JPS60253790A - Heat transfer device - Google Patents

Heat transfer device

Info

Publication number
JPS60253790A
JPS60253790A JP59108312A JP10831284A JPS60253790A JP S60253790 A JPS60253790 A JP S60253790A JP 59108312 A JP59108312 A JP 59108312A JP 10831284 A JP10831284 A JP 10831284A JP S60253790 A JPS60253790 A JP S60253790A
Authority
JP
Japan
Prior art keywords
liquid
heat transfer
film
heat
cooling surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59108312A
Other languages
Japanese (ja)
Other versions
JPH0579914B2 (en
Inventor
Michio Yanatori
梁取 美智雄
Kunio Hijikata
土方 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59108312A priority Critical patent/JPS60253790A/en
Publication of JPS60253790A publication Critical patent/JPS60253790A/en
Publication of JPH0579914B2 publication Critical patent/JPH0579914B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To enhance the heat transfer coefficient on the side of a cooling surface and enhance the performance of a heat transfer device, by a construction wherein a liquid is appropriately contained in a vessel, and a bubble film formed at a boiling liquid surface part is brought into contact with a condensed liquid film formed on a top surface. CONSTITUTION:The heat transfer device in which an evaporable liquid is contained in a vessel and heat is transferred from a heating surface to a cooling surface by the boiling and condensing actions of the liquid, is so constructed that the ratio Hi/Hs of the initial distance Hi between the liquid surface with no heat applied to the heating surface and the heating surface to the distance Hs between the heating surface to the cooling surface is in the range of 0.02-0.3. Accordingly, the bubbles (bubble film) 6' generated by boiling make contact with the condensed liquid film 7 formed on the top surface 3, thereby accelerating the dropping of the film 7. Namely, when the condensed liquid film 7 makes contact with the surface of the bubble film 6', the film 7 is pulled and removed downward by the surface tension of the bubble film 6', resulting in that the quantity of a thick liquid film part at the top surface 3 is reduced, while the quantity of a thin film part is increased, thereby enhancing the heat transfer coefficient.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は沸騰−凝縮を利用した熱伝達装置の構成に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to the construction of a heat transfer device using boiling-condensation.

〔発明の背景〕[Background of the invention]

第1図は従来の熱伝達装置の構成を示したものである。 FIG. 1 shows the configuration of a conventional heat transfer device.

下面2.上面3.側壁部4によシ容器1 ゛艇構成され
ていて、この内部を真空引き後、蒸発性の液体5(例え
ばフロン、アルコール等)が入れである。下面2は加熱
面であり、ヒーターその他の熱源によシ加熱されている
。上面3は冷却面であシ、空気や水の自然対流あるいは
強制対流によって冷却されている。下面2に接している
液体5は熱を受けて沸騰し、発生した気泡6は浮力によ
って上昇し液面9′部に達する。液面9部からは蒸気と
なって、蒸気圧差によって上面3に到達し、ここで冷却
されて液化する。これ罠より上面3の下部には凝縮液膜
7が形成し、これは重力によって下部に落下し元に戻り
、・再び同じサイクルをくり返す。上面3部にて放出さ
れた凝縮熱は、その外面を流れる空気や水によって熱除
去される。
Lower surface 2. Top surface 3. A container 1 is constructed by a side wall 4, and after the inside of the container 1 is evacuated, an evaporative liquid 5 (for example, fluorocarbon, alcohol, etc.) is placed therein. The lower surface 2 is a heating surface and is heated by a heater or other heat source. The upper surface 3 is a cooling surface and is cooled by natural convection or forced convection of air or water. The liquid 5 in contact with the lower surface 2 receives heat and boils, and the generated bubbles 6 rise due to buoyancy and reach the liquid level 9'. The liquid turns into vapor from the liquid level 9 and reaches the upper surface 3 due to the vapor pressure difference, where it is cooled and liquefied. From this trap, a condensate film 7 is formed at the lower part of the upper surface 3, which falls to the lower part by gravity and returns to its original state, repeating the same cycle again. The heat of condensation released at the three upper surfaces is removed by air and water flowing on the outer surface.

このような熱伝達装置は、金属の単なる熱伝導を利用す
るものに対して著しく熱抵抗が小さいため、半導体素子
あるいは電気機械等の発熱物体の冷却にしばしば利用さ
れる。しかしこの熱伝達装置を、さらに高性能化し、発
熱物体を高性能化するためには、加熱面側の液体の沸騰
部の熱抵抗及び冷却面側の凝縮液膜7の熱抵抗を小さく
する必要がある。一般に沸騰部の熱抵抗に対し凝縮液膜
7の熱抵抗が数倍大きいので、凝縮液膜7の熱抵抗を低
減するのが効果的である。このため現在種々の検討が行
なわれている。たとえば上面3の下部に多数のフィンを
設けたものがあるが、加工が困難であったり、工数が著
しく増加するという欠点がある。これを解決する方法と
して第2図に示す方法が提案されている( A+Mar
kowitz、Boilingand Condens
ation in a Liguid−FilledE
nclo6ure、MIT Re1)Oft NE−D
SR29077−73Jan・1971)。この方法は
、上面3の上部に補助容器10を設け、容器1とそれを
パイプ10′によって連結したものであり、加工の困難
な多数のフィンは無い。つまり内部に入れる液体5の量
を増やし、パイプ10′を通して、液体5の液面9が補
助容器10の内部に位置するまで入れる。このようにす
ると、下面2に入力を入れない時、上面3は液体5に接
しておシ、入力を入れΣと沸騰して発生した気泡6が上
昇し、上面3部に激しく衝突する。このため上面3では
、気泡6′と液体5との一種の強制対流伝熱となる。し
かし実際にその部分の熱抵抗を測定してみると、第1図
の方法よシ大きく、特に下面3部の熱流束が小さい時に
は著しく熱抵抗が太きい。これは液体5中の気泡6,6
′の大きさが、上面3で冷却されて下部に降下して来る
液体5により予冷されて小さくなるため、気泡6,6′
の強制対流効果が弱くなるため、である。第5図は、上
面3の熱流束Qcと、熱抵抗αCとの関係を示したもの
である。実線(従来■)は、第1図に示す方法における
qcとαCとの関係を示している。(lc が大きくな
るにつれ、下面3部に形成する凝縮液膜7の厚さが淳く
なるので、(lc の増加につれαCは小さくなZ二点
鎖線(従来■)は、第2図に示す方法に対応するもので
ある。特にqcの小さな領域では、気泡6,6′が液体
5により予冷される効果が大きく、その大きさが小さく
なシしたがって前述の強制対流効果が弱くなシ、αCは
実線より著しく小さくなる。Qc が大きくなっても二
点鎖線は実線に一致するのみであり、従来■の方法より
熱伝達率は大きくならない。ただし、この従来■の方法
は、内部に不凝縮性の空気等が入った時、空気を補助容
器10内の蒸気空間部8′へ集め、上面3への熱伝達率
を激減させないようにする効果はある0 〔発明の目的〕 本発明の目的は、上述した従来例よシも、冷却面側の熱
伝達率を向上し、熱伝達装置を高性能化することにある
Such heat transfer devices have significantly lower thermal resistance than those that utilize mere heat conduction of metals, and are therefore often used to cool heat-generating objects such as semiconductor devices or electrical machines. However, in order to further improve the performance of this heat transfer device and to improve the performance of the heat generating object, it is necessary to reduce the thermal resistance of the boiling part of the liquid on the heating surface side and the thermal resistance of the condensed liquid film 7 on the cooling surface side. There is. Generally, the thermal resistance of the condensate film 7 is several times larger than the thermal resistance of the boiling part, so it is effective to reduce the thermal resistance of the condensate film 7. For this reason, various studies are currently being conducted. For example, there is one in which a large number of fins are provided at the lower part of the upper surface 3, but this has the disadvantage that machining is difficult and the number of man-hours increases significantly. As a way to solve this problem, the method shown in Figure 2 has been proposed (A+Mar
kowitz, Boilingand Condens
ation in a Liguid-FilledE
nclo6ure, MIT Re1) Of NE-D
SR29077-73Jan/1971). In this method, an auxiliary container 10 is provided on the upper part of the upper surface 3, and the auxiliary container 10 is connected to the container 1 by a pipe 10', and there is no need for a large number of fins that are difficult to process. In other words, the amount of liquid 5 to be put inside is increased, and it is poured through pipe 10' until the liquid level 9 of liquid 5 is located inside auxiliary container 10. In this way, when no input is applied to the lower surface 2, the upper surface 3 comes into contact with the liquid 5, and when input is applied, the bubbles 6 generated by boiling rise and collide violently with the upper surface 3. Therefore, on the upper surface 3, a kind of forced convection heat transfer occurs between the bubbles 6' and the liquid 5. However, when we actually measured the thermal resistance at that part, it was found to be much larger than the method shown in Figure 1, and especially when the heat flux at the lower surface 3 was small, the thermal resistance was significantly large. This is air bubbles 6,6 in liquid 5
' is precooled by the liquid 5 that is cooled on the upper surface 3 and descends to the lower part, so that the size of the bubbles 6, 6' becomes smaller.
This is because the forced convection effect of FIG. 5 shows the relationship between the heat flux Qc of the upper surface 3 and the thermal resistance αC. The solid line (conventional ■) shows the relationship between qc and αC in the method shown in FIG. (As lc increases, the thickness of the condensate film 7 formed on the lower surface 3 becomes thinner.) (As lc increases, αC decreases.) The Z double-dot chain line (conventional ■) is shown in Figure 2. In particular, in the region where qc is small, the effect of precooling the bubbles 6, 6' by the liquid 5 is large, and the size of the bubbles is small, so the forced convection effect described above is weak, and αC is significantly smaller than the solid line.Even if Qc becomes large, the two-dot chain line only matches the solid line, and the heat transfer coefficient does not become larger than that of the conventional method (■).However, this conventional method (■) This has the effect of collecting the air into the vapor space 8' in the auxiliary container 10 and preventing the heat transfer coefficient to the upper surface 3 from being drastically reduced when the air enters. The purpose of this invention is to improve the heat transfer coefficient on the cooling surface side and improve the performance of the heat transfer device, as compared to the conventional example described above.

〔発明の概要」 本発明の要点は、容器内の液面を適正に入れ沸騰液面部
に形成する泡膜を、上面に形成する凝縮液膜に接触させ
、泡膜に沿ってそれを排除し、熱伝達率を向上せしめ、
かつこの効果が熱流束qcが大きくなっても持続するよ
うに、上面の構造に細工をするものである。
[Summary of the Invention] The main point of the present invention is to properly adjust the liquid level in the container, bring the foam film formed at the boiling liquid surface into contact with the condensate film formed on the top surface, and eliminate it along the foam film. and improves heat transfer coefficient,
Moreover, the structure of the upper surface is modified so that this effect persists even when the heat flux qc increases.

〔発明の実施例〕[Embodiments of the invention]

第3図、第4図は本発明の構成と原理を示す図であシ、
第3図は下面2に入力を入れない場合、第4図は入力を
入れた場合を示す。これは従来例の第1図に対し、液体
5の封入量は多くするが、第3図に示すように液面9は
上面3に接していない。また従来例の第2図に示すよう
な補助容器10は設けていない。本発明においては、第
3図に示す液面9から上面(冷却面)3までの初期距離
Hjと、下面(加熱面)2から上面3までの距離H8と
の比Hi/H,が重要な意味を持っている。
Figures 3 and 4 are diagrams showing the configuration and principle of the present invention.
FIG. 3 shows the case where no input is entered into the lower surface 2, and FIG. 4 shows the case where the input is entered. Although the amount of liquid 5 sealed is larger than that of the conventional example shown in FIG. 1, the liquid level 9 is not in contact with the upper surface 3 as shown in FIG. Further, the auxiliary container 10 as shown in FIG. 2 of the conventional example is not provided. In the present invention, the ratio Hi/H between the initial distance Hj from the liquid level 9 to the upper surface (cooling surface) 3 and the distance H8 from the lower surface (heating surface) 2 to the upper surface 3 shown in FIG. 3 is important. It has meaning.

この比H1/Hsの値を適正にすると、沸騰により生じ
た沸騰液面9′の気泡(泡膜)6′が、上面3に形成す
る凝縮液膜7に接し、その落下を促進する。これは泡膜
6′の表面に凝縮液膜7が接すると、泡膜6′の表面張
力によシ凝縮液膜7が引張られて下部に排除され、その
結果上面3部には厚い液膜が減少して薄膜部が増加し、
熱伝達率αCが大きくなるのである。第1図の様にHi
 //Hsが著しく大きい場合には、泡膜6′は凝縮液
膜7に接触せず、上述した効果は生じない。その逆にH
i/lb、が小さいi沸騰液面9の動揺時、液面9が上
面3に接触し、むしろ上面3の液膜9の厚さを厚くし、
熱伝達率αCの減少をきたす。さらにHi /Hsが著
しく小さくなると、液面9が上面3に接触する個所が多
くなり、結果として蒸気の凝縮する伝熱面積の減少をき
たし、熱伝達率αCをさらに小さくする。この様な領域
においては、熱流束(lcを増加させると、すぐに蒸気
空間部8が無くなり、下面2から上面3には液体5の自
然対流伝熱に移行し、熱伝達率は激減する。これは熱流
束(lcの増加によシ液体5の温度が高まシ、液体5が
体積膨張し、蒸気空間部8と気泡6を消失させてしまっ
たからである。第5図の破線は本発明の熱流束qcに対
する熱伝達率αCの変化を示したものである。破線■は
H1/H8が適正な場合で、実線(従来■)より、特に
熱流束の高い領域にてαCは大きくなシ、最高値は従来
■より60チ位大きくなる0ノ・ツチング部分は、従来
■よりαCが大きくなった部分を示している。これに対
しHt/asが小さいと、破線■に示すように、低熱流
束域ではむしろ従来■よシαCは小さく、熱流束が大き
くなるにつれαCは増加して若干αCは従来■よシ大き
くなるものの、すぐに気泡6と蒸気空間部8か無くな9
、液体5の自然対流伝熱(一点鎖線)に移行する(点1
)2.)。第6図は、工業的に重要な、つまり本熱伝達
装置を発熱密度の高い電子素子等の冷却に用いる時に重
要な、熱流束の高い領域において、 Hi/H5と熱伝
達率比αC/α。D(αCDは従来■の熱伝達率を表す
)の関係を示したものである。Hi /Hsが0.02
〜0.3の範囲においてαC/αCDは1以上となる。
When the value of this ratio H1/Hs is set appropriately, the bubbles (bubble film) 6' on the boiling liquid surface 9' generated by boiling come into contact with the condensed liquid film 7 formed on the upper surface 3, and promote their fall. This is because when the condensate film 7 comes into contact with the surface of the foam film 6', the surface tension of the foam film 6' pulls the condensate film 7 and expels it to the lower part, resulting in a thick liquid film on the top 3 parts. decreases and the thin film part increases,
This increases the heat transfer coefficient αC. As shown in Figure 1, Hi
//If Hs is too large, the bubble film 6' will not come into contact with the condensate film 7 and the above-mentioned effect will not occur. On the contrary, H
i/lb is small When the boiling liquid level 9 oscillates, the liquid level 9 comes into contact with the upper surface 3, and the thickness of the liquid film 9 on the upper surface 3 is increased,
This causes a decrease in the heat transfer coefficient αC. Furthermore, when Hi 2 /Hs becomes significantly smaller, the number of points where the liquid level 9 comes into contact with the upper surface 3 increases, resulting in a decrease in the heat transfer area where steam condenses, further reducing the heat transfer coefficient αC. In such a region, when the heat flux (lc) is increased, the vapor space 8 immediately disappears, and heat transfer shifts to natural convection of the liquid 5 from the lower surface 2 to the upper surface 3, and the heat transfer coefficient decreases dramatically. This is because the temperature of the liquid 5 increases due to the increase in heat flux (lc), and the liquid 5 expands in volume, causing the vapor space 8 and the bubbles 6 to disappear.The broken line in FIG. This figure shows the change in the heat transfer coefficient αC with respect to the heat flux qc of the invention.The broken line ■ is the case when H1/H8 is appropriate, and αC is larger than the solid line (conventional ■) especially in the high heat flux region. , the highest value is about 60 cm larger than the conventional ■. The 0-touching part shows the part where αC is larger than the conventional ■.On the other hand, when Ht/as is small, as shown by the broken line ■ , in the low heat flux region, αC is rather small compared to the conventional ■, and as the heat flux increases, αC increases and αC becomes slightly larger than the conventional ■, but soon the bubbles 6 and the vapor space 8 disappear 9
, transitions to natural convection heat transfer (dotted chain line) of liquid 5 (point 1
)2. ). Figure 6 shows Hi/H5 and the heat transfer coefficient ratio αC/α in a region of high heat flux, which is industrially important, that is, when this heat transfer device is used to cool electronic elements with high heat generation density. . It shows the relationship of D (αCD represents the heat transfer coefficient of the conventional method (■)). Hi/Hs is 0.02
αC/αCD becomes 1 or more in the range of ~0.3.

またHi/Msが0.02以下では、自然対流伝熱に移
行しαC/αCDは1以下となシ、Hl /H5が0.
3以上ではαC/αCDは1、すなわち第1図の従来■
の状態となる。従って、本発明の最適範囲はHi/Hs
が0.02〜0.3である。
When Hi/Ms is 0.02 or less, natural convection heat transfer occurs, αC/αCD is 1 or less, and Hl/H5 is 0.
3 or more, αC/αCD is 1, that is, the conventional ■
The state will be as follows. Therefore, the optimum range of the present invention is Hi/Hs
is 0.02 to 0.3.

この最適範囲においても、第5図の破線のに示すように
、熱流束(lcが著しく増大すると、液体5の体積張に
よシ、気泡6と蒸気空間部8が消失し、自然対流伝熱に
突然移行する(点p1)。したがって本発明の重要な点
は、これをいかに回避するかという宅とにもある。
Even in this optimum range, as shown by the broken line in Fig. 5, when the heat flux (lc) increases significantly, the volumetric tension of the liquid 5 causes the bubbles 6 and the vapor space 8 to disappear, resulting in natural convection heat transfer. (point p1). Therefore, the important point of the present invention is how to avoid this.

第7図は、上述した自然対流に移行し、急激に熱伝達率
が減少する現象を構造的に解決する方法を示した実施例
である。図示のごとく上面3の下部にブロック状の冷却
面12を設け、この冷却面12と側壁部4との間に蒸気
空間部8及び11を設けたものである。この大きな蒸気
空間部8の存在により、液体5が体積膨張を起しても沸
騰が停止ゝしてしまうということがなくなる。ブロック
状の冷却面12は熱伝導性の銅、アルミニューム等でで
きていて、蒸気は主として冷却面12の下部にて行なわ
れる。このため沸騰液面9と冷却面12の下部との初期
距離Hiを、第6図に示す最適範囲以内にするのが良い
。蒸気空間部8に接する冷却面12の側部12′も凝縮
に有効に寄与し、熱抵抗はさらに小さくなる。また蒸気
空間部8は、内部で発生する不凝縮性の気体、あるいは
外部よシ侵入する不凝縮性の空気を集めるガス溜め部と
しての効果もめる。つまり蒸気が冷却面12に凝縮する
際、不凝縮気体による熱抵抗の増大を緩和する作用があ
る。またこのブロック状の冷却面12は肉厚であシ、そ
の熱容量は大きいので、過度的に大きな入力が下面2に
入っても、それを吸収し、下面2の異常温度上昇を阻止
する。このような方法により蒸気空間部8を設けると、
第5図の破線Oに示すように、熱流束Qcが増大しても
熱流束αCは低下しなくなる。
FIG. 7 shows an embodiment showing a method for structurally solving the above-mentioned phenomenon in which the heat transfer coefficient suddenly decreases due to transition to natural convection. As shown in the figure, a block-shaped cooling surface 12 is provided at the lower part of the upper surface 3, and vapor spaces 8 and 11 are provided between this cooling surface 12 and the side wall portion 4. Due to the existence of this large vapor space 8, even if the liquid 5 undergoes volumetric expansion, boiling will not stop. The block-shaped cooling surface 12 is made of thermally conductive copper, aluminum, etc., and steam is mainly applied to the lower part of the cooling surface 12. For this reason, it is preferable that the initial distance Hi between the boiling liquid level 9 and the lower part of the cooling surface 12 be within the optimum range shown in FIG. The side 12' of the cooling surface 12 in contact with the vapor space 8 also contributes effectively to condensation, further reducing the thermal resistance. The vapor space 8 also functions as a gas reservoir for collecting non-condensable gas generated inside or non-condensable air entering from the outside. In other words, when steam condenses on the cooling surface 12, it has the effect of alleviating an increase in thermal resistance due to non-condensable gas. Moreover, this block-shaped cooling surface 12 is thick and has a large heat capacity, so even if an excessively large input enters the lower surface 2, it will be absorbed and prevent the lower surface 2 from rising in abnormal temperature. When the steam space 8 is provided by such a method,
As shown by the broken line O in FIG. 5, even if the heat flux Qc increases, the heat flux αC does not decrease.

第8図は他の実施例である。これはブロック状の冷却面
12の中に横穴13を設けたものであり、蒸気空間部8
が増大するため、熱流束qcが増大しても、さらに自然
対流に移行し難くなる。14は溶接部で、この実施例で
は、冷却面12を別個に作シ、これを容器1の上部にセ
ットした後、溶接により固定するものである。
FIG. 8 shows another embodiment. This is a block-shaped cooling surface 12 with a horizontal hole 13, and a steam space 8.
As a result, even if the heat flux qc increases, it becomes more difficult to shift to natural convection. Reference numeral 14 denotes a welding part, and in this embodiment, the cooling surface 12 is made separately, set on the upper part of the container 1, and then fixed by welding.

第9図は他の実施例である。これはブロック状の冷却面
12の縁に、液切り板(15を設けたものである。この
ようにすると冷却面12の側部12′にて凝縮した液膜
が降下し、冷却面12の下部に回9込み、凝縮液膜7の
厚さを厚くしないようにすることができる。
FIG. 9 shows another embodiment. This is provided with a liquid cutter plate (15) on the edge of the block-shaped cooling surface 12. In this way, the liquid film condensed on the side 12' of the cooling surface 12 descends, and the cooling surface 12 is It is possible to prevent the thickness of the condensate film 7 from increasing by inserting a groove 9 in the lower part.

第10図は他の実施例である0ごれは大きなくさび状の
冷却面12を、下面3に設けたものである。凝縮液膜7
は、くさび面12′を降下し、その先端より下部に落下
する。くさびの先端と、下面2に入力を入れない時の液
面9からの初期距離Hiを第6図の最適範囲にすると良
い。くさび面12′と隣シのそれとの間が、蒸気空間部
8として作用するっ 第11図は他の実施例である。これは短形状の冷却面1
2を、複数個上面3に設けた場合である。
FIG. 10 shows another embodiment in which a large wedge-shaped cooling surface 12 is provided on the lower surface 3. Condensate film 7
descends down the wedge surface 12' and falls below its tip. It is preferable to set the initial distance Hi between the tip of the wedge and the liquid level 9 when no input is applied to the lower surface 2 to be within the optimal range shown in FIG. FIG. 11 shows another embodiment in which the space between the wedge surface 12' and the adjacent wedge surface acts as a vapor space 8. This is a rectangular cooling surface 1
2 is provided on the upper surface 3.

冷却面12の側部12′と、隣りのそれとの間の空間部
が蒸気空間部8である。
The space between the side 12' of the cooling surface 12 and the adjacent side is the vapor space 8.

第12図は他の実施例である。これは下面2そのものが
発熱体ではなく、その内部に小さな加熱面(たとえば半
導体素子)2′が設けである場合であシ、この場合には
、下面2の面積に対し加熱面2′の総面積は小さくなる
。このため、今までの実施例における下面2の熱流束と
、第12図の加熱面2′の熱流束を同一とし、また第1
2図の上面3と下面20面積を同一とすると、この実施
例における上1jj(冷却面)3への熱流束は小さくな
る。第5図に示すように熱流束が小さい場合には、熱伝
達率αCの向上効果は小さくなるので、この実施例では
次のような工夫をしている0つまシ上面3に小さなブロ
ック状の冷却面12を設け、また加熱面2′の上部から
冷却面12に向って縮少ノズル16を設け、気泡6を縮
少ノズル16により集める事によシ、冷却面12への熱
流束を高め、熱伝達率向上効果を小さくしないようにし
たものである。・ 第13図は他の実施例である。これは大規模集積回路等
のように、積方向に長い容器1に本発明を用いた場合で
ある。複数個の冷却面12が上面3に設けてアシ、それ
に対応して縮少ノズル16が設けである。3′は上面3
に設けたフィンであるO 第14図は他の実施例である。これは加熱面2′とはソ
同じ大きさの冷却面12を、加熱面2′毎に上面3に取
付けたものである。このような場合は縮少ノズル16は
不要としても良い。 ・なお本発明は容器1が密閉され
ている場合の他、大気に開放されている場合でも適用で
きるものである。
FIG. 12 shows another embodiment. This is the case when the lower surface 2 itself is not a heating element, but has a small heating surface (for example, a semiconductor element) 2' inside it, and in this case, the total area of the heating surface 2' is The area becomes smaller. Therefore, the heat flux of the lower surface 2 in the previous embodiments and the heat flux of the heating surface 2' in FIG.
If the areas of the upper surface 3 and lower surface 20 in FIG. 2 are the same, the heat flux to the upper surface 1jj (cooling surface) 3 in this embodiment will be small. As shown in Fig. 5, when the heat flux is small, the effect of improving the heat transfer coefficient αC becomes small. Therefore, in this embodiment, the following measures are taken: a small block-shaped A cooling surface 12 is provided, and a reduction nozzle 16 is provided from the top of the heating surface 2' toward the cooling surface 12, and the air bubbles 6 are collected by the reduction nozzle 16, thereby increasing the heat flux to the cooling surface 12. , so as not to reduce the heat transfer coefficient improvement effect. - Figure 13 shows another embodiment. This is the case when the present invention is applied to a container 1 that is long in the stacking direction, such as a large-scale integrated circuit. A plurality of cooling surfaces 12 are provided on the upper surface 3, and correspondingly reducing nozzles 16 are provided. 3' is the top surface 3
FIG. 14 shows another embodiment. In this case, a cooling surface 12 having the same size as the heating surface 2' is attached to the upper surface 3 of each heating surface 2'. In such a case, the reduction nozzle 16 may be unnecessary. -The present invention can be applied not only when the container 1 is sealed but also when it is open to the atmosphere.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、(1)凝縮部の
熱伝達率が著しく向上し、(2)従来のような細かいフ
ィンを多数取付ける必要が無くなり、(8)冷却面の側
部に設けた蒸気空間部により、本発明の効果が高熱流束
領域まで持続させることができ、(弔この蒸気空間部は
不凝縮気体の影響を小さくおさえることもでき、(5)
冷却面の付加によシ、熱容量が増加し、加熱面の異常温
度上昇を防止できるようになった。
As explained above, according to the present invention, (1) the heat transfer coefficient of the condensing section is significantly improved, (2) there is no need to attach a large number of fine fins as in the conventional case, and (8) the side of the cooling surface The effect of the present invention can be maintained up to the high heat flux region by the steam space provided in the (5)
By adding a cooling surface, the heat capacity increases, making it possible to prevent abnormal temperature rises on the heating surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来の熱伝達装置の構成図、第3図、
第4図は本発明の熱伝達装置の構成を説明する図、第5
図は本発明の熱伝達装置の効果を説明する図、第6図は
本発明の熱伝達装置が効果を発揮する最適範囲を説明す
る図、第7図から第14図は他の実施例である。 1は容器、2は下面(加熱面ン、3は上面(冷却面)、
4は側壁部、5は液体、6は気泡、6′は気泡(泡膜)
、7は凝縮液膜、8と11は蒸気空間部、9は液面、9
′は沸騰液面、10は補助容器、12は冷却面、12′
は側部、13は穴、14は溶接部、15は液切p板、1
6は縮少ノズル。 才1図 、3 第3閃 +4−m 第5凶 矛6旧 峨幻Cで。コ(H・/ss )
Figures 1 and 2 are configuration diagrams of conventional heat transfer devices; Figure 3;
FIG. 4 is a diagram explaining the configuration of the heat transfer device of the present invention, and FIG.
The figures are diagrams explaining the effects of the heat transfer device of the present invention, Figure 6 is a diagram explaining the optimum range in which the heat transfer device of the present invention exhibits its effects, and Figures 7 to 14 are diagrams showing other embodiments. be. 1 is the container, 2 is the bottom surface (heating surface), 3 is the top surface (cooling surface),
4 is the side wall, 5 is the liquid, 6 is the bubble, and 6' is the bubble (foam membrane).
, 7 is the condensate film, 8 and 11 are the vapor space, 9 is the liquid level, 9
' is the boiling liquid level, 10 is the auxiliary container, 12 is the cooling surface, 12'
is the side part, 13 is the hole, 14 is the welded part, 15 is the liquid drain plate, 1
6 is a reduction nozzle. Sai 1 figure, 3 3rd flash +4-m 5th evil spear 6 old Agen C. Ko (H・/ss)

Claims (1)

【特許請求の範囲】 1、容器内に蒸発性の液体を入れ、その沸騰−凝縮作用
によシ加熱面から冷却面へ熱輸送する熱伝達装置におい
て、加熱面に熱を加えない時の液面から冷却面までの初
期距離Hiと加熱面から冷却面までの距離H5との比H
i /Hsが0.02〜0.3の範囲になるように熱伝
達装置を構成し、加熱面に熱を加えた時に発生する沸騰
液面部の泡膜を冷却面に形成する凝縮液膜に接触させる
事により凝縮液膜と効果的に排除し、熱抵抗の減少を図
った熱伝達装置。 2、容器内の上面にブロック状の冷却面を設け、このブ
ロック状の冷却面の背部または側部に蒸気空間部を設け
た特許請求範囲第一項の熱伝達装置。 3、加熱面と冷却面との間に、沸騰して発生した気泡を
集め、冷却面の熱流束を高めるための縮少ノズルを設け
た特許請求範囲第一項または第二項の熱伝達装置。
[Claims] 1. In a heat transfer device that transports heat from a heating surface to a cooling surface by placing an evaporative liquid in a container and using its boiling-condensation action, the liquid when no heat is applied to the heating surface. Ratio H between the initial distance Hi from the surface to the cooling surface and the distance H5 from the heating surface to the cooling surface
The heat transfer device is configured so that i/Hs is in the range of 0.02 to 0.3, and a condensed liquid film is formed on the cooling surface to form a bubble film at the boiling liquid level that is generated when heat is applied to the heating surface. A heat transfer device that effectively eliminates the condensate film by bringing it into contact with the liquid, reducing thermal resistance. 2. The heat transfer device according to claim 1, wherein a block-shaped cooling surface is provided on the upper surface of the container, and a steam space is provided at the back or side of the block-shaped cooling surface. 3. The heat transfer device according to claim 1 or 2, wherein a contraction nozzle is provided between the heating surface and the cooling surface to collect bubbles generated by boiling and increase the heat flux on the cooling surface. .
JP59108312A 1984-05-30 1984-05-30 Heat transfer device Granted JPS60253790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59108312A JPS60253790A (en) 1984-05-30 1984-05-30 Heat transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59108312A JPS60253790A (en) 1984-05-30 1984-05-30 Heat transfer device

Publications (2)

Publication Number Publication Date
JPS60253790A true JPS60253790A (en) 1985-12-14
JPH0579914B2 JPH0579914B2 (en) 1993-11-05

Family

ID=14481518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59108312A Granted JPS60253790A (en) 1984-05-30 1984-05-30 Heat transfer device

Country Status (1)

Country Link
JP (1) JPS60253790A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145618A1 (en) * 2010-05-19 2011-11-24 日本電気株式会社 Ebullient cooling device
US20120261094A1 (en) * 2011-04-18 2012-10-18 Empire Technology Development Llc Dissipation utilizing flow of refrigerant
US10010811B2 (en) 2013-05-28 2018-07-03 Empire Technology Development Llc Evaporation-condensation systems and methods for their manufacture and use
US10065130B2 (en) 2013-05-28 2018-09-04 Empire Technology Development Llc Thin film systems and methods for using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169253A (en) * 1974-12-13 1976-06-15 Hitachi Ltd NETSUDENTA TSUSOCHI
JPH0361001A (en) * 1989-07-28 1991-03-15 Sanyo Kokusaku Pulp Co Ltd Manufacture of plywood containing natural essential oil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169253A (en) * 1974-12-13 1976-06-15 Hitachi Ltd NETSUDENTA TSUSOCHI
JPH0361001A (en) * 1989-07-28 1991-03-15 Sanyo Kokusaku Pulp Co Ltd Manufacture of plywood containing natural essential oil

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145618A1 (en) * 2010-05-19 2011-11-24 日本電気株式会社 Ebullient cooling device
CN102869943A (en) * 2010-05-19 2013-01-09 日本电气株式会社 Ebullient cooling device
JPWO2011145618A1 (en) * 2010-05-19 2013-07-22 日本電気株式会社 Boiling cooler
US20120261094A1 (en) * 2011-04-18 2012-10-18 Empire Technology Development Llc Dissipation utilizing flow of refrigerant
US8863821B2 (en) * 2011-04-18 2014-10-21 Empire Technology Development Llc Dissipation utilizing flow of refrigerant
US9568253B2 (en) 2011-04-18 2017-02-14 Empire Technology Development Llc Dissipation utilizing flow of refrigerant
US10010811B2 (en) 2013-05-28 2018-07-03 Empire Technology Development Llc Evaporation-condensation systems and methods for their manufacture and use
US10065130B2 (en) 2013-05-28 2018-09-04 Empire Technology Development Llc Thin film systems and methods for using same

Also Published As

Publication number Publication date
JPH0579914B2 (en) 1993-11-05

Similar Documents

Publication Publication Date Title
US6820684B1 (en) Cooling system and cooled electronics assembly employing partially liquid filled thermal spreader
US8813834B2 (en) Quick temperature-equlizing heat-dissipating device
WO1990005380A1 (en) Hermetically sealed modular electronic cold plate utilizing reflux cooling
WO1990008400A1 (en) Enhanced air fin cooling arrangement for a hermetically sealed modular electronic cold plate utilizing reflux cooling
WO2008101384A1 (en) Heat transfer device and manufacturing method thereof
WO2023169116A1 (en) Case, electronic device and case exhaust method
CN114554679B (en) Heat dissipation device
WO2020155901A1 (en) Boiling enhancement apparatus
JP2004509450A (en) Cooling device for cooling components of power electronics using micro heat transfer device
CN114003111A (en) Heat dissipation equipment for computer chip
JPS60253790A (en) Heat transfer device
CN112702899A (en) Ultrathin soaking plate based on self-wetting fluid as working solution and application
JPH02114597A (en) Method of cooling electronic device
WO2023082618A1 (en) Energy storage apparatus and dehumidification structure thereof
CN214177905U (en) Ultrathin soaking plate based on self-wetting fluid as working solution
WO2022227220A1 (en) Heat dissipation device having flat heat pipe and cooling liquid plate composite structure and manufacturing method for heat dissipation device
JPH0320070B2 (en)
JPH02129999A (en) Cooling device for electronic elemnt
Bergles High flux boiling applied to microelectronics thermal control
JPH0317222B2 (en)
JPH0126543B2 (en)
JPS60136352A (en) Cooling device for integrated circuit chip
JPH09139453A (en) Semiconductor cooler
CN216210892U (en) Forced air cooling heat dissipation device for computer chip
JP2012169453A (en) Ebullient cooling device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees