figure 2 is a partially cutaway perspective view of the configuration of Figure 1a. be. 3a, b, and c are views for explaining another embodiment, and FIG. 4 is a partially cutaway perspective view of the configuration of FIG. 3a. 1...Stacked raw sheets, 2...
- Porcelain container for firing, 2a, 2b, 2c... Porcelain ring body, 3... Bottom plate, 4a, 4b, 4c...
... Porcelain plate for loading, 5 ... Porcelain container for firing 2
Upper surface part, 6, 7... Same stage part. Figure 1 Figure 2 Figure 3 Figure 3 Figure 4
Claims (1)
に、生シートを複数枚積重ねて配置するとともに、さら
にその上に寸法の異なる複数枚の荷重用磁器板を逆階段
状に積重ねてから、前記生シートを焼成し、焼成時にお
ける生シートの焼結収縮の度合に応じて前記焼成用磁器
容器の内壁面の段階で前記荷重用磁器板を順次分離し、
シートに加わる荷重を減少させることを特徴とするセラ
ミツクシート焼結体の製造方法。 2 筒状の焼成用磁器容器が、寸法の異なる磁器環状体
を複数個積みあげて、内壁面が階段状となるよう構成し
たものであることを特徴とする特許請求の範囲第1項の
セラミツクシート焼結体の製造方法。[Claims] 1. A plurality of green sheets are stacked and arranged in a firing porcelain container whose inner wall surface is structured in stages, and a plurality of loading porcelain plates of different sizes are further placed on top of the raw sheets. After stacking in a reverse stepwise manner, the raw sheets are fired, and the loading porcelain plates are sequentially separated at the stage of the inner wall surface of the porcelain container for firing according to the degree of sintering shrinkage of the raw sheets during firing,
A method for producing a sintered ceramic sheet, characterized by reducing the load applied to the sheet. 2. The ceramic according to claim 1, wherein the cylindrical firing porcelain container is constructed by stacking a plurality of porcelain annular bodies of different sizes so that the inner wall surface is stepped. Method for manufacturing sheet sintered body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14498579A JPS6025391B2 (en) | 1979-11-08 | 1979-11-08 | Method for manufacturing ceramic sheet sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14498579A JPS6025391B2 (en) | 1979-11-08 | 1979-11-08 | Method for manufacturing ceramic sheet sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5669277A JPS5669277A (en) | 1981-06-10 |
JPS6025391B2 true JPS6025391B2 (en) | 1985-06-18 |
Family
ID=15374788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14498579A Expired JPS6025391B2 (en) | 1979-11-08 | 1979-11-08 | Method for manufacturing ceramic sheet sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6025391B2 (en) |
-
1979
- 1979-11-08 JP JP14498579A patent/JPS6025391B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5669277A (en) | 1981-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101176171B (en) | Method for manufacturing thin-film capacitor | |
WO1991009814A1 (en) | Ceramic composition and electronic component made therefrom | |
US5958285A (en) | Sintered piezoelectric ceramic, piezoelectric ceramic device, monolithic piezoelectric ceramic device, and method for producing sintered piezoelectric ceramic | |
KR100546993B1 (en) | Method for producing dielectric ceramic material powder, dielectric ceramic and monolithic ceramic capacitor | |
JP3821524B2 (en) | Sputtering target for dielectric thin film formation | |
JP2008263080A (en) | Method for manufacturing piezoelectric element | |
KR20150003155A (en) | Sputtering target, sputtering target manufacturing method, barium titanate thin film manufacturing method, and thin film capacitor manufacturing method | |
JPS6025391B2 (en) | Method for manufacturing ceramic sheet sintered body | |
JP4432341B2 (en) | Ceramic plate firing method | |
JP2580374B2 (en) | Method for producing composite perovskite type dielectric porcelain powder | |
JPH01266774A (en) | Manufacture of piezoelectric thin board | |
JPS63136677A (en) | Manufacture of piezoelectric ceramics thin plate | |
JPH07237975A (en) | Method for burning ceramics | |
JPH02246105A (en) | Manufacture of ceramic element assembly | |
JP5011066B2 (en) | Method for producing crystal-oriented ceramics | |
JPS608990B2 (en) | Method for manufacturing piezoelectric sintered sheet | |
JPS621351B2 (en) | ||
TW202142518A (en) | Method of manufacturing sintered body and method of manufacturing sputtering target capable of easily manufacturing a sintered body with suppressed cracks | |
JPH03285876A (en) | Roasting method for piezoelectric ceramics | |
JPS6214955B2 (en) | ||
JPS6231512B2 (en) | ||
JPS6059196B2 (en) | Method for firing porcelain molded bodies | |
JP2883896B2 (en) | Manufacturing method of laminated piezoelectric actuator element | |
JPS6048115B2 (en) | Method of manufacturing piezoelectric ceramic substrate | |
JPS58190081A (en) | Sintering method for piezoelectric element |