JPS6214955B2 - - Google Patents

Info

Publication number
JPS6214955B2
JPS6214955B2 JP53050546A JP5054678A JPS6214955B2 JP S6214955 B2 JPS6214955 B2 JP S6214955B2 JP 53050546 A JP53050546 A JP 53050546A JP 5054678 A JP5054678 A JP 5054678A JP S6214955 B2 JPS6214955 B2 JP S6214955B2
Authority
JP
Japan
Prior art keywords
sheet
powder
sintered
sheets
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53050546A
Other languages
Japanese (ja)
Other versions
JPS54140999A (en
Inventor
Ryo Kimura
Hajime Kawamata
Yasutaka Horibe
Osamu Makino
Takashi Shichino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5054678A priority Critical patent/JPS54140999A/en
Publication of JPS54140999A publication Critical patent/JPS54140999A/en
Publication of JPS6214955B2 publication Critical patent/JPS6214955B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は鉛系圧電体材料の製造方法に関するも
ので、平滑で高密度な圧電体シートを製造するこ
とを目的とする。 最近、圧電セラミツクスの応用分野は多岐にわ
たり、高密度化、小型化が急速に進んできた。従
来、用途に応じた所定形状の圧電素子の供給は焼
結体もしくは単結晶のインゴツトを切断、研磨加
工等を施すことによりなされてきたが、加工歪み
による電気的特性の劣化、さらには加工費用が高
くつくという問題が生じている。そのために工程
の簡略化、大量生産等から焼成と同時に所望形状
の素子が安価に供給されることが望まれている。
一般に焼結体シートの製造方法は、セラミツク素
材を結合物質とともに混練し成形して一定厚みの
生シートを作製し、用途に応じた所定形状に打抜
き、これを焼成するという方法が知られている。
しかし焼成後の焼結体シート製品において、焼成
時の収縮に伴つて変形、亀裂、反り、穿孔、空孔
さらには不均質組成が生じ、これが機械的特性や
電気的特性に大きな影響を及ぼすという問題があ
る。高性能、高精度な焼結体シートを得るために
は生シートの密度をできるだけ高くすること、そ
のためには原料粒子径の制御、セラミツク素材に
少量の結合剤、可塑剤を加えて適当量の溶媒で充
分混練し、セラミツク素材の分散をよくするこ
と、さらには厚みが均一で可撓性が十分あつて、
打抜加工が容易で加工歪みが残らないこと等が重
要である。鉛を含む圧電材量では焼成工程におけ
る温度、雰囲気、サヤ詰法等十分検討する必要が
ある。セラミツクスの場合、一般的には高温で焼
結させることが多く、酸化鉛が約800℃以上で蒸
発するために圧電特性の劣化を招く。特にシート
状セラミツクスの場合は、体積に比較して表面積
が大きいために鉛の蒸発が活発に起り、大気中で
シートそのもののみで焼成することが困難であ
る。一方、鉛の蒸発を抑制する方法として素子を
鉛蒸気雰囲気中にて焼成する方法があるが、シー
トを密封状態で保持することはコスト的に好まし
くなくなり、圧電特性上問題がある。 本発明は高密度、高均質でかつ平滑性に優れた
鉛系圧電焼結体シートを安価に製造する方法を提
供するものである。本発明の方法は、高密度でか
つ平滑性のよい生シートを用い、生シートに積層
焼成を可能にするための高温酸化物を均一に塗布
して何段かに積層し、シートの比表面積を下げて
鉛の蒸発を抑制し、密封構造もしくはこれに準じ
た構造で焼成するものであり、本発明の方法によ
れば焼結性が飛躍的に向上し、高密度、高均質で
かつ平滑性に優れた鉛系圧電性焼結体シートが得
られる。 本発明の方法では、鉛系圧電性セラミツクス素
材に有機成分である結合剤、可塑剤、および溶媒
を所定量加えて混練し、この混練物をドクターブ
レード法により、用途に応じて0.05〜2.0mmの一
定厚みを有する高密度生シートを作製し、必要形
状に打抜加工した後、これを高融点酸化物(酸化
ジルコニウム、酸化マグネシウム、酸化アルミニ
ウムの少なくともいずれか)の粉末を充填した容
器に一定枚数を投入する(シートと粉末が良く接
触することが好ましい)。この容器を成形シート
の有機物が変質しない温度に加熱し、振動を与え
る。加熱することによつて有機物の熱可塑性があ
らわれ、シートがやわらかくなり粉末が付着しや
すくなる。これに振動を与えることによつて、シ
ートの帯電と酸化物粉末の機械的なすり込みが行
われ、シート表面に粉末が付着する。このシート
を数枚重ね合わせ、アルミナなどの耐熱性基板上
にのせルツボをかぶせて電気炉に設置する。次
に、樹脂抜きが完了するまで低温度で保持して
後、1150〜1350℃の温度で焼成して一定の冷却速
度で室温まで降温し、焼結体シートを製造する。 本発明の方法で用いる鉛系圧電性セラミツク素
材は、ペロブスカイト型化合物、タングステンブ
ロンズ型化合物からなる単成分系、二成分系、三
成分系のいずれでもよい。有機結合剤としては、
ポリビニルブチラール、ポリビニルアルコール、
ポリ酢酸ビニール、塩化ビニル−酢酸ビニール共
重合体、メチルセルローズ、エチルセルローズ等
があるが、特に接着性からポリ酢酸ビニル、ポリ
ビニルブチラールが好ましい。可塑剤は結合剤に
よつて選択されるが、たとえばフタル酸エステル
系のジブチルフタレート、ジオクチルフタレー
ト、アジピン酸ジオクチル、グリセリン、ポリエ
チレングリコール等が用いられる。生シートの成
形性、加工性、粉末付着量は、結合剤、可塑剤と
もに多いほど好ましいが、焼結体としては高密度
シートが得られないので両者のかね合いで決定す
る必要がある。最適量は各々0.5〜5.0wt%で、溶
媒は水、アルコール、もしくは多価アルコールの
エーテル、エステル系が好ましい。これら電圧性
セラミツク素材、結合剤、可塑剤、および溶媒を
有する泥漿を作る。この泥漿を有機フイルム等の
平滑な基板上に流し、ドクターブレード法にて一
定厚みのシート状に成形し、乾燥して平滑な生シ
ートを作製する。生シートは他の方法、すなわち
押出成形法、ロール圧延法を用いて作製してもよ
い。次に生シートを所望の形状に打抜く。打抜か
れた生シートは有機成分を含むため静電気を帯電
しやすくなつている。高温酸化物粉末(酸化ジル
コニウム、酸化マグネシウム、酸化アルミニウ
ム)は耐火物用レンガ、焼成用シキ粉材料として
用いられ、熱的に安定な材料で帯電物に付着す
る。帯電圧と付着量及び付着可能粒子径は比例関
係にある。又シートを摩擦することによつて帯電
するためシート同士が重なり合い、その間に粉末
が存在する時付着する。静電気のみによる付着だ
けでは帯電圧を高くする必要があり、シート同士
がくつついてはがれないといつた欠点もある。そ
のために、できるだけ低い帯電圧で付着させるこ
とが望ましい。振動を用いて付着する方法に加え
て、生シートを加熱するとシートに含まれる有機
結合剤、可塑剤が熱可塑性を有しているため軟化
してくる。軟化した生シートには粉末が付着しや
すくなる。これらを併用することによつて焼成時
において圧電材料では粉末を十分付着させ鉛の蒸
発が800℃より起るのでシート同士が融着する。
付着した粉末は不活性であるため融着を防ぎ、焼
成後のハクリ性を容易にする。粉末を付着させた
生シートを積層し、電気炉内に設置する。予備焼
成して有機成分を除去した後、1150〜1350℃の温
度で本焼成を行う。この際1150℃よりも低い温度
では充分焼結が起らず、また1350℃よりも高い温
度では組成ずれを起すか又は分解して単相とはな
り得ない。本焼成が終われば適当な冷却速度で室
温まで冷却して焼結体を炉内より取り出す。本発
明によつて得られた鉛系圧電性焼結体シートは平
滑性がよく、充分なるシート間のハクリ性が得ら
れた。 本発明の方法による鉛系圧電性焼結体シート素
子は積層焼成が可能となり、量産性に富み安価に
供給できるものである。このようにして得られた
素子は圧電性焼結体シート素子はフイルター、圧
電ブザー、ピツクアツプ用エレメント、スピーカ
ー等の用途に有用である。 以下に本発明の実施例について詳述する。 実施例 1 粒子サイズが約1μmでPbTiO3/PbZrO3
46/54の組成比をもつPb(Ti・Zr)O3系の仮焼
原料に第1表に示すところの結合剤、および0.5
重量%のフタル酸ジオクチルを各々加え、仮焼原
料に対して60重量%のメチルアルコールでよく撹
拌混合し、さらにボールミルにて24時間混合して
泥漿を作製した。この泥漿をポリエステルフイル
ム上に流し、ドクターブレード法にてシート状に
成形し自然乾燥して生シートを作製した。 次に、打抜成形機を用いて直径30mmφの円板状
に打抜く。振動機構を有する部品供給装置(以下
パーツフイーダーと称する)内に粒子径約5μm
の酸化ジルコニウム粉末を充填し、下部から加熱
しておきながら装置内に打抜き生シートを投入
し、第1表に示す付着条件にて付着させる。投入
された生シートは振動及び加熱によつて酸化ジル
コニウム粉末が付着する。この生シートを10層に
積層し、99.5%のアルミナ基板上にのせて、炉内
に設置し、まず有機成分を除去した後、第1表に
示すところの焼成条件で本焼成を行つた。焼成
後、室温まで除冷し、焼結体を取り出した。この
シートは生シート時と比較して、径方向に10〜20
%の収縮率を示したが、割れ、反り、穿孔、くつ
つきを生ぜず、平滑性の優れたものであつた。こ
のようにして得られたシートはX線解析の結果ペ
ロブスカイト型構造を有するPb(TiZr)O3系磁
器であり、その電気特性を第1表に示す。第1表
には比較のため、振動及び加熱によつて酸化ジル
コニウム粉末を付着させない従来の方法によつて
作製した焼結体シートの特性を示す。従来の方法
で積層焼結を行なうとシート同士の部分的な反応
による融着が見られ、焼結体シートが完全な形状
では得られなかつた。
The present invention relates to a method for manufacturing a lead-based piezoelectric material, and an object thereof is to manufacture a smooth and high-density piezoelectric sheet. Recently, piezoelectric ceramics have been applied to a wide variety of fields, and their density and miniaturization have rapidly progressed. Conventionally, piezoelectric elements in a predetermined shape according to the application have been supplied by cutting and polishing sintered bodies or single crystal ingots, but this has resulted in deterioration of electrical characteristics due to processing distortion and processing costs. The problem is that it is expensive. For this reason, it is desired that elements having a desired shape can be supplied at low cost at the same time as they are fired through process simplification, mass production, etc.
In general, a known method for manufacturing sintered sheets is to knead ceramic material with a binding substance, mold it, create a green sheet of a certain thickness, punch it into a predetermined shape according to the intended use, and then sinter it. .
However, in sintered sheet products after firing, shrinkage during firing causes deformation, cracks, warping, perforations, pores, and even non-uniform composition, which has a significant impact on mechanical and electrical properties. There's a problem. In order to obtain high-performance, high-precision sintered sheets, it is necessary to increase the density of the raw sheet as much as possible.To do this, it is necessary to control the particle size of the raw material, and to add a small amount of binder and plasticizer to the ceramic material. Thoroughly kneading with a solvent to ensure good dispersion of the ceramic material, as well as uniform thickness and sufficient flexibility.
It is important that punching is easy and that no processing distortion remains. Regarding the amount of piezoelectric material containing lead, it is necessary to carefully consider the temperature, atmosphere, packing method, etc. in the firing process. Ceramics are generally sintered at high temperatures, and lead oxide evaporates at temperatures above about 800°C, leading to deterioration of piezoelectric properties. Particularly in the case of sheet-shaped ceramics, since the surface area is large compared to the volume, evaporation of lead occurs actively, making it difficult to sinter the sheet itself in the atmosphere. On the other hand, as a method of suppressing lead evaporation, there is a method of firing the element in a lead vapor atmosphere, but maintaining the sheet in a sealed state becomes undesirable in terms of cost and causes problems in terms of piezoelectric properties. The present invention provides a method for inexpensively producing a lead-based piezoelectric sintered sheet having high density, high homogeneity, and excellent smoothness. The method of the present invention uses raw sheets with high density and good smoothness, coats the raw sheets uniformly with a high-temperature oxide to enable lamination firing, and laminates the sheets in several stages to increase the specific surface area of the sheets. The method of the present invention dramatically improves sinterability, suppresses lead evaporation, and sinters in a sealed structure or similar structure. A lead-based piezoelectric sintered sheet with excellent properties can be obtained. In the method of the present invention, a predetermined amount of organic components such as a binder, a plasticizer, and a solvent are added to a lead-based piezoelectric ceramic material and kneaded, and this kneaded product is processed by a doctor blade method to a thickness of 0.05 to 2.0 mm depending on the application. After producing a high-density green sheet with a certain thickness and punching it into the required shape, it is placed in a container filled with powder of a high melting point oxide (at least one of zirconium oxide, magnesium oxide, and aluminum oxide). (It is preferable that the sheet and the powder come into good contact with each other.) The container is heated to a temperature at which the organic matter in the formed sheet does not deteriorate, and vibration is applied. By heating, the thermoplasticity of the organic material appears, making the sheet softer and making it easier for powder to adhere to it. By applying vibration to this, the sheet is charged and the oxide powder is mechanically rubbed in, and the powder adheres to the sheet surface. Several of these sheets are stacked together, placed on a heat-resistant substrate such as alumina, covered with a crucible, and placed in an electric furnace. Next, the temperature is maintained at a low temperature until the resin removal is completed, and then it is fired at a temperature of 1150 to 1350°C and the temperature is lowered to room temperature at a constant cooling rate to produce a sintered sheet. The lead-based piezoelectric ceramic material used in the method of the present invention may be a single-component type, a two-component type, or a three-component type consisting of a perovskite type compound or a tungsten bronze type compound. As an organic binder,
polyvinyl butyral, polyvinyl alcohol,
Examples include polyvinyl acetate, vinyl chloride-vinyl acetate copolymer, methyl cellulose, ethyl cellulose, and polyvinyl acetate and polyvinyl butyral are particularly preferred from the viewpoint of adhesive properties. The plasticizer is selected depending on the binder, and for example, phthalate-based dibutyl phthalate, dioctyl phthalate, dioctyl adipate, glycerin, polyethylene glycol, etc. are used. The moldability, workability, and amount of powder deposited on the green sheet are preferably determined by taking into account the balance between the two, since a high density sheet cannot be obtained as a sintered body, although it is preferable that the binder and plasticizer are as large as possible. The optimum amount is 0.5 to 5.0 wt% for each, and the solvent is preferably water, alcohol, or an ether or ester type of polyhydric alcohol. A slurry is made with these voltage-sensitive ceramic materials, a binder, a plasticizer, and a solvent. This slurry is poured onto a smooth substrate such as an organic film, formed into a sheet of constant thickness using a doctor blade method, and dried to produce a smooth raw sheet. The green sheet may also be produced using other methods, such as extrusion or roll rolling. Next, the raw sheet is punched into the desired shape. The punched raw sheet contains organic components, so it is easily charged with static electricity. High-temperature oxide powder (zirconium oxide, magnesium oxide, aluminum oxide) is used as a material for refractory bricks and baking powder, and is a thermally stable material that adheres to charged objects. There is a proportional relationship between the charging voltage, the amount of adhesion, and the particle size that can be attached. In addition, since the sheets are charged by rubbing, the sheets overlap each other, and if there is powder between them, they will adhere to each other. Adhesion by static electricity alone requires a high charging voltage, and has the disadvantage that the sheets stick to each other and cannot be peeled off. For this reason, it is desirable to deposit with as low a charging voltage as possible. In addition to the method of adhering using vibration, heating the raw sheet softens it because the organic binder and plasticizer contained in the sheet have thermoplasticity. Powder easily adheres to the softened raw sheet. By using these in combination, the powder of the piezoelectric material is sufficiently adhered during firing, and lead evaporation occurs at 800°C, so that the sheets are fused together.
Since the attached powder is inert, it prevents fusion and makes it easier to peel off after firing. Raw sheets coated with powder are stacked and placed in an electric furnace. After preliminary firing to remove organic components, main firing is performed at a temperature of 1150 to 1350°C. In this case, at a temperature lower than 1150°C, sufficient sintering does not occur, and at a temperature higher than 1350°C, a composition shift occurs or decomposition occurs, and a single phase cannot be formed. After the main firing is completed, the sintered body is cooled down to room temperature at an appropriate cooling rate and taken out from the furnace. The lead-based piezoelectric sintered sheet obtained by the present invention had good smoothness, and sufficient peelability between the sheets was obtained. The lead-based piezoelectric sintered sheet element produced by the method of the present invention can be laminated and fired, is highly mass-producible, and can be supplied at low cost. The piezoelectric sintered sheet element thus obtained is useful for applications such as filters, piezoelectric buzzers, pickup elements, and speakers. Examples of the present invention will be described in detail below. Example 1 PbTiO 3 /PbZrO 3 = PbTiO 3 /PbZrO 3 with particle size of approximately 1 μm
The binder shown in Table 1 and 0.5
% by weight of dioctyl phthalate was added to each, and the mixture was thoroughly stirred and mixed with 60% by weight of methyl alcohol based on the calcined raw material, and further mixed for 24 hours in a ball mill to prepare a slurry. This slurry was poured onto a polyester film, formed into a sheet using a doctor blade method, and air-dried to produce a green sheet. Next, using a punching machine, it is punched out into a disc shape with a diameter of 30 mmφ. Particles with a diameter of approximately 5 μm are placed in a parts feeding device (hereinafter referred to as parts feeder) that has a vibration mechanism.
Filled with zirconium oxide powder, the punched green sheet was placed into the apparatus while being heated from the bottom, and the sheet was adhered under the adhesion conditions shown in Table 1. The zirconium oxide powder adheres to the raw sheet that has been put in due to vibration and heating. This raw sheet was laminated into 10 layers, placed on a 99.5% alumina substrate, placed in a furnace, and after first removing organic components, main firing was performed under the firing conditions shown in Table 1. After firing, it was slowly cooled to room temperature and the sintered body was taken out. This sheet has a diameter of 10 to 20% compared to the raw sheet.
% shrinkage, but did not exhibit cracking, warping, perforation, or puncture, and had excellent smoothness. As a result of X-ray analysis, the thus obtained sheet was found to be Pb(TiZr)O 3 based porcelain having a perovskite structure, and its electrical properties are shown in Table 1. For comparison, Table 1 shows the characteristics of a sintered sheet prepared by a conventional method in which zirconium oxide powder is not attached by vibration or heating. When stacking and sintering was performed using the conventional method, fusion was observed between the sheets due to partial reactions, and sintered sheets could not be obtained in a perfect shape.

【表】 実施例 2 粒子サイズが約0.5μmでPbTiO3:PbZrO3
Pb(Mg1/3・Nb2/3)O3=37.5;25.0;37.5の組
成比をもつPb(Mg・Nb・Ti・Zr)O3系の仮焼
原料に第2表に示すところの結合剤および0.5重
量%のフタル酸ジブチルを各々加え、仮焼原料に
対して60重量%のエチルアルコールでよく撹拌混
合し、さらにボールミルにて48時間混合して泥漿
を作製した。以下実施例1と同じ手順に従つて生
シートを準備し、さらに実施例1と同様の方法で
第2表に示した付着条件焼成条件によつて焼結体
シートを得た。このようにして得られた焼結体シ
ートの諸特性を第2表に示す。第2表には比較の
ため、第1表と同様に従来の方法によつて作製し
た焼結体シートの電気特性を併せて示すが、従来
の方法では、反り、融着が見られた。これに対
し、本発明の方法では、割れ、反り、穿孔、融着
等のない平滑な焼結体シートが得られた。
[Table] Example 2 PbTiO 3 :PbZrO 3 with particle size of approximately 0.5 μm;
Pb(Mg・Nb・Ti・Zr)O 3 based calcining raw material with a composition ratio of Pb(Mg1/3・Nb2/3)O 3 = 37.5; 25.0; 37.5 and a binder as shown in Table 2. and 0.5% by weight of dibutyl phthalate were added, and the mixture was thoroughly stirred and mixed with 60% by weight of ethyl alcohol based on the calcined raw material, and further mixed for 48 hours in a ball mill to prepare a slurry. Thereafter, a green sheet was prepared according to the same procedure as in Example 1, and a sintered sheet was obtained in the same manner as in Example 1 under the adhesion and firing conditions shown in Table 2. Table 2 shows various properties of the sintered sheet thus obtained. For comparison, Table 2 also shows the electrical properties of sintered sheets produced by the conventional method in the same way as Table 1, but warpage and fusion were observed in the conventional method. In contrast, with the method of the present invention, a smooth sintered sheet without cracks, warping, perforations, fusions, etc. was obtained.

【表】 以上のように、本発明の方法によれば高密度で
平滑な圧電体シートを得ることができるものであ
る。
[Table] As described above, according to the method of the present invention, a high-density and smooth piezoelectric sheet can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 鉛を含む圧電材料に、有機成分である結合
剤、可塑剤および溶媒を加えて混練し、この混練
物を一定厚みに延展して生シートを作成し、これ
を任意の形状に打抜いた後、酸化アルミニウム、
酸化マグネシウム、あるいは酸化ジルコニウムの
少くともいずれかよりなる粉末中にて加熱、振動
を与えて生シート表面に粉末を付着させ、しかる
後、これを積み重ねて焼成することを特徴とする
焼結体シートの製造方法。
1 A piezoelectric material containing lead is kneaded with organic components such as a binder, a plasticizer, and a solvent, and this kneaded material is spread to a certain thickness to create a green sheet, which is punched into any shape. After that, aluminum oxide,
A sintered sheet characterized by heating and vibrating a powder made of at least one of magnesium oxide or zirconium oxide to adhere the powder to the surface of the green sheet, and then stacking and firing the powder. manufacturing method.
JP5054678A 1978-04-26 1978-04-26 Production of sintered body sheet Granted JPS54140999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5054678A JPS54140999A (en) 1978-04-26 1978-04-26 Production of sintered body sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5054678A JPS54140999A (en) 1978-04-26 1978-04-26 Production of sintered body sheet

Publications (2)

Publication Number Publication Date
JPS54140999A JPS54140999A (en) 1979-11-01
JPS6214955B2 true JPS6214955B2 (en) 1987-04-04

Family

ID=12862001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5054678A Granted JPS54140999A (en) 1978-04-26 1978-04-26 Production of sintered body sheet

Country Status (1)

Country Link
JP (1) JPS54140999A (en)

Also Published As

Publication number Publication date
JPS54140999A (en) 1979-11-01

Similar Documents

Publication Publication Date Title
JP2009541584A (en) Method for producing refractory metal molded body
JPS6214955B2 (en)
JP2017179415A (en) Piezoelectric ceramic sputtering target, non-lead piezoelectric thin film and piezoelectric thin film element using the same
JPS608990B2 (en) Method for manufacturing piezoelectric sintered sheet
US3103441A (en) Ceramic materials having flat temperature characteristics
JPS59156961A (en) Manufacture of alumina sintered substrate
JPS6050359B2 (en) Method for manufacturing piezoelectric material
JPS6231512B2 (en)
JPS6043677B2 (en) Method for manufacturing piezoelectric sheet
JPS63136677A (en) Manufacture of piezoelectric ceramics thin plate
JPH0746540B2 (en) Method for manufacturing glass-ceramic substrate
JPS5918167A (en) Manufacture of sintered body thin sheet
JPH01131448A (en) Production of element for oxygen sensor
JPS58182883A (en) Manufacture of high density piezoelectric ceramics
JPH022824B2 (en)
JP2005015255A (en) Method of manufacturing thin layer ceramic sheet
JPH05178672A (en) Production of ceramics
CN116283286A (en) Sodium niobate-based leadless piezoelectric textured ceramic and preparation method thereof
JPS63182887A (en) Manufacture of ceramic wiring circuit board
JPS61270257A (en) Piezoelectric composite material for underwater microphone
JPH0297468A (en) Production of thin ceramic sheet and calcination tool utilized for method thereof
JP2020157649A (en) Sheet member and method of manufacturing ceramic substrate
JPS6029601B2 (en) Manufacturing method of raw ceramic sheet
JPS5918163A (en) Manufacture of light permeable ceramics
JPS59111977A (en) Manufacture of light permeable ceramics