JPH03285876A - Roasting method for piezoelectric ceramics - Google Patents

Roasting method for piezoelectric ceramics

Info

Publication number
JPH03285876A
JPH03285876A JP2201994A JP20199490A JPH03285876A JP H03285876 A JPH03285876 A JP H03285876A JP 2201994 A JP2201994 A JP 2201994A JP 20199490 A JP20199490 A JP 20199490A JP H03285876 A JPH03285876 A JP H03285876A
Authority
JP
Japan
Prior art keywords
powder
molded body
firing
piezoelectric ceramic
ceramic molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2201994A
Other languages
Japanese (ja)
Inventor
Tokukatsu Matsumoto
松本 徳勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Publication of JPH03285876A publication Critical patent/JPH03285876A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To roast a piezoelectric ceramics molded body without causing deterioration and mutual melt-sticking of the molded body by adding ZnO2 powder to powder having the same component as the piezoelectric ceramics molded body to form a green sheet and interposing either ZnO2 particles having large diameter due to calcination or the formed green sheets between the respective piezoelectric ceramics molded bodies in the case of laminating these molded bodies at a plurality of stages and roasting them. CONSTITUTION:Piezoelectric ceramics molded bodies 1 are laminated on an aluminum plate 3 spread on the bottom of a roasting vessel 2 and sealed by a cover 5 and introduced into a heating furnace and roasted at a high temp. of 1150-1200 deg.C. ZnO2 particles whose particle diameter is made large by calcining treatment or a green sheet 6 described hereunder are placed between the alumina plate 3 and the piezoelectic ceramics molded body 1 placed thereon. The green sheet 6 is formed by mixing ZnO2 powder with powder having the same component as the piezoelectric ceramics molded body. Further the coarse ZnO2 or the green sheets 6 are interposed between the laminated respective molded bodies 1. Thereby the piezoelectric ceramics molded bodies 1 are roasted with good yield without changing the composition thereof and melt-sticking the molded bodies with each other.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は積層型圧電素子などに用いられる圧電セラミッ
クスを焼成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for firing piezoelectric ceramics used in laminated piezoelectric elements and the like.

〔従来の技術〕[Conventional technology]

圧電セラミックス (以下PZTと略称する)は単独で
用いられることもあるが、大きな変位や発生力を得るた
めに、積層型圧電素子としてPZTと内部電極を交互に
積層し、この内部電極を並列接続して一層おきに異なる
極性の電圧を印加し、内部電極に挟まれたPZTを伸縮
させることにより、低電圧で高速な伸縮作用が可能であ
ることから、精密移動装置の微小な位置決めなど、メカ
トロニクスやエレクトロニクスなどの分野における広範
囲な利用が期待されている。
Piezoelectric ceramics (hereinafter abbreviated as PZT) are sometimes used alone, but in order to obtain large displacements and generated forces, PZT and internal electrodes are alternately laminated as a multilayer piezoelectric element, and these internal electrodes are connected in parallel. By applying voltages of different polarities to every other layer and expanding and contracting the PZT sandwiched between internal electrodes, high-speed expansion and contraction is possible with low voltage. It is expected that it will be widely used in fields such as electronics and electronics.

このような積層型圧電素子などに用いられるPZTは、
通常衣のようにして製造される。まず、酸化鉛(PbO
)、二酸化チタンHiL) 、酸化ジルコニラム(Zr
Ox)、五酸化ニオブ(NbzOs)、酸化二、ケル(
NiO)などの酸化物の原料粉を所定の組成となるよう
に秤量配合し、ボールミルを用いてポリビニルアルコー
ル(PVA)などの有機系バインダーと純水を加えて、
24時時間式法で混合した後粉砕する。
PZT used in such laminated piezoelectric elements is
It is usually made like a garment. First, lead oxide (PbO
), titanium dioxide HiL), zirconylum oxide (Zr
Ox), niobium pentoxide (NbzOs), dioxide, Kel (
Weigh and blend raw material powder of oxides such as NiO) to a predetermined composition, add an organic binder such as polyvinyl alcohol (PVA) and pure water using a ball mill,
After mixing in a 24-hour method, it is ground.

次にこれを乾燥して800℃で2時間仮焼し、再度純水
を加えボールミルを用いて96時間粉砕する。
Next, this is dried and calcined at 800° C. for 2 hours, and pure water is added again and pulverized for 96 hours using a ball mill.

次いで再びPVAを添加しスラリー調製を行なって造粒
した後、プレスして圧電セラミックスの成形体を作製す
る。かくして得られた成形体を大気中において1150
〜1200℃で焼成することにより、厚さ500〜70
0JIIlの焼結体としてPZTを得ることができる。
Next, PVA is added again to prepare a slurry and granulate it, followed by pressing to produce a piezoelectric ceramic molded body. The molded body thus obtained was placed in the atmosphere at a temperature of 1150
By firing at ~1200℃, the thickness is 500~70℃.
PZT can be obtained as a sintered body of 0JIIl.

以上のPZTの製造方法のうち、成形体の焼成過程につ
いて、さらに詳しく述べる。この焼成過程は普通状のよ
うにして行なわれる。第8図は圧電セラミックス成形体
1を焼成容器2内で数段に積み重ねてこれを数列に配置
した状態を示した模式断面図である。第8図において、
焼成容器2の底部の敷き板となるアルミナ板3の上に、
5〜10枚の成形体1を順次重ねてゆくが、その際アル
ミナ板3の上に、80メツシユの篩の網目を通過し比表
面積が2.(1+”/g程度の粒径を持つZrO□粉末
4を均一に振りかけ、その上に成形体1を置き、次にZ
r0t粉末4を振りかけた後成形体1を置(という作業
を繰り返し、ZrO,粉末4と成形体1を交互に積み上
げて再上段はZrO,粉末4となるようにしている。こ
のように成形体1の間にZr01粉末4を介在させるの
は、成形体1を焼成後に剥離しやすくするためであり、
成形体1を積み重ねるのは、回の焼成によって得られる
焼結体の収率を増すためである。そして焼成容器2は蓋
5を被せ、図示してない電気炉などを用いて前述の如<
 1150〜1200℃に加熱することにより、焼結体
としてのPZTを同時に多数個得ることができる。
Of the above PZT manufacturing methods, the firing process of the molded body will be described in more detail. This firing process is carried out in a conventional manner. FIG. 8 is a schematic cross-sectional view showing a state in which the piezoelectric ceramic molded bodies 1 are stacked in several stages in the firing container 2 and arranged in several rows. In Figure 8,
On the alumina plate 3 that serves as the bottom plate of the firing container 2,
5 to 10 molded bodies 1 are stacked one after another, and at this time, they are passed through an 80-mesh sieve on the alumina plate 3 so that the specific surface area is 2. (Sprinkle ZrO□ powder 4 having a particle size of about 1+”/g uniformly, place the compact 1 on top of it, and then
After sprinkling r0t powder 4, placing the molded body 1 (this process is repeated, and the ZrO powder 4 and molded body 1 are piled up alternately so that the upper layer is again ZrO and powder 4. In this way, the molded body The reason for interposing the Zr01 powder 4 between the molded bodies 1 and 1 is to make it easier to peel off the molded body 1 after firing.
The purpose of stacking the molded bodies 1 is to increase the yield of the sintered body obtained by multiple firings. Then, the firing container 2 is covered with a lid 5, and heated as described above using an electric furnace or the like (not shown).
By heating to 1150 to 1200°C, a large number of PZT sintered bodies can be obtained at the same time.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、以上の圧電セラミックス成形体の焼成過
程には次のような問題がある。即ち、前述のように焼成
温度が1150〜1200℃と高いために、Zr0t粉
末は成形体に焼き付きまたは溶着を起こし、焼結体の!
IMが困難となるものが生ずること、および圧電セラミ
ックス成形体の構成成分の一部、特にPbなどが蒸発し
やすく、成形体の間に介在するZrOよ粉と反応して、
焼成後のPZTの組成について本来あるべき組成とのず
れを生ずることである。その結果当然のことながら@離
不良は製造歩留まりを低下させ、焼結されたPZTの組
成変化はその緒特性を損なうことになる。
However, the above-described firing process of the piezoelectric ceramic molded body has the following problems. That is, as mentioned above, since the firing temperature is as high as 1,150 to 1,200°C, the Zr0t powder seizes or welds to the molded body, causing damage to the sintered body.
IM becomes difficult in some cases, and some of the constituent components of the piezoelectric ceramic molded body, especially Pb, easily evaporate and react with the ZrO powder interposed between the molded bodies.
The problem is that the composition of PZT after firing differs from the original composition. As a result, as a matter of course, defective @ separation lowers the manufacturing yield, and changes in the composition of the sintered PZT impair its properties.

本発明は上述の点に鑑みてなされたものであり、その目
的は、圧電セラミックス成形体の焼成を行なう際に、焼
成後のPZT間で溶着などを起こすことなく、PZTの
組成ずれも生じない焼成方法を提供することにある。
The present invention has been made in view of the above-mentioned points, and its purpose is to prevent welding between PZT after firing and to prevent compositional deviation of PZT when firing a piezoelectric ceramic molded body. The purpose of the present invention is to provide a firing method.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題を解決するために、本発明の第1の方法は圧
電セラミックス成形体の焼成を行なうに当たって、あら
かじめZrO2粉末を仮焼処理を施し粒径を大きくし、
この仮焼粉を用いて、積み重ねる各圧電セラミックス成
形体の間に挟んで焼成を行なうこと、また第2の方法は
この圧電セラミックス成形体と同じ成分を持つ粉末とZ
r01粉末との混合粉を用いて作製したグリーンシート
を、各圧電セラミックス成形体の間に挟んで焼成を行な
うものである。
In order to solve the above problems, a first method of the present invention involves pre-calcining ZrO2 powder to increase the particle size before firing a piezoelectric ceramic molded body.
Using this calcined powder, it is sandwiched between stacked piezoelectric ceramic molded bodies and fired, and the second method is to use powder having the same components as this piezoelectric ceramic molded body and Z
A green sheet produced using a mixed powder with r01 powder is sandwiched between piezoelectric ceramic molded bodies and fired.

〔作用〕[Effect]

第1の方法では、あらかじめZrO□粉を1250〜1
350℃で仮焼処理シテ、比表面積力0.5〜1.0 
m”7gの範囲にある粒径の大きなZrO,仮焼粉とし
、これを各圧電セラミックス成形体の間に挟んで、圧電
セラミックス成形体との接触に多くの隙間を形成した状
態で焼成することにより、圧電セラミックス成形体の焼
成過程でZr01粉の粒径が小さい場合に、圧電セラミ
ックス成形体との間に点接触部分が多(なって、圧電セ
ラミックス成形体と反応を起こし、溶着や反りを生じ剥
離し難くなるという欠点をなくし、健全なPZT焼結体
を歩留まりよく得ることができる。
In the first method, ZrO□ powder is added in advance to 1250 to 1
Calcination treatment at 350℃, specific surface area force 0.5-1.0
A calcined powder of ZrO with a large particle size in the range of m"7g is sandwiched between each piezoelectric ceramic molded body, and fired in a state where many gaps are formed in contact with the piezoelectric ceramic molded body. Therefore, when the particle size of the Zr01 powder is small during the firing process of the piezoelectric ceramic molded body, there are many point contact areas between the powder and the piezoelectric ceramic molded body (this causes a reaction with the piezoelectric ceramic molded body, causing welding and warping. It is possible to eliminate the drawback that peeling occurs easily and to obtain a healthy PZT sintered body at a high yield.

第2の方法に用いるグリーンシートは、圧電セラミック
ス成形体と同じ成分を持つ粉末と、Zr0t粉末を混合
し、圧電セラミックス成形体を作製する原料より粗い粉
末をつくり、これをグリーンシート状に加工したもので
あり、焼成過程では圧電セラミックス成形体とグリーン
シートが同時に焼結されるが、このとき圧電セラミック
ス成形体より大きな粒径を持つグリーンシートの方は焼
結温度の高いZrot粒子が入り込んでいるために、圧
電セラミックス成形体に比べて焼結に時間がかかり、焼
成容器内の雰囲気をpbに冨むように制御し、圧電セラ
ミックス成形体の焼成中にpb酸成分蒸発するのを抑制
するように働くとともに、圧電セラミックス成形体から
蒸発する成分とグリーンシートとの反応も積極的に行わ
れることがないから、圧電セラミックス成形体の焼成が
完了するまでに互いに焼き付きまたは溶着を起こすこと
もない。
The green sheet used in the second method was made by mixing Zr0t powder with a powder having the same components as the piezoelectric ceramic molded body to create a powder coarser than the raw material used to make the piezoelectric ceramic molded body, and processing this into a green sheet shape. During the firing process, the piezoelectric ceramic molded body and the green sheet are sintered at the same time, but at this time, the green sheet, which has a larger grain size than the piezoelectric ceramic molded body, contains Zrot particles that have a higher sintering temperature. Therefore, sintering takes longer than piezoelectric ceramic molded bodies, and the atmosphere inside the firing container is controlled to be rich in PB, which works to suppress the evaporation of the PB acid component during firing of the piezoelectric ceramic molded body. At the same time, since the components evaporated from the piezoelectric ceramic molded body and the green sheet do not actively react with each other, they do not seize or weld to each other until the piezoelectric ceramic molded body is completely fired.

〔実施例〕〔Example〕

以下本発明を実施例に基づき説明する。 The present invention will be explained below based on examples.

本発明の第1の方法は、圧電セラミックス成形体の焼成
方法自体は基本的に第8図の場合と同じであるから、そ
の点についての説明は省略するが、ここでは便宜上再び
第8図を参照して述べる。第8図において本発明の第1
の方法が従来と異なる所は、比表面積が2.0m”/g
程度の従来のZrOx粉末4をそのまま用いるのではな
く、これをあらかじめ高温で仮焼処理して、比表面積を
さらに小さくしたもの、即ち粒径を大きくしたZr01
仮焼粉4aを用いたことである。
In the first method of the present invention, the method of firing the piezoelectric ceramic molded body itself is basically the same as that shown in FIG. I will refer to it and describe it. In FIG.
The difference between this method and the conventional one is that the specific surface area is 2.0 m”/g.
Rather than using the conventional ZrOx powder 4 as it is, it is calcined at a high temperature in advance to further reduce the specific surface area, that is, Zr01 with a larger particle size.
This is because the calcined powder 4a was used.

Zr01粉末4の仮焼処理は、アルミナ容器などに収容
し、電気炉で1250−1350tの高温に加熱保持す
ることにより行なう、第1図は得られたZrOx仮焼粉
4aの1250℃仮焼処理におけるキープ時間と比表面
積との関係を示す線図である。第1図によればZrOx
仮焼粉4aの比表面積は、キープ時間が約8時間までは
粒径が大きくなる傾向を示すが、それを過ぎると比表面
積の値は0.5〜1.0g+”7gの範囲内で殆ど変化
が見られず、このことは処理温度を1300℃、 13
50℃としても同様の傾向を持つことがわかったので、
本発明の第1の方法に用いるZr0t仮焼粉4aは12
50℃、8時間キープしたものを使用する。このZrO
□仮焼粉4aと圧電セラミックス成形体1とを交互に積
み重ねて焼成するときに、剥離。
The calcination treatment of the Zr01 powder 4 is carried out by storing it in an alumina container or the like and heating and maintaining it at a high temperature of 1250-1350 t in an electric furnace. Figure 1 shows the 1250°C calcination treatment of the obtained ZrOx calcined powder 4a. FIG. 3 is a diagram showing the relationship between keep time and specific surface area in FIG. According to Figure 1, ZrOx
The specific surface area of the calcined powder 4a shows a tendency for the particle size to increase until the keeping time is about 8 hours, but after that, the specific surface area value is almost within the range of 0.5 to 1.0 g + 7 g. No change was observed, which means that the treatment temperature was 1300℃, 13
It was found that the same tendency was observed even at 50℃, so
The Zr0t calcined powder 4a used in the first method of the present invention is 12
Use one kept at 50°C for 8 hours. This ZrO
□Peeling occurs when the calcined powder 4a and the piezoelectric ceramic molded body 1 are alternately stacked and fired.

溶着9反りなどを生じない最適仮焼時間を決定するため
、キープ時間を変えて焼成後の焼結体の状態を調べ、そ
の結果を第1表に示す。
Welding 9 In order to determine the optimum calcination time that does not cause warping, the state of the sintered body after firing was examined by varying the holding time, and the results are shown in Table 1.

第1表 第1表中の○は焼成後のPZTが全て良好、Δは圧電セ
ラミックス成形体1の積み重ね位置により良好なものあ
り、×は不良となったものである。
Table 1 In Table 1, ○ indicates that the PZT after firing was all good, Δ indicates that some were good depending on the stacking position of the piezoelectric ceramic molded bodies 1, and × indicates that the PZT was defective.

第1表かられかるように、剥離、溶着1反りに関してい
ずれも満足するのは、Zr0t粉4aの仮焼キープ時間
を8時間以上としたものである。
As can be seen from Table 1, the Zr0t powder 4a with a calcination keeping time of 8 hours or more satisfies both peeling and welding warpage.

次にこのZrOx仮焼粉4aを用いて圧電セラミックス
成形体lを焼成して得られるPZT焼結体の嵩密度と、
zrO!粉仮焼キープ時間との関係を求め、その結果を
第2図の線図に示す、第2図のように、焼結体の嵩密度
はZrOx粉仮焼キープ時間とともに増えるが、キープ
時間6時間まではZrO2粉の粒径が小さく、嵩密度は
低い値であり、その後、8時間経過後は粒径が大きくな
って焼結体の嵩密度も高くなる。これは第1図の比表面
積との関係とよい対応を示すものである。第3図はこの
焼結体を用いてPZTの圧電特性とZr0t仮焼粉4a
の仮焼キープ時間との関係を示す線図であり、縦軸は電
気機械結合係数(K、)である、第3図の結果からも、
仮焼キープ時間の長い方が良好な圧電特性が得られるこ
とがわかる。
Next, the bulk density of the PZT sintered body obtained by firing the piezoelectric ceramic molded body l using this ZrOx calcined powder 4a,
zrO! The relationship with the powder calcination keeping time was determined and the results are shown in the diagram in Figure 2. As shown in Figure 2, the bulk density of the sintered body increases with the ZrOx powder calcination keeping time, but when the keeping time is 6. Until the time, the particle size of the ZrO2 powder is small and the bulk density is low, and after 8 hours, the particle size becomes large and the bulk density of the sintered body becomes high. This shows good correspondence with the relationship with the specific surface area in FIG. Figure 3 shows the piezoelectric properties of PZT and Zr0t calcined powder 4a using this sintered body.
This is a diagram showing the relationship between calcination keeping time and the vertical axis is the electromechanical coupling coefficient (K,). From the results in Figure 3,
It can be seen that the longer the calcination keeping time, the better the piezoelectric properties can be obtained.

以上のように、圧電セラミックス成形体を焼成する過程
で、成形体の間に介在させるZrO,仮焼粉4aはあら
かじめ仮焼処理を施し、粒径を大きく即ち比表面積を0
.5〜1.ow”7gの範囲に小さくなるようにしてお
き、このZrO,仮焼粉4aを用いることにより、焼成
後の剥離を容易にし溶着や反りを生ずることなく、安定
なPZT焼結体の圧電特性を得ることができる。
As described above, in the process of firing the piezoelectric ceramic molded body, the ZrO and calcined powder 4a interposed between the molded bodies are pre-calcined to increase the particle size, that is, to reduce the specific surface area to 0.
.. 5-1. By using this ZrO and calcined powder 4a, it is possible to easily peel off after firing without causing welding or warping, and to maintain stable piezoelectric properties of the PZT sintered body. Obtainable.

以上のように本発明の第1の方法は、圧電セラミックス
成形体1の焼成過程で、各成形体1の間に介在させるZ
r(h粉末4の粒径が従来のように小さい場合は、各成
形体1とZrO2粉末4の間に点接触部分が多くなって
、成形体1と反応を起こしやすく、溶着や反りを生じ剥
離し難くなるのに対し、Zr(h粉末4を1250〜1
350℃で約8時間仮焼処理して、その粒径を大きくし
たZrO□仮焼粉4aを用いることにより、成形体1と
の間に隙間が多くできて反応し難くなり、溶着などの欠
点を生ずることなく健全なPZT焼結体を得ることがで
きるのである。
As described above, in the first method of the present invention, the Z
r (h If the particle size of the powder 4 is small as in the conventional case, there will be many point contact areas between each molded body 1 and the ZrO2 powder 4, which will easily cause a reaction with the molded body 1, resulting in welding and warping. It becomes difficult to peel off, whereas Zr(h powder 4 is 1250~1
By using the ZrO□ calcined powder 4a, which has been calcined at 350°C for about 8 hours to increase its particle size, there are many gaps between the powder and the molded body 1, making it difficult to react and causing drawbacks such as welding. A healthy PZT sintered body can be obtained without causing any damage.

次に本発明の第2の方法について述べる。第4図は第2
の方法により、焼成容器2内に圧電セラミックス成形体
1を積み重ね配置した状態を示す模式断面図であり、第
8図と共通部分を同一符号で表わしである。第4図が第
8図と異なる所は、各成形体1の間に挟んでこれらの分
離用として用いる材料にあり、第2の方法ではこの材料
として、各成形体1と同じ組成を持つ粉末とZrO□粉
との混合粉から別途作製したグリーンシート6を用いて
いることにある。
Next, the second method of the present invention will be described. Figure 4 is the second
8 is a schematic cross-sectional view showing a state in which piezoelectric ceramic molded bodies 1 are stacked and arranged in a firing container 2 by the method of FIG. The difference between FIG. 4 and FIG. 8 lies in the material used to separate the molded bodies 1 between them. In the second method, this material is a powder having the same composition as each molded body 1. The green sheet 6 is separately prepared from a mixed powder of ZrO□ powder and ZrO□ powder.

グリーンシート6の製造方法は、PZTの原料粉にZr
O2粉を混ぜ、ボールミルを用いて再度粉砕する過程ま
では、既に述べた圧電セラミックス成形体1の場合と同
じであるが、圧電セラミックス成形体1では粉砕時間が
96時間であったのに対し、グリーンシート6を作製す
るときは、粉砕時間を24時間とする。これはグリーン
シート6の方が成形体1に比べて粗い粒子となるように
して、同じ焼成温度に対して成形体1より反応し難くす
るためである。その後は、この混合粉を乾燥して所定量
のトルエンなどの溶媒を加え、さらにPVAを添加し2
4時間混合する。得られたスラリーからドクターブレー
ド法により 300〜500 us厚さのグリーンシー
トを作製することができる。これを成形体1と同じ大き
さの径に打ち抜いて用いるのである。
The method for manufacturing green sheet 6 is to add Zr to PZT raw material powder.
The process of mixing O2 powder and re-pulverizing using a ball mill was the same as in the case of the piezoelectric ceramic molded body 1 described above, but whereas the crushing time was 96 hours for the piezoelectric ceramic molded body 1, When producing the green sheet 6, the crushing time is 24 hours. This is to make the green sheet 6 have coarser particles than the molded body 1, so that it is less likely to react than the molded body 1 at the same firing temperature. After that, this mixed powder is dried, a predetermined amount of a solvent such as toluene is added, and PVA is further added.
Mix for 4 hours. A green sheet with a thickness of 300 to 500 us can be produced from the obtained slurry by a doctor blade method. This is punched out to have the same diameter as the molded body 1 and used.

かくして得られたグリーンシート6を用いて圧電セラミ
ックス成形体1を焼成するとき、グリーンシート6の原
料粉として添加するZrO□粉の最適量を求めるために
、その添加量を変えて、焼成温度に対する成形体lの溶
着状態を調べた。その結果を第2表に示す。
When firing the piezoelectric ceramic molded body 1 using the green sheet 6 obtained in this way, in order to find the optimal amount of ZrO□ powder to be added as the raw material powder of the green sheet 6, the amount added is varied and The welding state of the molded body I was examined. The results are shown in Table 2.

第2表 第2表中の○は焼成後のPZTが全て剥離し、Δは剥離
するものもあり、×はいずれも焼き付きまたは溶着を起
こしたことを表わすものである。
Table 2 In Table 2, ○ indicates that all of the PZT after firing has peeled off, Δ indicates that some of the PZT has peeled off, and × indicates that seizure or welding has occurred.

第2表かられかるように、焼成温度が1100℃、11
50’C,1200℃のいずれの条件も満足するものは
、ZrO□粉の添加量を30重量九としたものである。
As can be seen from Table 2, the firing temperature was 1100℃, 11
The one that satisfies both the conditions of 50'C and 1200°C is one in which the amount of ZrO□ powder added is 30% by weight.

そこで圧電セラミックス成形体1と同じ組成の原料粉に
、ZrOx粉を30重量2添加して作製したグリーンシ
ート6を用いて圧電セラミックス成形体1を焼成したと
き、得られたPZTとグリーンシート6の焼結後の収縮
率が焼成温度によって如何に変化するかを求め、その結
果を第5図の線図に示す、第5図中曲線(イ)はグリー
ンシート6の収縮率変化1曲線(ロ)はPZTの収縮率
変化を表わす。
Therefore, when the piezoelectric ceramic molded body 1 was fired using the green sheet 6 made by adding 30 weight 2 of ZrOx powder to the raw material powder having the same composition as the piezoelectric ceramic molded body 1, the difference between the obtained PZT and the green sheet 6 How the shrinkage rate after sintering changes depending on the firing temperature is determined, and the results are shown in the diagram in FIG. ) represents the change in shrinkage rate of PZT.

PZTとグリーンシート6の焼結後の収縮率の差があま
り大きいと焼成過程で形状変化などを起こし、健全なP
ZTが得難くなるという心配もあるが、第5図から焼成
温度が低い方では両者の収縮率にある程度の差が生ずる
ものの、焼成温度が高くなるに従ってその差は小さくな
り、実際に圧電セラミックス成形体1を焼成する120
0℃付近では問題ないことがわかった。
If the difference in shrinkage rate after sintering between PZT and green sheet 6 is too large, shape changes may occur during the firing process, resulting in a healthy P
There is a concern that it will be difficult to obtain ZT, but as shown in Figure 5, there is a certain difference in the shrinkage rate between the two at lower firing temperatures, but as the firing temperature increases, the difference becomes smaller, and it is actually difficult to form piezoelectric ceramics. 120 to fire body 1
It was found that there was no problem at around 0°C.

次に第6図は第5図の場合と同じグリーンシート6を用
い、得られたPZTの圧電特性を従来の焼成方法により
作製したPZTの特性との比較で示し、横軸を焼成温度
、縦軸を電気機械結合係数(K、)とする関係線図であ
る。第6図中曲線(イ)は本発明の第2の方法1曲線(
ロ)は従来法により得られた圧電特性を表わす、第6図
のように特性の向上は焼成温度の低い側で大きいが、全
体的に本発明における第2の方法の方が良好な特性が得
られている。
Next, FIG. 6 shows the piezoelectric properties of PZT obtained using the same green sheet 6 as in FIG. It is a relationship diagram in which the axis is the electromechanical coupling coefficient (K,). Curve (A) in FIG. 6 is the second method 1 curve (
B) represents the piezoelectric properties obtained by the conventional method. As shown in Figure 6, the improvement in properties is greater at lower firing temperatures, but overall the second method of the present invention has better properties. It has been obtained.

同様にして第7図は焼成温度と嵩密度の関係を、本発明
の第2の方法と従来法との比較で示した線図であり、第
7図中曲線(イ)は本発明の第2の方法。
Similarly, FIG. 7 is a diagram showing the relationship between firing temperature and bulk density by comparing the second method of the present invention and the conventional method, and the curve (a) in FIG. Method 2.

曲線(ロ)は従来法の嵩密度変化を表わす。焼成温度に
対して嵩密度は両者同様の傾向を持つが、本発明の方が
高い値を保持している。
The curve (b) represents the change in bulk density of the conventional method. The bulk densities tend to be similar to each other with respect to the firing temperature, but the present invention maintains a higher value.

以上、第6図、第7図の結果が得られることは、圧電セ
ラミックス成形体1が焼成される過程で、pb酸成分蒸
発が抑制されてPZTの組成にずれが生じていないこと
を示すものであり、本発明の第2の方法では成形体1の
間にグリーンシート6を介在させているために、焼成過
程では焼成容器中において好都合にPb1Jツチな雰囲
気調整が行われるからである。特に本発明の第2の方法
の場合、焼成過程で圧電セラミックス成形体lとグリー
ンシート6が両方同時に焼結が進行するが、焼結温度の
高いZrO2を持つグリーンシート6に含まれる粒子を
成形体1に含まれる粒子より粗くしであることは、グリ
ーンシート6の方が同じ焼成温度に対して焼結の進行に
時間がかかり、この点で成形体1の焼結後の剥離の容易
さと、PZTの組成ずれ防止のための雰囲気調整との双
方に寄与している。その結果、特性の向上した安定なP
ZTを得ることができる。
The fact that the results shown in FIGS. 6 and 7 are obtained above indicates that the evaporation of the Pb acid component is suppressed during the firing process of the piezoelectric ceramic molded body 1, and no deviation occurs in the composition of PZT. This is because, in the second method of the present invention, since the green sheet 6 is interposed between the molded bodies 1, the atmosphere in the firing container is conveniently adjusted to be Pb1J in the firing process. Particularly in the case of the second method of the present invention, sintering of both the piezoelectric ceramic molded body l and the green sheet 6 progresses simultaneously during the firing process, but the particles contained in the green sheet 6 having ZrO2 having a high sintering temperature are molded. The fact that the green sheet 6 is coarser than the particles contained in the green sheet 1 means that it takes longer for sintering to proceed at the same sintering temperature, and in this respect, it is easier to peel off after sintering the green sheet 6. This contributes to both the atmosphere adjustment and the prevention of PZT composition deviation. As a result, stable P with improved characteristics
ZT can be obtained.

〔発明の効果〕〔Effect of the invention〕

圧電セラミックス成形体を積み重ねて焼成するとき、成
形体同士が溶着するのを防ぐために、各成形体の間にZ
r01粉末を置くという従来法は、溶着の問題だけでな
く焼成後に組成のずれを起こすという点でも不十分であ
ったが、本発明では実施例で述べたように、第1の方法
では従来用いられている粒径の小さいZr01粉末をそ
のまま利用するのではなく、これを高温で仮焼処理して
比表面積を0.5〜1.0m”/g程度の大きな粒径の
ものとし、これを各圧電セラミックス成形体の間に介在
させ、成形体との間に隙間を多くして成形体と反応し難
くさせることにより、溶着を防ぐとともに焼結体の剥離
も容易であり、健全なPZTを得ることができる。
When piezoelectric ceramic molded bodies are stacked and fired, a Z is placed between each molded body to prevent the molded bodies from welding together.
The conventional method of placing r01 powder was insufficient not only because of the problem of welding but also because it caused compositional deviation after firing.However, as described in the examples of the present invention, the first method Rather than using the Zr01 powder with a small particle size as it is, it is calcined at high temperature to make the particle size larger with a specific surface area of about 0.5 to 1.0 m''/g. By interposing the piezoelectric ceramics between each compact and increasing the gap between them and making it difficult to react with the compact, welding can be prevented and the sintered compact can be easily peeled off, ensuring healthy PZT. Obtainable.

また、第2の方法ではZrJ粉末の代わりにグリーンシ
ートを用いており、このグリーンシートは、圧電セラミ
ックス成形体と同じ成分を持つ粉末とZr(h粉末とを
混合し、圧電セラミックス成形体を作製する原料より粗
い粉末としてグリーンシート状に加工したものであるか
ら、焼成過程で圧電セラミックス成形体に比べて焼結速
度が遅(、グリーンシートからもpbが蒸発するので焼
成容器内の雰囲気をpbに富むように制御し、圧電セラ
ミックス成形体とグリーンシートとの反応も起きないか
ら、圧電セラミックス成形体の焼成が完了するまでにこ
れらが互いに焼き付きまたは溶着を起こすこともない、
このように第2の方法では特にグリーンシート状として
用いているために、PZTの剥離が困難となる問題と、
組成がずれるという問題を同時に解決するものである。
In addition, in the second method, a green sheet is used instead of ZrJ powder, and this green sheet is used to create a piezoelectric ceramic molded body by mixing powder with the same components as the piezoelectric ceramic molded body and Zr(h powder). Because it is processed into a green sheet as a powder coarser than the raw material, the sintering speed is slower than that of a piezoelectric ceramic molded body during the firing process. Since there is no reaction between the piezoelectric ceramic molded body and the green sheet, they will not seize or weld to each other until the piezoelectric ceramic molded body is finished firing.
In this way, in the second method, since PZT is used in the form of a green sheet, it is difficult to peel off the PZT.
This simultaneously solves the problem of composition deviation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の方法におけるZrOx粉末の仮
焼キープ時間と比表面積の関係を示す線図、第2図は同
じ< ZrO□粉末の仮焼キープ時間と嵩密度の関係を
示す線図、第3図は同じ< Zr0t粉末の仮焼キープ
時間とPZTの圧電特性の関係を示す線図、第4図は本
発明の第2の方法により焼成容器内に圧電セラミックス
成形体を積み重ね配置した状態を示す模式断面図、第5
図は本発明の第2の方法における焼結後の収縮率変化を
グリーンシートと成形体との比較で示した線図、第6図
はPZTの圧電特性を本発明の第2の方法と従来法との
比較で示した線図、第7図は焼成温度と嵩密度の関係を
本発明の第2の方法と従来法との比較で示した線図、第
8図は従来法により焼成容器内に圧電セラミックス成形
体を積み重ね配置した状態を示す模式断面図である。
Figure 1 is a diagram showing the relationship between the calcination keeping time and specific surface area of ZrOx powder in the first method of the present invention, and Figure 2 is a diagram showing the relationship between the calcination keeping time and bulk density of ZrO□ powder. Figure 3 shows the relationship between the calcination keeping time of Zr0t powder and the piezoelectric properties of PZT, and Figure 4 shows the relationship between the piezoelectric properties of PZT and the calcination keeping time of Zr0t powder. Schematic sectional view showing the arranged state, No. 5
The figure is a diagram showing the change in shrinkage rate after sintering in the second method of the present invention by comparing the green sheet and the molded body. Figure 6 shows the piezoelectric properties of PZT in the second method of the present invention and the conventional method. Figure 7 is a diagram showing the relationship between firing temperature and bulk density in comparison between the second method of the present invention and the conventional method. FIG. 2 is a schematic cross-sectional view showing a state in which piezoelectric ceramic molded bodies are stacked and arranged inside the housing.

Claims (1)

【特許請求の範囲】 1)圧電セラミックス成形体を複数個積み重ねて焼成容
器中に収容し、この焼成容器とともに所定温度に加熱す
ることにより前記圧電セラミックス成形体を焼成するに
当たり、あらかじめ仮焼処理したZrO_2粉を、前記
各圧電セラミックス成形体の間に挟んで前記焼成を行な
うことを特徴とする圧電セラミックスの焼成方法。 2)請求項1の方法において、仮焼処理を8時間以上行
なうことを特徴とする圧電セラミックスの焼成方法。 3)圧電セラミックス成形体を複数個積み重ねて焼成容
器中に収容し、この焼成容器とともに所定温度に加熱す
ることにより前記圧電セラミックス成形体を焼成するに
当たり、前記圧電セラミックス成形体と同じ組成を持つ
粉末とZrO_2粉末との混合粉を用いて成形したグリ
ーンシートを、前記各圧電セラミックス成形体の間に挟
んで前記焼成を行なうことを特徴とする圧電セラミック
スの焼成方法。
[Scope of Claims] 1) A plurality of piezoelectric ceramic molded bodies are stacked and housed in a firing container, and the piezoelectric ceramic molded bodies are heated together with the firing container to a predetermined temperature, so that the piezoelectric ceramic molded bodies are calcined in advance. A method for firing piezoelectric ceramics, characterized in that ZrO_2 powder is sandwiched between the piezoelectric ceramic molded bodies and the firing is performed. 2) A method for firing piezoelectric ceramics according to claim 1, characterized in that the calcination treatment is carried out for 8 hours or more. 3) Powder having the same composition as the piezoelectric ceramic molded body is used when firing the piezoelectric ceramic molded body by stacking a plurality of piezoelectric ceramic molded bodies and storing them in a firing container and heating them together with the firing vessel to a predetermined temperature. A method for firing piezoelectric ceramics, characterized in that the firing is performed by sandwiching a green sheet formed using a mixed powder of ZrO_2 powder and ZrO_2 powder between the piezoelectric ceramic molded bodies.
JP2201994A 1990-03-20 1990-07-30 Roasting method for piezoelectric ceramics Pending JPH03285876A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2-71206 1990-03-20
JP7120690 1990-03-20

Publications (1)

Publication Number Publication Date
JPH03285876A true JPH03285876A (en) 1991-12-17

Family

ID=13453976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2201994A Pending JPH03285876A (en) 1990-03-20 1990-07-30 Roasting method for piezoelectric ceramics

Country Status (1)

Country Link
JP (1) JPH03285876A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06157145A (en) * 1992-11-20 1994-06-03 Sumitomo Metal Mining Co Ltd Method for firing glass ceramic substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06157145A (en) * 1992-11-20 1994-06-03 Sumitomo Metal Mining Co Ltd Method for firing glass ceramic substrate

Similar Documents

Publication Publication Date Title
US8269402B2 (en) BNT-BKT-BT piezoelectric composition, element and methods of manufacturing
US7547401B2 (en) Compositions for high power piezoelectric ceramics
KR100394348B1 (en) Process for producing piezoelectric ceramics
JP2017179416A (en) Piezoelectric ceramic sputtering target, non-lead piezoelectric thin film and piezoelectric thin film element using the same
JP4924169B2 (en) Method for manufacturing piezoelectric element
EP1358137A2 (en) Method for making lead zirconate titanate-based ceramic powder, piezoelectric ceramic and method for making same
US5721464A (en) Piezoelectric element
JP2005154238A (en) Manufacturing method of piezoelectric porcelain composition
KR930002641B1 (en) Ferroelectric ceramics
JP4992192B2 (en) Piezoelectric ceramic manufacturing method and piezoelectric element
JPH10176264A (en) Sputtering target for forming dielectric thin coating
JPH03285876A (en) Roasting method for piezoelectric ceramics
JP2004068073A (en) Electroconductive oxide sintered compact, sputtering target composed of the sintered compact and their production method
JPH11335825A (en) Sputtering target and its production
JP3080277B2 (en) Method for producing bismuth layered compound
JP3802611B2 (en) Piezoelectric material
KR102713086B1 (en) Grain Oriented Piezoelectric Body and Manufacturing Method Thereof
KR101110365B1 (en) Method for manufacturing ferroelectric ceramics
JPH0196973A (en) Manufacture of piezoelectric porcelain
JP3000781B2 (en) Method of firing ceramic compact containing high vapor pressure oxide
JP3914635B2 (en) Manufacturing method of ceramic electronic component
JPH08337423A (en) Production of oxide piezoelectric material
JP3061224B2 (en) Bismuth layered compound polarization method
JPH04114919A (en) Production of multiple perovskite-type dielectric porcelain powder and porcelain capacitor using same
JPS63136677A (en) Manufacture of piezoelectric ceramics thin plate