JPH0746540B2 - Method for manufacturing glass-ceramic substrate - Google Patents

Method for manufacturing glass-ceramic substrate

Info

Publication number
JPH0746540B2
JPH0746540B2 JP3207491A JP20749191A JPH0746540B2 JP H0746540 B2 JPH0746540 B2 JP H0746540B2 JP 3207491 A JP3207491 A JP 3207491A JP 20749191 A JP20749191 A JP 20749191A JP H0746540 B2 JPH0746540 B2 JP H0746540B2
Authority
JP
Japan
Prior art keywords
powder
glass ceramic
glass
ceramic substrate
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3207491A
Other languages
Japanese (ja)
Other versions
JPH0528867A (en
Inventor
康人 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP3207491A priority Critical patent/JPH0746540B2/en
Publication of JPH0528867A publication Critical patent/JPH0528867A/en
Publication of JPH0746540B2 publication Critical patent/JPH0746540B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Insulating Bodies (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばハイブリッドI
Cやマルチチップモジュール等に用いるガラスセラミッ
ク基板の製造方法に関する。
BACKGROUND OF THE INVENTION The present invention is a hybrid I
The present invention relates to a method for manufacturing a glass ceramic substrate used for C, a multi-chip module, or the like.

【0002】[0002]

【従来の技術】従来、セラミック多層基板は、絶縁層と
してアルミナを用い、導体にタングステンあるいはモリ
ブデンを用いて1600℃程度の温度で絶縁層と導体と
を同時焼成して製作されていた。また近年、低温焼成用
のセラミック多層基板として、ガラスセラミック系基板
が開発されている。この基板は、絶縁層としてガラス−
アルミナ系、結晶化ガラス系等の粉末にバインダと溶剤
を加えてスラリー状とし、ドクターブレードでグリーン
シートに成形した後、導体として通常の厚膜法で使用さ
れる金、銀、銅等のペーストを印刷して準備した各層を
積層して800〜1100℃で焼成して得られる。
2. Description of the Related Art Heretofore, a ceramic multilayer substrate has been manufactured by using alumina as an insulating layer, using tungsten or molybdenum as a conductor, and simultaneously firing the insulating layer and the conductor at a temperature of about 1600.degree. In recent years, a glass ceramic substrate has been developed as a ceramic multilayer substrate for low temperature firing. This substrate is made of glass as an insulating layer.
A paste such as gold, silver, or copper that is used as a conductor in a normal thick-film method after forming a green sheet with a doctor blade by adding a binder and a solvent to alumina-based or crystallized glass-based powder, etc. It is obtained by stacking the layers prepared by printing and firing at 800 to 1100 ° C.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記のよう
な積層体を焼成すると10〜20%収縮する。この収縮
率は、原料の組成、粒度、焼成温度、焼成時間、成形体
の密度等によって変化し、それぞれの変動が絡み合って
最終的な収縮率のバラツキとなって現れるので、寸法制
御が難しく、製品が所定の規格寸法精度を満たさないた
めに歩留まりが低下する等の問題があった。本発明は上
記の問題点に鑑みて提案されたもので、焼成時の収縮率
を可及的に低減して寸法精度の高い製品を得ることので
きるガラスセラミック基板の製造方法を提供することを
目的とする。
However, when the above laminate is fired, it shrinks by 10 to 20%. This shrinkage rate changes depending on the composition of the raw material, the particle size, the firing temperature, the firing time, the density of the molded body, etc., and each variation appears as a final variation in the shrinkage rate, making it difficult to control the dimensions. Since the product does not satisfy the prescribed standard dimensional accuracy, there is a problem that the yield decreases. The present invention has been proposed in view of the above problems, and it is an object of the present invention to provide a method for manufacturing a glass-ceramic substrate capable of obtaining a product with high dimensional accuracy by reducing the shrinkage ratio during firing as much as possible. To aim.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
めに本発明によるガラスラミック基板の製造方法は、1
100℃以下の温度で実質的に焼結しない耐火物粉末層
でガラスセラミック層を拘束して基板の面方向の焼成収
縮率を、可及的に低減することにより製品の寸法精度を
向上させるようにしたものである。すなわち、本発明に
よるガラスラミック基板の製造方法は、少なくとも、ガ
ラスセラミック粉末を原料としたグリーンシートを作成
する工程と、耐火物粉末を原料としたグリーンシートを
作成する工程と、上記のガラスセラミック粉末を原料と
した1枚以上のグリーンシートの両面を上記の耐火物粉
末を原料としたグリーンシートで挟んで加圧成形する工
程と、その成形体を1100℃以下の温度で焼成する工
程と、その焼成体から耐火物粉末を除去する工程とを有
することを特徴とする。
In order to achieve the above-mentioned object, the method for producing a glass lamic substrate according to the present invention is
A glass ceramic layer is constrained by a refractory powder layer that does not substantially sinter at a temperature of 100 ° C. or less to reduce the firing shrinkage in the surface direction of the substrate as much as possible to improve the dimensional accuracy of the product. It is the one. That is, the method for producing a glass lamic substrate according to the present invention includes at least a step of forming a green sheet using glass ceramic powder as a raw material, a step of forming a green sheet using refractory powder as a raw material, and the above glass ceramic powder. A step of sandwiching both sides of one or more green sheets made of the above-mentioned green sheets with the green sheets made of the refractory powder as a raw material, press-molding, and firing the formed body at a temperature of 1100 ° C. or lower; And a step of removing refractory powder from the fired body.

【0005】[0005]

【作用】本発明において、ガラスセラミック粉末は11
00℃以下で充分に焼成するものであればよく、ガラス
粉末としては例えば硼珪酸ガラスをベースに酸化鉛、酸
化亜鉛、アルカリ土類金属の酸化物などを含有する軟化
点600〜800℃の非晶質ガラス粉末、あるいは60
0〜1100℃で結晶化する結晶化ガラスなどが利用で
き、これにアルミナ、ジルコン、ムライト、コージェラ
イト、アノーサイト、シリカ等のセラミックフィラーを
混入させてもよい。そのガラス粉末とセラミックフィラ
ーの混合比率は、ガラスセラミック基板の抗折強度、誘
電率、緻密性等の性能を勘案して調整されるが、一般的
に重量比で1:1付近で用いることが多い。
In the present invention, the glass ceramic powder is 11
Any glass powder that can be sufficiently fired at 00 ° C or lower may be used, and examples of the glass powder include borosilicate glass as a base, which contains lead oxide, zinc oxide, an oxide of an alkaline earth metal, and the like and has a softening point of 600 to 800 ° C. Crystalline glass powder, or 60
Crystallized glass that crystallizes at 0 to 1100 ° C. can be used, and a ceramic filler such as alumina, zircon, mullite, cordierite, anorthite, or silica may be mixed therein. The mixing ratio of the glass powder and the ceramic filler is adjusted in consideration of the bending strength, dielectric constant, denseness, etc. of the glass ceramic substrate, but it is generally used at a weight ratio of about 1: 1. Many.

【0006】一方、耐火物粉末は、1100℃以下の温
度で実質的に焼結せず、かつガラスセラミック粉末と有
害な化学反応の起こらないことを条件として選定する。
その理由は、焼成工程で耐火物粉末が焼結またはガラス
セラミック粉末と化学反応をした場合には、耐火物層を
ガラスセラミック層から簡単に除去できなくなるからで
ある。上記のような耐火物粉末としては、例えばアルミ
ナ、酸化ジルコニウム、窒化アルミニウム、窒化ホウ
素、ムライト、酸化マグネシウム、炭化ケイ素などが利
用できる。その耐火物粉末の粒径は、大きいほうが焼成
後の除去が容易であるが、あまり大きいとガラスセラミ
ック基板の表面が粗くなるので0.5〜4μm程度のも
のが好ましい。
On the other hand, the refractory powder is selected on the condition that it does not substantially sinter at a temperature of 1100 ° C. or lower and that no harmful chemical reaction with the glass ceramic powder occurs.
The reason is that when the refractory powder is sintered or chemically reacts with the glass ceramic powder in the firing step, the refractory layer cannot be easily removed from the glass ceramic layer. As the above refractory powder, for example, alumina, zirconium oxide, aluminum nitride, boron nitride, mullite, magnesium oxide, silicon carbide, etc. can be used. The larger the particle size of the refractory powder is, the easier it is to remove after firing. However, if the particle size is too large, the surface of the glass ceramic substrate becomes rough.

【0007】上述したガラスセラミック粉末および耐火
物粉末の試料を、それぞれバインダー、可塑剤、溶剤と
ともに混合してスラリー化し、各々をドクターブレード
法等でグリーンシートに作成するもので、上記のバイン
ダーとしては、例えばポリビニルブチラール、メタアク
リルポリマー、アクリルポリマー等を使用することがで
きる。また可塑剤としては例えばフタル酸の誘導体等を
使用することができ、溶剤としては例えばアルコール
類、ケトン類、塩素系有機溶剤等を使用することができ
る。
Samples of the above-mentioned glass-ceramic powder and refractory powder are mixed with a binder, a plasticizer, and a solvent to form a slurry, and each of them is formed into a green sheet by a doctor blade method or the like. For example, polyvinyl butyral, methacrylic polymer, acrylic polymer and the like can be used. Further, as the plasticizer, for example, a derivative of phthalic acid can be used, and as the solvent, for example, alcohols, ketones, chlorine-based organic solvents and the like can be used.

【0008】ガラスセラミック粉末のグリーンシートの
厚さは、製造すべきガラスセラミック基板の抗折強度等
を勘案して適宜調整するもので、例えば30〜200μ
m程度に成形する。また耐火物粉末のグリーンシートの
厚さは、あまり薄いと膜の強度が弱くてハンドリングが
悪く、また厚すぎると耐火物の使用量が多くなり不経済
であるので、30〜200μm程度が好ましい。
The thickness of the green sheet of glass-ceramic powder is appropriately adjusted in consideration of the bending strength of the glass-ceramic substrate to be produced, and is, for example, 30 to 200 μm.
Mold to about m. If the thickness of the green sheet of refractory powder is too thin, the strength of the film is weak and handling is poor, and if it is too thick, the amount of refractory material used increases and it is uneconomical.

【0009】上記のようにして作成した2種類のグリー
ンシートは、適当な大きさの外形寸法に切断して積層す
るもので、ガラスセラミック基板が多層基板であるとき
は、必要に応じて導体ペースト等を印刷する。そしてガ
ラスセラミックのグリーンシートを1枚もしくは必要枚
数重ね、その両側に耐火物のグリーンシートを配置して
ホットプレス機等で加圧、加温して一体化する。そのと
きの圧力は例えば50〜300kg/cm2 、温度は6
0〜90℃程度が好ましい。なお、上記のように積層し
た各層を、例えばポリビニルブチラールをアルコールに
溶かしたのりを用いて接着させる積層法でも同じ効果が
得られる。
The two kinds of green sheets prepared as described above are cut and laminated to have appropriate outer dimensions. When the glass ceramic substrate is a multilayer substrate, a conductor paste may be added if necessary. Etc. are printed. Then, one or a required number of glass-ceramic green sheets are stacked, and the refractory green sheets are arranged on both sides of the green sheets, and they are pressed and heated by a hot press machine or the like to be integrated. The pressure at that time is, for example, 50 to 300 kg / cm 2 , and the temperature is 6
About 0 to 90 ° C is preferable. The same effect can be obtained by a laminating method in which the respective layers laminated as described above are adhered using, for example, a glue prepared by dissolving polyvinyl butyral in alcohol.

【0010】次に、上記の積層体を例えば450〜60
0℃程度に加熱して有機物を除去した後、1100℃以
下たとえば800〜1100℃で焼成して基板を製作す
る。この段階では、焼結したガラスセラミック層の両面
に耐火物粉末が付着した状態であるので、ブラシ等でこ
すれば耐火物粉末が基板から除去できる。この場合、ガ
ラスセラミック層と絶縁層の色が異なるようにすれば、
耐火物粉末の除去が目視で容易に確認できる。その着色
手段としては、例えばガラスセラミックあるいは耐火物
層にCr2 3 やCo3 4 等を混入させればよい。
Next, the above-mentioned laminated body is, for example, 450-60.
After heating to about 0 ° C. to remove organic substances, the substrate is manufactured by firing at 1100 ° C. or lower, for example, 800 to 1100 ° C. At this stage, since the refractory powder is adhered to both surfaces of the sintered glass ceramic layer, the refractory powder can be removed from the substrate by rubbing with a brush or the like. In this case, if the colors of the glass ceramic layer and the insulating layer are different,
Removal of refractory powder can be easily confirmed visually. As the coloring means, for example, Cr 2 O 3 or Co 3 O 4 may be mixed into the glass ceramic or refractory layer.

【0011】以上の本発明によるガラスセラミック基板
の製造方法によれば、ガラスセラミック層は耐火物層に
拘束されて基板の面方向には殆ど収縮せず厚さ方向にの
み収縮するので寸法精度の優れた基板を得ることが可能
となるものである。
According to the method for manufacturing a glass-ceramic substrate according to the present invention, the glass-ceramic layer is constrained by the refractory layer and hardly shrinks in the surface direction of the substrate but only in the thickness direction. It is possible to obtain an excellent substrate.

【0012】[0012]

【実施例】ガラスセラミック粉末として、下記の表1に
示す組成のガラス粉末(平均粒径2.2μm)とアルミ
ナ粉末を50:50の重量比率で混合した。
EXAMPLE As a glass ceramic powder, glass powder (average particle size: 2.2 μm) having the composition shown in Table 1 below and alumina powder were mixed in a weight ratio of 50:50.

【0013】耐火物粉末としては、平均粒径1.3μm
の酸化ジルコニウムを用いた。スラリーは、ガラスセラ
ミック粉末および耐火物粉末100重量部に対して、そ
れぞれポリビニルブチラール9重量部、フタル酸ジイソ
ブチル7重量部、オレイン酸1重量部、イソプロピルア
ルコール40重量部、トリクロロエタン20重量部を加
えてボールミルで24時間混合して製作した。
The refractory powder has an average particle size of 1.3 μm.
Of zirconium oxide was used. The slurry was prepared by adding 9 parts by weight of polyvinyl butyral, 7 parts by weight of diisobutyl phthalate, 1 part by weight of oleic acid, 40 parts by weight of isopropyl alcohol, and 20 parts by weight of trichloroethane to 100 parts by weight of glass ceramic powder and refractory powder, respectively. It was made by mixing in a ball mill for 24 hours.

【0014】次に、上記2種類のスラリーを、各々ドク
ターブレード法でシート状に成形してガラスセラミック
粉末のグリーンシートと耐火物粉末のグリーンシートを
作成した。その厚さはそれぞれ118μm、131μm
であった。その得られたガラスセラミックのグリーンシ
ートを8枚積層し、さらに両面を同じ大きさの耐火物の
グリーンシートで挟んで150kg/cm2 、85℃の
条件で加圧成形した。その成形体を520℃、3時間加
熱して有機物を除去した後、引き続いて900℃、1時
間で焼成後、ブラシで擦って耐火物粉末を除去して基板
を得た。
Next, the above-mentioned two kinds of slurries were each formed into a sheet by a doctor blade method to prepare a glass ceramic powder green sheet and a refractory powder green sheet. The thickness is 118 μm and 131 μm, respectively
Met. Eight sheets of the obtained glass-ceramic green sheets were laminated, and both sides were sandwiched by refractory green sheets of the same size, and pressure molding was performed under the conditions of 150 kg / cm 2 and 85 ° C. The molded body was heated at 520 ° C. for 3 hours to remove organic substances, subsequently baked at 900 ° C. for 1 hour, and then rubbed with a brush to remove the refractory powder to obtain a substrate.

【0015】また、ガラスセラミック基板中のアルミナ
粉末の比表面積を変化させて基板の面方向の収縮率を測
定し、その比較例として耐火物シートで挟まない通常の
焼成法による場合と上記の本発明の実施例による場合と
を比較した。その結果を下記表2にまとめて示す。
Further, the specific surface area of the alumina powder in the glass ceramic substrate was changed to measure the shrinkage ratio in the surface direction of the substrate, and as a comparative example, the case of using a normal firing method without sandwiching a refractory sheet and the above-mentioned book. The case according to the embodiment of the invention was compared. The results are summarized in Table 2 below.

【0016】 [0016]

【0017】以上の結果から明らかなように、本発明の
製造方法によれば、焼成時の収縮率を可及的に低減でき
る。また原料粉末を変えた場合にも、比較例では最大と
最小で6.73%もの収縮率の変動が現れたが、本発明
によれば0.07%の変動しかなく、最も影響の大きい
原料粉末の変化があってさえも高い寸法精度を維持でき
ることが分かった。
As is clear from the above results, according to the manufacturing method of the present invention, the shrinkage rate during firing can be reduced as much as possible. Even when the raw material powder was changed, the maximum and minimum fluctuations of the shrinkage ratio of 6.73% appeared in the comparative example. However, according to the present invention, there is only a fluctuation of 0.07%, and the raw material having the greatest influence. It has been found that high dimensional accuracy can be maintained even with powder changes.

【0018】[0018]

【発明の効果】以上説明したように、本発明のガラスセ
ラミック基板の製造方法によれば、焼成時の収縮率を可
及的に低減できると共に、原料の組成を変えた場合にも
高い寸法精度を維持させることができるもので、高品質
なガラスセラミック基板を歩留りよく量産できる等の効
果がある。
As described above, according to the method for manufacturing a glass ceramic substrate of the present invention, the shrinkage rate during firing can be reduced as much as possible and high dimensional accuracy can be obtained even when the composition of the raw material is changed. It is possible to maintain high temperature, and it is possible to mass produce high quality glass ceramic substrates with high yield.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも、ガラスセラミック粉末を原
料としたグリーンシートを作成する工程と、耐火物粉末
を原料としたグリーンシートを作成する工程と、上記の
ガラスセラミック粉末を原料とした1枚以上のグリーン
シートの両面を上記の耐火物粉末を原料としたグリーン
シートで挟んで成形する工程と、その成形体を1100
℃以下の温度で焼成する工程と、その焼成体から耐火物
粉末を除去する工程とを有することを特徴とするガラス
セラミック基板の製造方法。
1. At least a step of forming a green sheet made of glass ceramic powder as a raw material, a step of making a green sheet made of refractory powder as a raw material, and one or more sheets made of the above glass ceramic powder as a raw material. The step of molding by sandwiching both sides of the green sheet with the green sheet made of the above refractory powder as a raw material
A method for manufacturing a glass ceramic substrate, comprising: a step of firing at a temperature of ℃ or less; and a step of removing refractory powder from the fired body.
【請求項2】 前記ガラスセラミック粉末は、非晶質ガ
ラス粉末、結晶化ガラス粉末のうち少なくとも一方を含
むことを特徴とする請求項1記載のガラスセラミック基
板の製造方法。
2. The method for producing a glass ceramic substrate according to claim 1, wherein the glass ceramic powder contains at least one of an amorphous glass powder and a crystallized glass powder.
【請求項3】 前記耐火物粉末は、アルミナ、酸化ジル
コニウム、窒化アルミニウム、窒化ホウ素、ムライト、
酸化マグネシウム、炭化ケイ素から選択された1種以上
であることを特徴とする請求項1記載のガラスセラミッ
ク基板の製造方法。
3. The refractory powder is alumina, zirconium oxide, aluminum nitride, boron nitride, mullite,
The method for producing a glass ceramic substrate according to claim 1, wherein the glass ceramic substrate is one or more selected from magnesium oxide and silicon carbide.
【請求項4】 前記ガラスセラミックと耐火物粉末の色
が異なることを特徴とする請求項1記載のガラスセラミ
ック基板の製造方法。
4. The method for manufacturing a glass ceramic substrate according to claim 1, wherein the glass ceramic and the refractory powder have different colors.
JP3207491A 1991-07-24 1991-07-24 Method for manufacturing glass-ceramic substrate Expired - Lifetime JPH0746540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3207491A JPH0746540B2 (en) 1991-07-24 1991-07-24 Method for manufacturing glass-ceramic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3207491A JPH0746540B2 (en) 1991-07-24 1991-07-24 Method for manufacturing glass-ceramic substrate

Publications (2)

Publication Number Publication Date
JPH0528867A JPH0528867A (en) 1993-02-05
JPH0746540B2 true JPH0746540B2 (en) 1995-05-17

Family

ID=16540609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3207491A Expired - Lifetime JPH0746540B2 (en) 1991-07-24 1991-07-24 Method for manufacturing glass-ceramic substrate

Country Status (1)

Country Link
JP (1) JPH0746540B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5456778A (en) * 1992-08-21 1995-10-10 Sumitomo Metal Ceramics Inc. Method of fabricating ceramic circuit substrate
US6413620B1 (en) 1999-06-30 2002-07-02 Kyocera Corporation Ceramic wiring substrate and method of producing the same
JP2003246680A (en) 2002-02-26 2003-09-02 Murata Mfg Co Ltd Method of manufacturing multilayered ceramic substrate
JP2008004514A (en) * 2006-05-24 2008-01-10 Murata Mfg Co Ltd Conductive paste, and manufacturing method of ceramic multilayer board using it

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130067A (en) * 1986-05-02 1992-07-14 International Business Machines Corporation Method and means for co-sintering ceramic/metal mlc substrates
JPS63210058A (en) * 1987-02-24 1988-08-31 新光電気工業株式会社 Colored ceramic
JPH0725570B2 (en) * 1988-05-31 1995-03-22 日本特殊陶業株式会社 Colored crystallized glass body and its manufacturing method

Also Published As

Publication number Publication date
JPH0528867A (en) 1993-02-05

Similar Documents

Publication Publication Date Title
US4301324A (en) Glass-ceramic structures and sintered multilayer substrates thereof with circuit patterns of gold, silver or copper
JPH03257041A (en) Dielectric composition
JP2610375B2 (en) Method for manufacturing multilayer ceramic substrate
JPH0746540B2 (en) Method for manufacturing glass-ceramic substrate
JP2856045B2 (en) Manufacturing method of ceramic substrate
WO1989001461A1 (en) Co-sinterable metal-ceramic packages and materials therefor
JPH08274433A (en) Silver based conductive paste, and multilayer ceramic circuit board using the paste
CN103748048B (en) Compositions for low-K, low temperature co-fired composite (LTCC) tapes and low shrinkage, multilayer LTCC structures formed therefrom
JPH07249869A (en) Glass ceramic multilayer circuit board and its manufacture
JP3589239B2 (en) Conductive paste and ceramic molding
JPH08188446A (en) Glass ceramic substrate
WO2004087614A1 (en) Coating composition for green sheet, green sheet, method for producing green sheet, and method for producing electronic component
JP3669056B2 (en) Manufacturing method of ceramic multilayer wiring board
JP2005039164A (en) Method for manufacturing glass ceramic wiring board
JP3372050B2 (en) Multilayer wiring board and method of manufacturing the same
JPH05116986A (en) Opaque glass and sintered and laminated ceramic wiring board obtained therefrom
JP4978822B2 (en) Multilayer ceramic substrate manufacturing method and multilayer ceramic substrate
JPS63182887A (en) Manufacture of ceramic wiring circuit board
JP3336176B2 (en) Glass ceramic sintered body
JPH08198676A (en) Green sheet and glass-ceramic substrate using the same
JP3488793B2 (en) Manufacturing method of green sheet for ceramic substrate
JP2841655B2 (en) Green sheet for multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor using the same
JPH0354163A (en) Ceramic material composition and use thereof
JPS6247195A (en) Ceramic multilayer substrate
JPH10167842A (en) Ceramic green sheet for restricting layer and production of ceramic substrate using that

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980908