WO2011145618A1 - Ebullient cooling device - Google Patents

Ebullient cooling device Download PDF

Info

Publication number
WO2011145618A1
WO2011145618A1 PCT/JP2011/061320 JP2011061320W WO2011145618A1 WO 2011145618 A1 WO2011145618 A1 WO 2011145618A1 JP 2011061320 W JP2011061320 W JP 2011061320W WO 2011145618 A1 WO2011145618 A1 WO 2011145618A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
plate
refrigerant
heat receiving
receiving member
Prior art date
Application number
PCT/JP2011/061320
Other languages
French (fr)
Japanese (ja)
Inventor
有仁 松永
吉川 実
坂本 仁
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to CN2011800203157A priority Critical patent/CN102869943A/en
Priority to JP2012515893A priority patent/JPWO2011145618A1/en
Priority to US13/698,149 priority patent/US20130056178A1/en
Publication of WO2011145618A1 publication Critical patent/WO2011145618A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0283Means for filling or sealing heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a boiling cooler that suppresses heat generation of an LSI or IC by utilizing a phase change phenomenon of a refrigerant such as boiling or liquefaction, particularly in an electronic device equipped with an LSI or IC.
  • LSIs and ICs used in electronic devices such as computers are acceleratingly increasing with each generation. Furthermore, in recent years, there has been an increasing demand for smaller and thinner devices. For this reason, the heat generation density of LSI and IC tends to increase further in the future. In order to operate these LSIs and ICs stably at high speed, it is necessary to control the operating temperature below a certain temperature. A cooling method is employed in accordance with the heat generation amount of these LSIs and ICs. However, when a device is reduced in size and thickness, a cooler such as a heat sink mounted on an LSI or IC cannot secure a size corresponding to the amount of heat generated.
  • a boiling cooler including a heat receiving plate 3, a heat transfer means 4, and a heat sink 5 as shown in FIG. 11 has been proposed.
  • the small heat receiving plate 3 is disposed on a heating element 2 such as an LSI or an IC installed on the substrate 1 and absorbs heat from the heating element 2.
  • the heat absorbed by the heat receiving plate 3 is transported via the heat transfer means 4 to the heat sink 5 mounted on the board 1 wider than the heating element 2.
  • the heat transfer means 4 a metal having high thermal conductivity such as aluminum or copper may be used. However, it is preferable to use the heat pipe 6 having better heat transfer performance as the heat transfer means 4.
  • the heat pipe 6 utilizes a phase change phenomenon in which the refrigerant is vaporized by the heat receiving plate 3 in contact with the heating element 2, and the vaporized refrigerant is liquefied by the heat radiating plate 7 provided below the heat sink 5. The heat pipe 6 uses this phase change phenomenon to transfer heat generated in the heating element 2 such as an LSI or an IC to the heat sink 5.
  • the structure of the heat pipe 6 will be described with reference to a schematic sectional view of FIG.
  • the heat pipe 6 includes a hollow tubular container 8 made of a metal having high thermal conductivity such as aluminum and copper, and a refrigerant sealed in the container 8.
  • One end of the heat pipe 6 is connected to a heat receiving plate 3 that is in contact with the heating element 2 such as an LSI or an IC.
  • a heat radiating plate 7 in contact with the heat sink 5 serving as a cooler is connected to the other end of the heat pipe 6.
  • the refrigerant changes phase from liquid to gas, while in the heat sink 7, the refrigerant changes phase from gas to liquid.
  • the pressure on the heat receiving plate 3 side becomes high, and the vaporized refrigerant generated in the heat receiving plate 3 moves to the heat radiating plate 7 side.
  • the liquid refrigerant generated on the heat radiating plate 7 side returns to the heat receiving plate 3 by passing through a fine mesh called a wick 9 attached to the inner surface of the heat pipe 6.
  • the mesh gap is very narrow.
  • the heat pipe 6 when the liquefied refrigerant generated in the heat radiating plate 7 is returned to the heat receiving plate 3, the heat pipe 6 passes through the fine mesh-like wick 9, so that the heat transport amount cannot be increased. Therefore, it is difficult to cool the heating element 2 having a large amount of heat.
  • Patent Document 1 proposes a boiling cooler in which a refrigerant is boiled by a heat receiving plate, and a liquid generated by the heat radiating plate is refluxed by gravity.
  • This heat transport using boiling is characterized by a large heat transport capability because it uses more refrigerant than the heat pipe and recirculates by gravity.
  • the loop-shaped flow path is formed in the flat plate. With this configuration, the flow path through which the gaseous refrigerant passes and the liquid refrigerant generated in the heat radiating plate recirculate, so that the flow path is separated, reducing pressure loss due to collision between the two and increasing the equivalent thermal conductivity.
  • Patent Document 2 the area where the heat receiving plate comes into contact with the refrigerant is increased by placing a boiling promoting structure on the heat receiving plate, the boiling is promoted by improving the heat transfer coefficient transmitted from the heat generating part to the refrigerant, and the equivalent thermal conductivity. Is increasing.
  • the heat radiation wall is provided with a fin having a notch partially, and the equivalent thermal conductivity is increased by increasing the surface area for condensation and enhancing the condensation effect.
  • Patent Document 4 shows a configuration in which corrugated fins having low heights are arranged in two stages (or three or more stages), and the corrugated fins are joined with their positions aligned so that heat can be transferred to each other. Has been.
  • chevron-shaped first fins are arranged on the inner sides of the heat receiving plate and the heat radiating plate, respectively, and chevron-shaped second fins are arranged on the inner side of the first fins through a support member such as a wire mesh. The configuration shown is shown.
  • Japanese Unexamined Patent Publication No. 2006-344636 Japanese Unexamined Patent Publication No. 07-161888 Japanese Unexamined Patent Publication No. 2000-74536 Japanese Unexamined Patent Publication No. 01-209356 Japanese Unexamined Patent Publication No. 11-31768
  • Patent Document 1 if a structure in which the flow path of the boiling cooling gas and the liquid refrigerant is divided as a method for improving the equivalent thermal conductivity of the flat plate boiling cooler, the flat cooling plate using boiling cooling is adopted. There is a problem that the design becomes complicated. That is, if it is going to divide a flow path, it will be necessary to adjust a flow path finely for every apparatus, and versatility will be impaired.
  • An example of the object of the present invention is to provide a boiling cooler that can efficiently dissipate heat with a simple configuration and can be applied to LSIs and ICs that generate large amounts of heat.
  • the boiling cooler of the present invention includes a chamber, a heat sink, a heat receiving member, and a heat radiating member.
  • the chamber includes a heat conduction plate in which a heating element is provided on the outer surface, and a sealed space that is provided inside the heat conduction plate and is filled with a refrigerant that changes phase between liquid and gas.
  • the heat sink is provided on the outer surface of the heat conducting plate.
  • the heat receiving member is provided on an inner surface of the heat conducting plate so as to face the heat generating member with the heat conducting plate interposed therebetween, and transmits heat generated by the heat generating member to the refrigerant.
  • the heat dissipating member is provided on the inner surface of the heat conducting plate, receives heat transferred by the refrigerant, and dissipates heat to the heat sink.
  • the heat receiving member and the heat radiating member are spaced apart from each other in the surface direction of the heat conducting plate. The heat receiving member is immersed in the liquid coolant.
  • the heat generated in the heating element is transported to the heat sink by changing the phase of the refrigerant sealed in the sealed space of the chamber to a liquid / gas between the heat receiving member and the heat radiating member gas.
  • the heat receiving member and the heat radiating member are disposed apart from each other in the surface direction of the heat conducting plate. That is, the heat receiving member and the heat radiating member are disposed in a positional relationship that does not face each other. Therefore, the movement of the refrigerant that is a gas in the heat receiving member is not hindered, and the heat conduction efficiency can be maintained high. Therefore, it is possible to efficiently dissipate heat with a simple configuration, and it is possible to deal with LSIs and ICs that generate a large amount of heat.
  • FIGS. 1 to 3 show a boiling cooler 20 according to a first embodiment of the present invention.
  • a heating element 10 such as an LSI or an IC is joined to the boiling cooler 20. More specifically, the heating element 10 is joined to the heat receiving plate 22 of the boiling cooler 20 with a heat conductive grease or a heat conductive sheet. At this time, the heating element 10 may be welded with solder.
  • the boiling cooler 20 has a hollow chamber 24 having a flat plate shape.
  • the chamber 24 includes a side wall portion 21 formed in a rectangular frame shape, a heat receiving plate (heat conducting plate) 22 covering the upper opening 21A of the side wall portion 21, and a heat radiating plate (heat conducting plate) covering the lower opening 21B of the side wall portion 21. Plate) 23.
  • the side wall 21 of the chamber 24 is provided with a refrigerant inlet 21C for injecting the refrigerant C into the sealed space.
  • the chamber 24 may be formed by separately manufacturing the side wall portion 21, the heat receiving plate 22, and the heat radiating plate 23 and then bonding them by brazing or the like. Alternatively, the chamber 24 may be formed by integrally molding either the heat receiving plate 22 or the heat radiating plate 23 with the side wall portion 21.
  • the O-ring 25 may be disposed around the upper opening 21A and the lower opening 21B of the side wall portion 21.
  • the upper opening 21A and the lower opening 21B may be blocked by the heat radiating plate 23 and the heat receiving plate 22 via the O-ring 25, and the heat radiating plate 23 and the heat receiving plate 22 may be attached to the side wall portion 21 with screws or the like.
  • the heat receiving plate 22 and the heat radiating plate 23 can be easily detached. As a result, it is possible to improve workability when mounting a heating element 22 and a heat sink 28 described later.
  • a heating element 10 such as an LSI or an IC serving as a heat source is disposed on the outer surface of the sealed space of the heat receiving plate 22 .
  • a heat receiving member 26 is fixed to the inner surface of the heat receiving plate 22 where the heating element 10 is disposed. The heat receiving member 26 transmits the heat generated in the heating element 10 to the refrigerant C.
  • each fin of the heat receiving member 26 has been subjected to a surface roughening process having a surface roughness in the range of 1 ⁇ m to 100 ⁇ m.
  • a surface roughening process having a surface roughness in the range of 1 ⁇ m to 100 ⁇ m.
  • a heat radiating member 27 for removing heat from the vaporized refrigerant C2 is provided inside the heat radiating plate 23 .
  • the heat radiating member 27 is disposed away from the heat receiving member 26 in the surface direction of the heat receiving plate 22 and the heat radiating plate 23 (that is, the direction perpendicular to the thickness direction of the heat receiving plate 22 and the heat radiating plate 23). . That is, the heat dissipation member 27 is disposed so as not to face the heat receiving member 26.
  • a heat sink 28 as a cooler is provided on the outer surface of the heat radiating plate 23 where the heat radiating member 27 is disposed.
  • the coolant C filled in the chamber 24 may be easily available water.
  • an organic refrigerant having insulation as the refrigerant C. This is because, when the refrigerant C leaks, etc., when the refrigerant C touches the electronic component or the substrate, the electronic component or the substrate is not affected and can be reused.
  • many organic refrigerants have a surface tension smaller than that of water and a boiling point smaller than that of water. For this reason, it is possible to suppress the heat generating body 10 to temperature lower than the boiling point of water.
  • the refrigerant C sealed in the chamber 24 is saturated vapor pressure by being evacuated, and has a boiling point in a normal temperature environment.
  • the saturated vapor pressure is a maximum pressure generated in a space at a certain temperature in a sealed space where only a substance such as water exists.
  • the liquid refrigerant C1 and the gas refrigerant C2 coexist in the sealed space in the chamber 24.
  • the liquid refrigerant C1 exists in the lower part of the sealed space, and the gas refrigerant C2 exists in the upper part of the sealed space.
  • the heating element 10 such as LSI or IC generates heat
  • the heat reaches the heat receiving member 26 in the chamber 24 via the heat receiving plate 22 and heats the liquid refrigerant C1 around the heat receiving member 26.
  • the heated refrigerant C1 reaches the boiling point, bubbles are formed with an acute shape as a nucleus.
  • the droplets generated by the condensation in the heat radiating member 27 are recirculated to the liquid refrigerant C1 existing below the heat radiating member 27 and further transported to the heat receiving member 26, so that the liquid refrigerant C1 becomes the gaseous refrigerant C2 again. And phase change.
  • the heat taken away from the gaseous refrigerant C1 by the heat radiating member 27 is radiated to the air or the like via the heat sink 28 attached to the outer surface of the chamber 24.
  • the gas generated in the heat receiving member 26 may be deprived of heat by the heat radiating member 27 present in the immediate vicinity to generate droplets.
  • the heat receiving member 26 and the heat radiating member 27 are arranged in a positional relationship that does not face each other. For this reason, the movement of the gas generated in the heat receiving member 26 is not hindered, and as a result, a decrease in heat conduction efficiency can be prevented.
  • the refrigerant C sealed in the sealed space of the chamber 24 is changed into a liquid / gas phase between the heat receiving member 26 and the heat radiating member 27. I am letting. Thereby, the heat generated in the heating element 10 can be efficiently transported to the heat sink 28. Further, the heat receiving member 26 and the heat radiating member 27 are spaced apart from each other in the surface direction of the heat receiving plate 22 and the heat radiating plate 23. That is, the heat receiving member 26 and the heat radiating member 27 are arranged in a positional relationship that does not face each other.
  • the heat receiving member 26 preferably has a large surface area in contact with the refrigerant C, but the surface area in contact with the liquid refrigerant C is not necessarily proportional to the boiling performance. It has been confirmed that when the pin fins of the first embodiment are rectangular fins 30, the surface area in contact with the refrigerant C is reduced, but the boiling performance is not significantly reduced. In terms of productivity, the rectangular fin 30 is more advantageous than the pin fin.
  • the rectangular fin 30 may be formed integrally with the heat receiving plate 22 by cutting or forging. Alternatively, a rectangular parallelepiped member of the rectangular fin 30 may be separately manufactured and then welded to the heat receiving plate 22 by brazing or the like, and then the surface may be roughened from about 1 ⁇ m to several hundreds of ⁇ m. Such a rectangular fin 30 may also be applied to the heat radiating member 27 connected to the heat sink 28.
  • the heat receiving member 26 is a plurality of columnar pin fins having a rough surface on the heat receiving plate 22 on which the heating element 10 is disposed. As shown in FIG. 5, the heat receiving member 26 may be constituted by a rectangular parallelepiped heat radiation block 31 having a rough surface.
  • the chamber 24 is arranged to be horizontal, but the invention is not limited to this.
  • the boiling cooler 20 may be arranged vertically as shown in FIG. That is, the heat receiving member 26 and the heat radiating member 27 may be positioned so that the normal lines of the heat receiving member 26 and the heat radiating member 27 are orthogonal to the heat receiving plate 22 and the heat radiating plate 23 in the vertical direction. Also in this case, at least the heat receiving member 26 of the heat receiving member 26 and the heat radiating member 27 is immersed in the liquid refrigerant C1. With such a configuration, the degree of freedom in design can be increased.
  • the heat conductive plate 32 is made of, for example, metal.
  • the heat of the heating element 10 is transferred from the heat receiving member 26 to the heat radiating member 27 by transferring the metal, and a synergistic effect combined with heat transport through the refrigerant C can be exhibited.
  • the heat receiving and radiating member 32 may be manufactured by cutting or forging. Or you may attach the heat-receiving member 26 and the fin of the heat radiating member 27 which were produced separately by brazing.
  • the sealing plate 33 disposed so as to face the heat conductive plate 32 may be made of aluminum or copper having good heat conductivity, or may be made of a resin such as acrylic in consideration of productivity.
  • the chamber 24 is arranged to be horizontal, but the invention is not limited to this.
  • the boiling cooler 10 is arranged vertically as shown in FIGS. 9 and 10, and the buffer tank 40 is arranged in the upper position thereof. Also good.
  • the heat receiving member 26 connected to the heating element 10 must be immersed in the liquid refrigerant C1.
  • the liquid refrigerant C1 is mostly occupied in the internal space of the chamber 24, the volume of the liquid refrigerant C1 is increased by vaporizing the liquid refrigerant C1 into the gas refrigerant C2 due to the phase change in the heat receiving member 26. .
  • the pressure in the chamber 24 rises more than necessary. In this case, since the boiling point of the refrigerant C increases, the heating element 10 may not be cooled to a predetermined temperature.
  • the buffer tank 40 shown in FIGS. 8 to 10 serves as an evacuation site for the gaseous refrigerant C2.
  • the buffer tank 40 is disposed so as to protrude above the heat sink 23.
  • a buffer space for accommodating the gaseous refrigerant C2 is formed inside the buffer tank 40.
  • the buffer tank 40 is arranged above the heat sink 23 in the vertical direction and above the heat sink 28.
  • the heat receiving member 26 connected to the heating element 10 is disposed at a position facing the buffer tank 40.
  • the gas generated by the heat receiving member 26 can be stored in the internal space of the buffer tank 40 installed on the upper part of the heat sink 23.
  • an increase in internal pressure in the chamber 24 can be suppressed, and a cooling effect can be brought out even for the heating element 10 installed on the upper portion of the chamber 24.
  • the amount of heat of the heating element 10 is large, it is necessary that a large amount of liquid refrigerant C2 exists near the heat receiving member 26 because the amount of boiling liquid refrigerant C2 is large. In that case, by storing the refrigerant C in a part of the buffer tank 40 to supplement the insufficient refrigerant C, it is possible to cope with the heating element 10 having a large calorific value.
  • the present invention can be applied to a boiling cooler. According to this boiling cooler, heat generation of LSI and IC can be suppressed by utilizing a phase change phenomenon of refrigerant such as boiling and liquefaction.
  • Heating element 20 Boiling cooler 21 Side plate 22 Heat receiving plate 23 Heat sink 24 chambers 26 Heat receiving member 27 Heat dissipation member 28 Heat sink 32 Heat conduction plate C1 (C) Liquid refrigerant C2 (C) Gaseous refrigerant

Abstract

Disclosed is an ebullient cooling device which comprises a chamber, a heat sink, a heat receiving member, and a heat release member. The chamber comprises a heat transfer plate and an airtight space. A heating element is disposed on the outer surface of the heat transfer plate, and the airtight space is formed inside the heat transfer plate and is filled with a refrigerant, the phase of which changes between a liquid and a gas. The heat sink is disposed on the outer surface of the heat transfer plate. The heat receiving member is disposed on the inner surface of the heat transfer plate in a manner such that the heat receiving member faces the heating element with the heat transfer plate therebetween, and the heat receiving member transfers heat generated by the heating element to the refrigerant. The heat release member is disposed on the inner surface of the heat transfer plate and receives heat transferred from the refrigerant to release the heat to the heat sink. The heat receiving member and the heat release member are spaced apart from each other in the surface direction of the heat transfer plate. The heat receiving member is immersed in the liquid refrigerant.

Description

沸騰冷却器Boiling cooler
 本発明は、LSIやICを搭載した電子機器において、特に、LSIやICの発熱を、沸騰・液化といった冷媒の相変化現象を利用することで抑制する沸騰冷却器に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boiling cooler that suppresses heat generation of an LSI or IC by utilizing a phase change phenomenon of a refrigerant such as boiling or liquefaction, particularly in an electronic device equipped with an LSI or IC.
 コンピュータなどの電子機器に利用されるLSIやICは、世代ごとに集積度が加速的に増加している。さらに、近年では機器の小型化や薄型化への要求が高まっている。このため、今後LSIやICの発熱密度はさらに増加していく傾向にある。これらLSIやICを高速かつ安定に動作させるためには動作温度を一定温度以下に制御する必要がある。これらLSIやICの発熱量に見合った冷却方式がとられている。ところが、機器の小型化や薄型化を図ると、LSIやICの上に実装されるヒートシンクなどの冷却器は、その発熱量に見合った大きさを確保できないのが現状である。 LSIs and ICs used in electronic devices such as computers are acceleratingly increasing with each generation. Furthermore, in recent years, there has been an increasing demand for smaller and thinner devices. For this reason, the heat generation density of LSI and IC tends to increase further in the future. In order to operate these LSIs and ICs stably at high speed, it is necessary to control the operating temperature below a certain temperature. A cooling method is employed in accordance with the heat generation amount of these LSIs and ICs. However, when a device is reduced in size and thickness, a cooler such as a heat sink mounted on an LSI or IC cannot secure a size corresponding to the amount of heat generated.
 そこで、図11に示すような、受熱板3と熱伝達手段4とヒートシンク5とを備える沸騰冷却器が提案されている。この小さな受熱板3は、基板1上に設置されたLSI、IC等の発熱体2上に配置され、その発熱体2の熱を吸収する。受熱板3が吸収した熱は、熱伝達手段4を経由して、発熱体2より広い基板1の箇所に実装したヒートシンク5まで輸送される。 Therefore, a boiling cooler including a heat receiving plate 3, a heat transfer means 4, and a heat sink 5 as shown in FIG. 11 has been proposed. The small heat receiving plate 3 is disposed on a heating element 2 such as an LSI or an IC installed on the substrate 1 and absorbs heat from the heating element 2. The heat absorbed by the heat receiving plate 3 is transported via the heat transfer means 4 to the heat sink 5 mounted on the board 1 wider than the heating element 2.
 上記熱伝達手段4としては、アルミニウムや銅などの高い熱伝導率を有する金属を使用しても良い。しかしながら、熱伝達手段4として、より熱伝達性能に優れたヒートパイプ6を使用することが好ましい。このヒートパイプ6は、発熱体2に接する受熱板3にて冷媒が気化し、この気化した冷媒がヒートシンク5の下部に設けられた放熱板7で液化するという相変化現象を利用する。ヒートパイプ6は、この相変化現象を利用して、LSI、IC等の発熱体2にて発生した熱を、ヒートシンク5に移送する。 As the heat transfer means 4, a metal having high thermal conductivity such as aluminum or copper may be used. However, it is preferable to use the heat pipe 6 having better heat transfer performance as the heat transfer means 4. The heat pipe 6 utilizes a phase change phenomenon in which the refrigerant is vaporized by the heat receiving plate 3 in contact with the heating element 2, and the vaporized refrigerant is liquefied by the heat radiating plate 7 provided below the heat sink 5. The heat pipe 6 uses this phase change phenomenon to transfer heat generated in the heating element 2 such as an LSI or an IC to the heat sink 5.
 図12の断面模式図を参照してヒートパイプ6の構造について説明する。このヒートパイプ6は、アルミニウムや銅などの熱伝導性の高い金属からなる中空状の管状容器8と、その容器8内に封入された冷媒とで構成される。ヒートパイプ6の一端部には、LSI、IC等の発熱体2に接する受熱板3が連結されている。ヒートパイプ6の他端部には、冷却器となるヒートシンク5に接する放熱板7が連結されている。 The structure of the heat pipe 6 will be described with reference to a schematic sectional view of FIG. The heat pipe 6 includes a hollow tubular container 8 made of a metal having high thermal conductivity such as aluminum and copper, and a refrigerant sealed in the container 8. One end of the heat pipe 6 is connected to a heat receiving plate 3 that is in contact with the heating element 2 such as an LSI or an IC. A heat radiating plate 7 in contact with the heat sink 5 serving as a cooler is connected to the other end of the heat pipe 6.
 受熱板3では冷媒が液体から気体に相変化する一方、放熱板7では冷媒が気体から液体に相変化する。このため、このようなヒートパイプ6では、受熱板3側の圧力が高くなって受熱板3で生じた気化した冷媒は放熱板7側に移動する。また、放熱板7側で生じた液体の冷媒は、ヒートパイプ6の内面に取り付けられているウイック9と呼ばれる細かなメッシュを通過することで受熱板3に還流する。メッシュの隙間は非常に狭小に形成されている。液体の冷媒の表面張力を利用することで、その冷媒がメッシュの隙間を通過して受熱板3側に還流される。これらの現象を繰り返すことで、ヒートパイプ6による熱輸送が可能とされている。このように冷媒の相変化を利用することで、ヒートパイプ6は、熱伝導率の高いアルミニウムや銅のような金属に比べて、遥かに高い熱伝導を実現できる。 In the heat receiving plate 3, the refrigerant changes phase from liquid to gas, while in the heat sink 7, the refrigerant changes phase from gas to liquid. For this reason, in such a heat pipe 6, the pressure on the heat receiving plate 3 side becomes high, and the vaporized refrigerant generated in the heat receiving plate 3 moves to the heat radiating plate 7 side. Further, the liquid refrigerant generated on the heat radiating plate 7 side returns to the heat receiving plate 3 by passing through a fine mesh called a wick 9 attached to the inner surface of the heat pipe 6. The mesh gap is very narrow. By utilizing the surface tension of the liquid refrigerant, the refrigerant passes through the mesh gap and is returned to the heat receiving plate 3 side. By repeating these phenomena, heat transport by the heat pipe 6 is enabled. By utilizing the phase change of the refrigerant in this way, the heat pipe 6 can realize much higher heat conduction than metals such as aluminum and copper having high heat conductivity.
 しかしながら、ヒートパイプ6では、放熱板7で生じた液化した冷媒を受熱板3に還流する際に、細かなメッシュ状のウイック9を経由するため、熱輸送量を大きくすることができない。したがって、熱量の大きな発熱体2を冷却することは困難である。 However, in the heat pipe 6, when the liquefied refrigerant generated in the heat radiating plate 7 is returned to the heat receiving plate 3, the heat pipe 6 passes through the fine mesh-like wick 9, so that the heat transport amount cannot be increased. Therefore, it is difficult to cool the heating element 2 having a large amount of heat.
 このため、特許文献1においては、受熱板で冷媒を沸騰させ、放熱板で生じた液体を重力により還流する方式の沸騰冷却器が提案されている。この沸騰を利用した熱輸送では、ヒートパイプより多くの冷媒を使用し重力により還流するため熱輸送能力が大きい特徴がある。特許文献1では、ループ状の流路を平板に形成している。この構成により、気体の冷媒が通る流路と放熱板で生じた液体の冷媒が還流するため流路を分離し、両者が衝突することによる圧力損失を低減し等価熱伝導率を高めている。 For this reason, Patent Document 1 proposes a boiling cooler in which a refrigerant is boiled by a heat receiving plate, and a liquid generated by the heat radiating plate is refluxed by gravity. This heat transport using boiling is characterized by a large heat transport capability because it uses more refrigerant than the heat pipe and recirculates by gravity. In patent document 1, the loop-shaped flow path is formed in the flat plate. With this configuration, the flow path through which the gaseous refrigerant passes and the liquid refrigerant generated in the heat radiating plate recirculate, so that the flow path is separated, reducing pressure loss due to collision between the two and increasing the equivalent thermal conductivity.
 特許文献2では、受熱板に沸騰促進構造物を置くことで受熱板が冷媒に触れる面積を大きくし、発熱部から冷媒に伝える熱伝達率を向上させることで沸騰を促進し、等価熱伝導率を高めている。 In Patent Document 2, the area where the heat receiving plate comes into contact with the refrigerant is increased by placing a boiling promoting structure on the heat receiving plate, the boiling is promoted by improving the heat transfer coefficient transmitted from the heat generating part to the refrigerant, and the equivalent thermal conductivity. Is increasing.
 特許文献3では、放熱壁に、部分的に切欠きを有するフィンを設ける構造とし、凝縮を行う表面積を大きくし凝縮効果を高めることにより等価熱伝導率を高めている。 In Patent Document 3, the heat radiation wall is provided with a fin having a notch partially, and the equivalent thermal conductivity is increased by increasing the surface area for condensation and enhancing the condensation effect.
 特許文献4では、高さの低い波形フィンを二段(又は、三段以上)に配置し、各波形フィンを、相互に熱伝達できる様に折り曲げ部同士の位置を合わせて接合する構成が示されている。 Patent Document 4 shows a configuration in which corrugated fins having low heights are arranged in two stages (or three or more stages), and the corrugated fins are joined with their positions aligned so that heat can be transferred to each other. Has been.
 特許文献5では、受熱プレートと放熱プレートのそれぞれ内側に山型の第1のフィンが配置され、その第1のフィンの内側に金網等の支持部材を介して山型の第2のフィンが配された構成が示されている。 In Patent Document 5, chevron-shaped first fins are arranged on the inner sides of the heat receiving plate and the heat radiating plate, respectively, and chevron-shaped second fins are arranged on the inner side of the first fins through a support member such as a wire mesh. The configuration shown is shown.
日本国特開2006-344636号公報Japanese Unexamined Patent Publication No. 2006-344636 日本国特開平07-161888号公報Japanese Unexamined Patent Publication No. 07-161888 日本国特開2000-74536号公報Japanese Unexamined Patent Publication No. 2000-74536 日本国特開平01-209356号公報Japanese Unexamined Patent Publication No. 01-209356 日本国特開平11-31768号公報Japanese Unexamined Patent Publication No. 11-31768
 しかしながら、特許文献1に示すように、平板の沸騰冷却器の等価熱伝導率を向上させる方式として沸騰冷却の気体、液体の冷媒の流路を分ける構造を採用すると、沸騰冷却を使用した平板の設計が複雑になってしまうという問題がある。即ち、流路を分けようとすると、機器毎に流路を細かく調整する必要があり、汎用性が損なわれてしまう。 However, as shown in Patent Document 1, if a structure in which the flow path of the boiling cooling gas and the liquid refrigerant is divided as a method for improving the equivalent thermal conductivity of the flat plate boiling cooler, the flat cooling plate using boiling cooling is adopted. There is a problem that the design becomes complicated. That is, if it is going to divide a flow path, it will be necessary to adjust a flow path finely for every apparatus, and versatility will be impaired.
 また、特許文献2~5に示すように、受熱板や放熱板にてフィンを介して冷媒に触れる面積を大きくする方式では、その面積を大きくした分だけしか沸騰凝縮の発生領域を増加させることができず、大きな等価熱伝導率の向上を見込むことができない。
 さらに、このような特許文献2~5に示される技術では、受熱板や放熱板に設置されるフィン(受熱部材、放熱部材)が互いに干渉し合う位置関係にある。これによって冷媒の沸騰・凝縮の効率が低下してしまうという問題があった。
In addition, as shown in Patent Documents 2 to 5, in the method of increasing the area in contact with the refrigerant through the fins on the heat receiving plate or the heat radiating plate, the region where boiling condensation occurs is increased only by increasing the area. Cannot be expected, and a large improvement in equivalent thermal conductivity cannot be expected.
Further, in the techniques disclosed in Patent Documents 2 to 5, the fins (heat receiving member, heat radiating member) installed on the heat receiving plate and the heat radiating plate are in a positional relationship where they interfere with each other. As a result, there is a problem that the efficiency of boiling and condensing of the refrigerant is lowered.
 この発明は、上述した事情に鑑みてなされた。本発明の目的の一例は、簡易な構成によって効率よく放熱を行うことができ、発熱量の大きなLSIやICに対応することが可能な沸騰冷却器を提供することである。 This invention was made in view of the above-mentioned circumstances. An example of the object of the present invention is to provide a boiling cooler that can efficiently dissipate heat with a simple configuration and can be applied to LSIs and ICs that generate large amounts of heat.
 上記課題を解決するために、本発明の沸騰冷却器は、チャンバーとヒートシンクと受熱部材と放熱部材とを備える。チャンバーは、発熱体が外側の面に設けられた熱伝導板、および前記熱伝導板の内側に設けられ、液体と気体との間で相変化する冷媒が充填された密閉空間を有する。ヒートシンクは、前記熱伝導板の外側の面に設けられている。受熱部材は、前記熱伝導板を挟んで前記発熱体と対向するように前記熱伝導板の内側の面に設けられ、前記発熱体で発生した熱を冷媒に伝達する。放熱部材は、前記熱伝導板の内側の面に設けられ、前記冷媒により伝達された熱を受け入れて前記ヒートシンクに放熱する。前記受熱部材及び前記放熱部材は、前記熱伝導板の面方向に互いに離間して配置されている。前記受熱部材が液体の前記冷媒に浸漬されている。 In order to solve the above problems, the boiling cooler of the present invention includes a chamber, a heat sink, a heat receiving member, and a heat radiating member. The chamber includes a heat conduction plate in which a heating element is provided on the outer surface, and a sealed space that is provided inside the heat conduction plate and is filled with a refrigerant that changes phase between liquid and gas. The heat sink is provided on the outer surface of the heat conducting plate. The heat receiving member is provided on an inner surface of the heat conducting plate so as to face the heat generating member with the heat conducting plate interposed therebetween, and transmits heat generated by the heat generating member to the refrigerant. The heat dissipating member is provided on the inner surface of the heat conducting plate, receives heat transferred by the refrigerant, and dissipates heat to the heat sink. The heat receiving member and the heat radiating member are spaced apart from each other in the surface direction of the heat conducting plate. The heat receiving member is immersed in the liquid coolant.
 本発明によれば、チャンバーの密閉空間内に封入された冷媒を、受熱部材及び放熱部材気体との間で液体・気体に相変化させることにより、発熱体で発生した熱をヒートシンクに輸送することができる。また、受熱部材と放熱部材とが、熱伝導板の面方向に離間して配置されている。即ち、受熱部材と放熱部材とが、互いに対向しない位置関係に配置されている。そのため、受熱部材において気体となる冷媒の移動が阻害されることがなく、熱伝導効率を高く維持することができる。したがって、簡易な構成によって効率よく放熱を行うことができ、発熱量の大きなLSIやICに対応することが可能となる。 According to the present invention, the heat generated in the heating element is transported to the heat sink by changing the phase of the refrigerant sealed in the sealed space of the chamber to a liquid / gas between the heat receiving member and the heat radiating member gas. Can do. Further, the heat receiving member and the heat radiating member are disposed apart from each other in the surface direction of the heat conducting plate. That is, the heat receiving member and the heat radiating member are disposed in a positional relationship that does not face each other. Therefore, the movement of the refrigerant that is a gas in the heat receiving member is not hindered, and the heat conduction efficiency can be maintained high. Therefore, it is possible to efficiently dissipate heat with a simple configuration, and it is possible to deal with LSIs and ICs that generate a large amount of heat.
本発明の第1実施形態に係る沸騰冷却器の分解斜視図である。It is a disassembled perspective view of the boiling cooler concerning a 1st embodiment of the present invention. 図1に示す沸騰冷却器を裏側から見た分解斜視図である。It is the disassembled perspective view which looked at the boiling cooler shown in FIG. 1 from the back side. 本発明の第1実施形態に係る沸騰冷却器の縦断面図である。It is a longitudinal cross-sectional view of the boiling cooler which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る沸騰冷却器の分解斜視図である。It is a disassembled perspective view of the boiling cooler which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る沸騰冷却器の分解斜視図である。It is a disassembled perspective view of the boiling cooler which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る沸騰冷却器の縦断面図である。It is a longitudinal cross-sectional view of the boiling cooler which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る沸騰冷却器の縦断面図である。It is a longitudinal cross-sectional view of the boiling cooler which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係る沸騰冷却器の斜視図である。It is a perspective view of the boiling cooler concerning a 6th embodiment of the present invention. 本発明の第6実施形態に係る沸騰冷却器の縦断面図である。It is a longitudinal cross-sectional view of the boiling cooler which concerns on 6th Embodiment of this invention. 本発明の第6実施形態に係る沸騰冷却器における冷媒の流れを説明する透過正面図である。It is a permeation | transmission front view explaining the flow of the refrigerant | coolant in the boiling cooler which concerns on 6th Embodiment of this invention. 従来の沸騰冷却器の斜視図である。It is a perspective view of the conventional boiling cooler. ヒートパイプの内部構造を示す切断図である。It is a cutaway view showing the internal structure of the heat pipe.
(第1の実施形態)
 本発明の第1の実施形態について図1~図3を参照して説明する。
 図1~図3には、本発明の第1の実施形態による沸騰冷却器20が示されている。沸騰冷却器20には、例えば、LSI、IC等である発熱体10が接合されている。より具体的には、発熱体10は、熱伝導性グリース又は熱伝導性シートなどにより、沸騰冷却器20の受熱板22に接合される。この際、発熱体10を半田により溶着しても良い。
(First embodiment)
A first embodiment of the present invention will be described with reference to FIGS.
1 to 3 show a boiling cooler 20 according to a first embodiment of the present invention. For example, a heating element 10 such as an LSI or an IC is joined to the boiling cooler 20. More specifically, the heating element 10 is joined to the heat receiving plate 22 of the boiling cooler 20 with a heat conductive grease or a heat conductive sheet. At this time, the heating element 10 may be welded with solder.
 沸騰冷却器20は、平板型をなす中空状のチャンバー24を有している。このチャンバー24は、四角形枠状に形成された側壁部21と、側壁部21の上部開口21Aを覆う受熱板(熱伝導板)22と、側壁部21の下部開口21Bを覆う放熱板(熱伝導板)23とを有している。 The boiling cooler 20 has a hollow chamber 24 having a flat plate shape. The chamber 24 includes a side wall portion 21 formed in a rectangular frame shape, a heat receiving plate (heat conducting plate) 22 covering the upper opening 21A of the side wall portion 21, and a heat radiating plate (heat conducting plate) covering the lower opening 21B of the side wall portion 21. Plate) 23.
 受熱板22及び放熱板23は、熱伝導率の高い銅やアルミニウムなどの金属で形成されている。受熱板22及び放熱板23は、チャンバー24の厚み方向に互いに対向して配置されている。側壁部21の上部開口21Aと下部開口21Bが受熱板22及び放熱板23によって閉塞されることで側壁部21内部には密閉空間が形成される。この密閉空間には、冷媒Cが充填されている。この冷媒Cとして、密閉空間内において液体の冷媒C1と気体の冷媒C2とが共存している。冷媒Cは、液体・気体に相変化可能である。 The heat receiving plate 22 and the heat radiating plate 23 are made of metal such as copper or aluminum having high thermal conductivity. The heat receiving plate 22 and the heat radiating plate 23 are arranged to face each other in the thickness direction of the chamber 24. The upper opening 21 </ b> A and the lower opening 21 </ b> B of the side wall 21 are closed by the heat receiving plate 22 and the heat radiating plate 23, thereby forming a sealed space inside the side wall 21. This sealed space is filled with the refrigerant C. As the refrigerant C, a liquid refrigerant C1 and a gas refrigerant C2 coexist in the sealed space. The refrigerant C can be phase-changed into liquid / gas.
 チャンバー24の側壁部21には、密閉空間内に冷媒Cを注入するための冷媒注入口21Cが設けられている。
 チャンバー24は、側壁部21、受熱板22、放熱板23を別々に作製した後にこれらをろう付け等により接合することで形成しても良い。あるいは、チャンバー24は、受熱板22又は放熱板23のいずれかを側壁部21と一体成型しても良い。側壁部21の上部開口21A周囲及び下部開口21B周囲にOリング25を配置してもよい。このOリング25を介して放熱板23及び受熱板22によって上部開口21A及び下部開口21Bを閉塞し、さらに、放熱板23及び受熱板22をねじ等によって側壁部21に取り付けてもよい。このように、Oリング25を使用した場合、受熱板22、放熱板23の取り外しが容易となる。その結果、後述する発熱体22及びヒートシンク28を搭載する際の作業性を向上させることができる。
The side wall 21 of the chamber 24 is provided with a refrigerant inlet 21C for injecting the refrigerant C into the sealed space.
The chamber 24 may be formed by separately manufacturing the side wall portion 21, the heat receiving plate 22, and the heat radiating plate 23 and then bonding them by brazing or the like. Alternatively, the chamber 24 may be formed by integrally molding either the heat receiving plate 22 or the heat radiating plate 23 with the side wall portion 21. The O-ring 25 may be disposed around the upper opening 21A and the lower opening 21B of the side wall portion 21. The upper opening 21A and the lower opening 21B may be blocked by the heat radiating plate 23 and the heat receiving plate 22 via the O-ring 25, and the heat radiating plate 23 and the heat receiving plate 22 may be attached to the side wall portion 21 with screws or the like. Thus, when the O-ring 25 is used, the heat receiving plate 22 and the heat radiating plate 23 can be easily detached. As a result, it is possible to improve workability when mounting a heating element 22 and a heat sink 28 described later.
 受熱板22における密閉空間の外側の面には、熱源となるLSI、IC等の発熱体10が配置されている。受熱板22における発熱体10が配置された箇所の内側の面には、受熱部材26が固定されている。受熱部材26は、発熱体10で発生した熱を冷媒Cに伝達する。 On the outer surface of the sealed space of the heat receiving plate 22, a heating element 10 such as an LSI or an IC serving as a heat source is disposed. A heat receiving member 26 is fixed to the inner surface of the heat receiving plate 22 where the heating element 10 is disposed. The heat receiving member 26 transmits the heat generated in the heating element 10 to the refrigerant C.
 受熱部材26は、受熱板22の内側の面に一定の間隔で配列され固定される複数のフィンで構成されている。この複数のフィン(本実施形態ではピンフィン)は、沸騰を促進するため表面を粗面とした直方体の矩形型フィン、又は、ピンフィン等からなる。 The heat receiving member 26 includes a plurality of fins arranged and fixed on the inner surface of the heat receiving plate 22 at regular intervals. The plurality of fins (in this embodiment, pin fins) are rectangular parallelepiped rectangular fins or pin fins whose surface is roughened to promote boiling.
 受熱板22の外側の面に複数の発熱体10を設置する場合は、その発熱体10と一致した箇所又はその近傍に受熱部材26を配置する。この受熱部材26は、熱抵抗を低減するために切削や鍛造等により受熱板22と一体成形することが望ましい。一方で、生産性の観点からは、受熱部材26を構成する複数のフィンを別に作製し、これらを放熱板23にろう付けすることが好ましい。 When a plurality of heating elements 10 are installed on the outer surface of the heat receiving plate 22, the heat receiving member 26 is disposed at a location that matches the heating element 10 or in the vicinity thereof. The heat receiving member 26 is desirably integrally formed with the heat receiving plate 22 by cutting, forging or the like in order to reduce the thermal resistance. On the other hand, from the viewpoint of productivity, it is preferable to separately produce a plurality of fins constituting the heat receiving member 26 and braze them to the heat sink 23.
 ピンフィンからなる受熱部材26では、気化した冷媒C1と液化して還流される冷媒C2の流れを可能な限り阻害しないように、複数のピンフィンをマトリックス状に配置する。受熱部材26で沸騰時に発生する気泡の離脱が邪魔されないように、ピンフィンの隙間は1mmから数mm確保することが好ましい。直方体部材からなる矩形型フィンを使用する場合、表面積を増やす観点からは厚みを薄くしてより多くのフィンを設置することも考えられる。一方で、フィンが薄い場合にはフィンの熱容量が小さくなるため、冷却効率の観点からは好ましくない。さらに、フィンが薄い場合には加工が困難となる。よって、少なくともフィンには1mmから数mmの厚さを持たせることが望ましい。 In the heat receiving member 26 made of pin fins, a plurality of pin fins are arranged in a matrix so as not to inhibit the flow of the vaporized refrigerant C1 and the refrigerant C2 liquefied and refluxed as much as possible. It is preferable to secure the gap between the pin fins from 1 mm to several mm so that the heat receiving member 26 does not disturb the separation of bubbles generated at the time of boiling. In the case of using rectangular fins made of a rectangular parallelepiped member, it is conceivable to install more fins by reducing the thickness from the viewpoint of increasing the surface area. On the other hand, if the fins are thin, the heat capacity of the fins is small, which is not preferable from the viewpoint of cooling efficiency. Furthermore, when the fin is thin, processing becomes difficult. Therefore, it is desirable that at least the fin has a thickness of 1 mm to several mm.
 フィンの高さ、即ち、受熱部材26における受熱板22の内側の面からの高さは、チャンバー24の厚み、即ち、受熱板22と放熱板23との対向距離(受熱板22と放熱板23との間の距離)の略2分の1の寸法に設定することが好ましい。これは、受熱部材26全体を液体の冷媒C1に浸漬させてフィンの表面全体を沸騰に生かすためである。 The height of the fin, that is, the height from the inner surface of the heat receiving plate 22 in the heat receiving member 26 is the thickness of the chamber 24, that is, the facing distance between the heat receiving plate 22 and the heat radiating plate 23 (the heat receiving plate 22 and the heat radiating plate 23. It is preferable to set the dimension to approximately one half of the distance between the two. This is because the entire heat receiving member 26 is immersed in the liquid refrigerant C1 and the entire surface of the fin is utilized for boiling.
 受熱部材26の各フィンには、表面粗さ1μm~100μmの範囲の粗面化加工が施されていることが好ましい。これにより、受熱部材26の表面に、冷媒C1の受熱により気泡が発生する際の核となる鋭角な形状を多数形成することができる。その結果、受熱部材26の表面における液体の冷媒Cの沸騰を促進することができる。 It is preferable that each fin of the heat receiving member 26 has been subjected to a surface roughening process having a surface roughness in the range of 1 μm to 100 μm. Thereby, many acute-angled shapes used as the nucleus when a bubble generate | occur | produces by the heat receiving of the refrigerant | coolant C1 can be formed in the surface of the heat receiving member 26. FIG. As a result, boiling of the liquid refrigerant C on the surface of the heat receiving member 26 can be promoted.
 放熱板23の内側には、気化した冷媒C2から熱を奪うための放熱部材27が設けられている。この放熱部材27は、受熱部材26に対して受熱板22及び放熱板23の面方向(すなわち、受熱板22及び放熱板23の厚み方向に対して垂直方向)に互いに離間して配置されている。即ち、放熱部材27は、受熱部材26と互いに対向しないように配置されている。放熱板23における放熱部材27が配置された箇所の外側の面には、冷却器としてのヒートシンク28が設けられている。 Inside the heat radiating plate 23, a heat radiating member 27 for removing heat from the vaporized refrigerant C2 is provided. The heat radiating member 27 is disposed away from the heat receiving member 26 in the surface direction of the heat receiving plate 22 and the heat radiating plate 23 (that is, the direction perpendicular to the thickness direction of the heat receiving plate 22 and the heat radiating plate 23). . That is, the heat dissipation member 27 is disposed so as not to face the heat receiving member 26. A heat sink 28 as a cooler is provided on the outer surface of the heat radiating plate 23 where the heat radiating member 27 is disposed.
 このヒートシンク28は、切削や鍛造などにより放熱板23と一体成型しても良い。あるいは、ヒートシンク28は、放熱板23と別々に作製した後に両者を熱伝導性グリースや熱伝導性シートなどにより接続しても良い。 The heat sink 28 may be integrally formed with the heat sink 23 by cutting or forging. Alternatively, the heat sink 28 may be manufactured separately from the heat radiating plate 23 and then connected to each other by a heat conductive grease or a heat conductive sheet.
 放熱部材27は、一定の間隔で配列された複数のフィンで構成される。複数のピンは、気体となった冷媒C2の凝縮を促進するために表面に粗面化加工が施された複数の直方体部材又はピンフィン(本実施形態ではピンフィン)からなる。このピンフィンからなる受熱部材26では、冷媒Cの流動性を高めるために複数のピンフィンをマトリックス状に配置することが好ましい。 The heat dissipation member 27 is composed of a plurality of fins arranged at regular intervals. The plurality of pins includes a plurality of rectangular parallelepiped members or pin fins (pin fins in the present embodiment) whose surfaces are roughened in order to promote condensation of the refrigerant C2 that has become gas. In the heat receiving member 26 made of this pin fin, in order to improve the fluidity of the refrigerant C, it is preferable to arrange a plurality of pin fins in a matrix.
 チャンバー24内に充填する冷媒Cは、入手しやすい水でも良い。電子機器等で使用する場合には、冷媒Cとして、絶縁性を備えた有機冷媒を使用することが好ましい。これは、冷媒Cが漏れてしまった場合などに、冷媒Cが電子部品や基板に触れてしまった際、その電子部品や基板に与える影響がなくなり再利用が可能となるためである。さらに、有機冷媒は、表面張力が水に比べ小さく、水よりも沸点が小さいものが多い。このため、発熱体10を水の沸点より小さな温度に抑えることが可能である。 The coolant C filled in the chamber 24 may be easily available water. When used in an electronic device or the like, it is preferable to use an organic refrigerant having insulation as the refrigerant C. This is because, when the refrigerant C leaks, etc., when the refrigerant C touches the electronic component or the substrate, the electronic component or the substrate is not affected and can be reused. Furthermore, many organic refrigerants have a surface tension smaller than that of water and a boiling point smaller than that of water. For this reason, it is possible to suppress the heat generating body 10 to temperature lower than the boiling point of water.
 チャンバー24に冷媒Cを注入した後、チャンバー24内を真空引きすることで、沸点をより小さくすることができる。その結果、発熱体の温度をさらに低温度に維持することが可能となる。チャンバー24内を真空引きした後には、冷媒注入口21Cをかしめて密封する。または、冷媒注入口21Cの取り付け栓で閉塞して、内部を密閉しても良い。 After injecting the refrigerant C into the chamber 24, the inside of the chamber 24 is evacuated to lower the boiling point. As a result, the temperature of the heating element can be maintained at a lower temperature. After evacuating the chamber 24, the refrigerant inlet 21C is caulked and sealed. Alternatively, the inside may be sealed by closing with a mounting plug of the refrigerant inlet 21C.
 受熱部材26と放熱部材27の配置関係について、上述したように、受熱部材26と放熱部材27を受熱板22及び放熱板23の面方向に離間させて設置している。すなわち、放熱部材27は、受熱部材26の直上に設けていない。その理由は、受熱部材26と放熱部材27とが近接していると、受熱部材26で発生した気体が直ちに放熱板により熱を奪われ液滴が発生することになるため、これが圧力損失となってしまい受熱部材26で発生する気体の移動を阻害してしまうからである。受熱部材26と放熱部材27との離間距離は、少なくとも発熱体10の幅寸法以上であることが望ましい。
 受熱部材26の高さは、冷媒Cへの熱伝達効率を考慮して対向位置にある放熱板23の対面から1mm以上離れるように設定することが好ましい。同様に、放熱部材27の高さは、冷媒Cへの熱伝達効率を考慮して対向位置にある受熱板22の対面から1mm以上離れるように設定することが好ましい。
Regarding the arrangement relationship between the heat receiving member 26 and the heat radiating member 27, as described above, the heat receiving member 26 and the heat radiating member 27 are separated from each other in the surface direction of the heat receiving plate 22 and the heat radiating plate 23. That is, the heat radiating member 27 is not provided immediately above the heat receiving member 26. The reason is that if the heat receiving member 26 and the heat radiating member 27 are close to each other, the gas generated in the heat receiving member 26 is immediately deprived of heat by the heat radiating plate, and droplets are generated. This is because the movement of the gas generated in the heat receiving member 26 is hindered. The distance between the heat receiving member 26 and the heat radiating member 27 is preferably at least the width of the heat generating element 10.
The height of the heat receiving member 26 is preferably set so as to be 1 mm or more away from the facing surface of the heat radiating plate 23 at the opposite position in consideration of the heat transfer efficiency to the refrigerant C. Similarly, considering the heat transfer efficiency to the refrigerant C, the height of the heat radiating member 27 is preferably set to be 1 mm or more away from the facing surface of the heat receiving plate 22 at the opposite position.
 次に、本実施形態の沸騰冷却器20の作用について詳細に説明する。
 チャンバー24に封入された冷媒Cは、真空引きが施されることで飽和蒸気圧となり、常温環境下にて沸点となる。飽和蒸気圧とは、例えば水のような物質のみが存在する密閉空間において、ある温度で空間に生じる最大圧力のことである。これにより、チャンバー24内の密閉空間には、液体の冷媒C1と気体の冷媒C2とが共存する。液体の冷媒C1は密閉空間の下部に存在し、気体の冷媒C2は密閉空間の上部に存在する。
Next, the effect | action of the boiling cooler 20 of this embodiment is demonstrated in detail.
The refrigerant C sealed in the chamber 24 is saturated vapor pressure by being evacuated, and has a boiling point in a normal temperature environment. The saturated vapor pressure is a maximum pressure generated in a space at a certain temperature in a sealed space where only a substance such as water exists. Thus, the liquid refrigerant C1 and the gas refrigerant C2 coexist in the sealed space in the chamber 24. The liquid refrigerant C1 exists in the lower part of the sealed space, and the gas refrigerant C2 exists in the upper part of the sealed space.
 LSI、IC等の発熱体10が発熱すると、熱が受熱板22を経由してチャンバー24内の受熱部材26に到達し、該受熱部材26の周囲の液体の冷媒C1に熱を与える。熱せられた冷媒C1が沸点に到達すると、鋭角な形状を核として気泡が形成される。 When the heating element 10 such as LSI or IC generates heat, the heat reaches the heat receiving member 26 in the chamber 24 via the heat receiving plate 22 and heats the liquid refrigerant C1 around the heat receiving member 26. When the heated refrigerant C1 reaches the boiling point, bubbles are formed with an acute shape as a nucleus.
 受熱部材26から液体の冷媒C1にさらに熱が与えられると、気泡が発達する。気泡がある程度の大きさになると、気泡の浮力が、表面張力による受熱部材26表面の吸引力より大きくなる。その結果、気泡が離脱する。この際、気泡が存在していた領域の空間が開放されるために、そこに周囲の液体の冷媒C1が流れ込み新たな沸騰が起こり始める。 When heat is further applied from the heat receiving member 26 to the liquid refrigerant C1, bubbles develop. When the bubbles become a certain size, the buoyancy of the bubbles becomes larger than the suction force on the surface of the heat receiving member 26 due to the surface tension. As a result, the bubbles are detached. At this time, since the space in the area where the bubbles existed is released, the surrounding liquid refrigerant C1 flows into the area and new boiling begins to occur.
 上述したように、受熱部材26の表面には粗面化加工が施されていることにより多数の鋭角な形状が存在するため、受熱部材26におけるフィン表面全体で沸騰が起こる。この沸騰によって、液体の冷媒C1が気体の冷媒C2に相変化する。この際、冷媒Cの体積は数百倍となるため、チャンバー24内の密閉空間の圧力が上昇する。これにより上方の放熱部材27側に気体の冷媒C2が移動する。このように、放熱部材27に移動した気体の冷媒C2は、放熱部材27のフィンに接触することで熱が奪われて凝縮する。これによって、フィンの表面に形成された鋭角な形状にて核を中心とした液滴が発生する。 As described above, since the surface of the heat receiving member 26 is roughened, a large number of acute shapes are present, so that boiling occurs on the entire fin surface of the heat receiving member 26. Due to this boiling, the liquid refrigerant C1 changes into a gaseous refrigerant C2. At this time, since the volume of the refrigerant C is several hundred times, the pressure of the sealed space in the chamber 24 increases. Thereby, gaseous refrigerant | coolant C2 moves to the upper radiation member 27 side. In this way, the gaseous refrigerant C <b> 2 that has moved to the heat radiating member 27 is brought into contact with the fins of the heat radiating member 27 so that heat is taken away and condensed. As a result, a droplet centering on the nucleus is generated in an acute shape formed on the surface of the fin.
 液滴が成長して、その液滴の重力が放熱部材27の表面張力による吸着力より大きくなった際に、液滴が放熱部材27から下方に向かって離脱する。この離脱により、液滴が付着していた領域が開放されるために、気体の冷媒Cが放熱部材27のフィン表面に接触し新たな凝縮が起こる。放熱部材27を構成しているフィン表面には粗面化処理が施されることで多数の鋭角な形状が存在するために、放熱部材27のフィン全体で凝縮が起こる。 When the droplet grows and the gravity of the droplet becomes larger than the adsorption force due to the surface tension of the heat radiating member 27, the droplet is detached from the heat radiating member 27 downward. Since the region where the droplets are attached is released by this separation, the gaseous refrigerant C comes into contact with the fin surface of the heat radiating member 27 and new condensation occurs. Since the fin surface constituting the heat radiating member 27 is roughened to have a large number of acute shapes, condensation occurs on the entire fin of the heat radiating member 27.
 放熱部材27で凝縮により生じた液滴は、放熱部材27の下部に存在する液体の冷媒C1に還流され、さらに受熱部材26に輸送されることで、液体の冷媒C1が再び気体の冷媒C2へと相変化する。一方、放熱部材27にて気体冷媒C1から奪われた熱は、チャンバー24外面に取り付けられているヒートシンク28を経由して空気中などに放熱される。 The droplets generated by the condensation in the heat radiating member 27 are recirculated to the liquid refrigerant C1 existing below the heat radiating member 27 and further transported to the heat receiving member 26, so that the liquid refrigerant C1 becomes the gaseous refrigerant C2 again. And phase change. On the other hand, the heat taken away from the gaseous refrigerant C1 by the heat radiating member 27 is radiated to the air or the like via the heat sink 28 attached to the outer surface of the chamber 24.
 このように、冷媒Cの相変化及び体積変化を利用して、受熱部材26と放熱部材27とに圧力差を生じさせながら冷媒Cを移動させることで、熱伝導率の良い金属である銅に比べ数倍から数十倍もの熱輸送能力を得ることができる。 In this way, by using the phase change and volume change of the refrigerant C, the refrigerant C is moved while causing a pressure difference between the heat receiving member 26 and the heat radiating member 27, so that copper, which is a metal having good thermal conductivity, is obtained. Compared to several times to several tens of times the heat transport capability can be obtained.
 また、これら受熱部材26及び放熱部材27が、受熱板22及び放熱板23の面方向に互いに離間して配置されており、即ち、互いに対向しない位置関係にある。このため、受熱部材26及び放熱部材27が互いの影響を受けることなく、最適かつ自由な冷媒との接触位置及び接触面積の設定が可能となる。 Also, the heat receiving member 26 and the heat radiating member 27 are arranged apart from each other in the surface direction of the heat receiving plate 22 and the heat radiating plate 23, that is, they are in a positional relationship that does not face each other. For this reason, the heat receiving member 26 and the heat radiating member 27 are not affected by each other, and it is possible to set an optimum and free contact position and contact area with the refrigerant.
 受熱部材26と放熱部材27が近い位置にある場合に、受熱部材26で発生した気体が、すぐ付近に存在している放熱部材27により熱を奪われ、液滴が発生することがある。
 一方で、本実施形態の沸騰冷却器20では、これら受熱部材26と放熱部材27が互いに対向しない位置関係に配置されている。このため、受熱部材26で発生する気体の移動を阻害することがなく、結果として熱伝導効率の低下を防止することができる。
When the heat receiving member 26 and the heat radiating member 27 are close to each other, the gas generated in the heat receiving member 26 may be deprived of heat by the heat radiating member 27 present in the immediate vicinity to generate droplets.
On the other hand, in the boiling cooler 20 of the present embodiment, the heat receiving member 26 and the heat radiating member 27 are arranged in a positional relationship that does not face each other. For this reason, the movement of the gas generated in the heat receiving member 26 is not hindered, and as a result, a decrease in heat conduction efficiency can be prevented.
 以上詳細に説明したように本実施形態に示される沸騰冷却器20では、チャンバー24の密閉空間内に封入された冷媒Cを、受熱部材26及び放熱部材27との間で液体・気体に相変化させている。これにより、発熱体10で発生した熱をヒートシンク28に効率良く輸送することができる。また、受熱部材26と放熱部材27とが、受熱板22及び放熱板23の面方向に離間して配置されている。即ち、受熱部材26と放熱部材27とが、互いに対向しない位置関係に配置されている。この構成により、受熱部材26において気体となる冷媒C1の移動が阻害されることがなく、熱伝導効率の高く維持することができる。したがって、簡易な構成によって効率よく放熱を行うことができ、発熱量の大きな発熱体10に対応することが可能となる。 As described above in detail, in the boiling cooler 20 shown in the present embodiment, the refrigerant C sealed in the sealed space of the chamber 24 is changed into a liquid / gas phase between the heat receiving member 26 and the heat radiating member 27. I am letting. Thereby, the heat generated in the heating element 10 can be efficiently transported to the heat sink 28. Further, the heat receiving member 26 and the heat radiating member 27 are spaced apart from each other in the surface direction of the heat receiving plate 22 and the heat radiating plate 23. That is, the heat receiving member 26 and the heat radiating member 27 are arranged in a positional relationship that does not face each other. With this configuration, the movement of the refrigerant C1 that is a gas in the heat receiving member 26 is not hindered, and the heat conduction efficiency can be maintained high. Therefore, it is possible to efficiently dissipate heat with a simple configuration, and it is possible to deal with the heating element 10 having a large calorific value.
 また、受熱板22及び放熱板23が互いに対向して配置されるとともに、受熱板22に発熱体10及び受熱部材26を設け、放熱板23に放熱部材27及びヒートシンク28を設けている。この構成により、冷媒Cを受熱部材22及び放熱部材23との間で確実に液体・気体に相変化させることができる。 Further, the heat receiving plate 22 and the heat radiating plate 23 are arranged to face each other, the heat generating plate 10 and the heat receiving member 26 are provided on the heat receiving plate 22, and the heat radiating member 27 and the heat sink 28 are provided on the heat radiating plate 23. With this configuration, it is possible to reliably change the phase of the refrigerant C to liquid / gas between the heat receiving member 22 and the heat radiating member 23.
 高発熱密度に実装されたLSI、ICなどの発熱体10は、発生した熱をすぐに熱輸送しなければ、高温となり誤動作が生じ、場合によっては動作しなくなる原因となってしまう。この点、本実施形態においては、等価熱伝導率を向上させることにより、発熱体10で発生した熱を迅速に輸送することができる。よって、発熱体10を高発熱密度に実装しても、その熱が特定の場所に留まることなく効率良く拡散し、発熱体10の温度を下げることができる。 The heating element 10 such as LSI, IC, etc. mounted at a high heat generation density will become a high temperature and malfunction if it does not immediately transport the generated heat, resulting in failure of operation. In this regard, in the present embodiment, the heat generated in the heating element 10 can be quickly transported by improving the equivalent thermal conductivity. Therefore, even if the heating element 10 is mounted at a high heat generation density, the heat is efficiently diffused without staying at a specific place, and the temperature of the heating element 10 can be lowered.
 また、受熱板22と放熱板23との間で相変化が行われる冷媒C1の流路を分ける必要がない。即ち、受熱板22から放熱板23に向かっての冷媒移動経路と、放熱板23から受熱板22への冷媒移動経路を考慮する必要がない。このような冷媒移動流路を考慮した場合、設計が変更される毎に細かい微調整が必要となるが、本実施形態においては、受熱板22、放熱板23の配置さえ考慮すればよい。したがって、設計上の困難は生じず、全体構成を簡素化することができる。 Further, it is not necessary to divide the flow path of the refrigerant C1 in which the phase change is performed between the heat receiving plate 22 and the heat radiating plate 23. That is, there is no need to consider the refrigerant movement path from the heat receiving plate 22 toward the heat radiating plate 23 and the refrigerant movement path from the heat radiating plate 23 to the heat receiving plate 22. When such a refrigerant moving flow path is considered, fine fine adjustment is required every time the design is changed, but in the present embodiment, it is only necessary to consider the arrangement of the heat receiving plate 22 and the heat radiating plate 23. Therefore, design difficulties do not occur, and the overall configuration can be simplified.
 また、上記沸騰冷却器20では、平板上の熱輸送器を使用することにより、複数の発熱体10から同時に熱輸送が可能となる。このため熱を輸送するための複数の部品が不要となる。さらに、複数必要であったヒートシンクなどの冷却器を1つに統合することも可能となり、ヒートシンク、ファンの削減をすることができる。これにより装置全体の小型化、薄型化が可能となる。 In the boiling cooler 20, heat transport from a plurality of heating elements 10 can be simultaneously performed by using a heat transporter on a flat plate. This eliminates the need for a plurality of parts for transporting heat. Furthermore, it becomes possible to integrate a plurality of required coolers such as a heat sink into one, and heat sinks and fans can be reduced. As a result, the entire apparatus can be reduced in size and thickness.
 (第2の実施形態)
 次に、本発明の第2の実施形態について図4を参照して説明する。
 上記第1の実施形態の沸騰冷却器20では、発熱体10が配置される受熱板22に設けられた、表面を粗面とした複数の柱状ピンフィンにより受熱部材26を構成した。図4に示すように複数の直方体部材を一定間隔で配置した矩形型フィン30により受熱部材26を構成しても良い。
 この矩形型のフィンにより構成した受熱部材26では、表面を粗面とした直方体部材により構成され、全体がくし型に形成されている。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG.
In the boiling cooler 20 of the said 1st Embodiment, the heat receiving member 26 was comprised with the several columnar pin fin which was provided in the heat receiving plate 22 with which the heat generating body 10 is arrange | positioned, and made the surface rough. As shown in FIG. 4, the heat receiving member 26 may be configured by rectangular fins 30 in which a plurality of rectangular parallelepiped members are arranged at regular intervals.
The heat receiving member 26 constituted by the rectangular fins is constituted by a rectangular parallelepiped member having a rough surface, and the whole is formed in a comb shape.
 受熱部材26は冷媒Cに触れる表面積が大きい方が良いが、必ずしも、液体の冷媒Cに触れる表面積と沸騰の性能とは比例しない。第1の実施形態のピンフィンを矩形型フィン30にすると冷媒Cに触れる表面積は減るが、沸騰性能は大幅に減らないことが確認されている。また、生産性の面では、ピンフィンより矩形型フィン30の方が有利である。この矩形型フィン30は、受熱板22と一体で切削や鍛造などにより作成しても良い。あるいは、矩形型フィン30の直方体部材を別に製作した後に受熱板22にろう付け等により溶着し、その後、表面を約1μmから数100μmに荒らす処理を行っても良い。このような矩形型フィン30は、ヒートシンク28に接続される放熱部材27にも適用しても良い。 The heat receiving member 26 preferably has a large surface area in contact with the refrigerant C, but the surface area in contact with the liquid refrigerant C is not necessarily proportional to the boiling performance. It has been confirmed that when the pin fins of the first embodiment are rectangular fins 30, the surface area in contact with the refrigerant C is reduced, but the boiling performance is not significantly reduced. In terms of productivity, the rectangular fin 30 is more advantageous than the pin fin. The rectangular fin 30 may be formed integrally with the heat receiving plate 22 by cutting or forging. Alternatively, a rectangular parallelepiped member of the rectangular fin 30 may be separately manufactured and then welded to the heat receiving plate 22 by brazing or the like, and then the surface may be roughened from about 1 μm to several hundreds of μm. Such a rectangular fin 30 may also be applied to the heat radiating member 27 connected to the heat sink 28.
(第3の実施形態)
 次に、本発明の第3の実施形態について図5を参照して説明する。
 上記第1の実施形態の沸騰冷却器20では、発熱体10が配置される受熱板22に、表面を粗面とした複数の柱状ピンフィンを受熱部材26とした。図5に示すように受熱部材26を、表面を粗面とした直方体状の放熱ブロック31で構成しても良い。
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIG.
In the boiling cooler 20 of the first embodiment, the heat receiving member 26 is a plurality of columnar pin fins having a rough surface on the heat receiving plate 22 on which the heating element 10 is disposed. As shown in FIG. 5, the heat receiving member 26 may be constituted by a rectangular parallelepiped heat radiation block 31 having a rough surface.
 この受熱部材26をブロック型に形成しても大幅に沸騰性能が落ちることはない。
 生産性を考えるとブロック型の形状は、ピンフィンや矩形型フィンよりも製造し易く、製造上有利である。この受熱部材26は、受熱板22と一体で切削や鍛造などにより作成しても良い。あるいは、別に作製したブロックをろう付け等により受熱板22に溶着し、その後、表面を1μmから100μmに荒らす処理を行っても良い。
 このような放熱ブロック31は、ヒートシンク28に接続される放熱部材27にも適用しても良い。
Even if the heat receiving member 26 is formed in a block shape, the boiling performance is not significantly lowered.
Considering productivity, the block shape is easier to manufacture than a pin fin or a rectangular fin, and is advantageous in manufacturing. The heat receiving member 26 may be formed integrally with the heat receiving plate 22 by cutting or forging. Alternatively, a separately manufactured block may be welded to the heat receiving plate 22 by brazing or the like, and then the surface may be roughened from 1 μm to 100 μm.
Such a heat dissipation block 31 may also be applied to the heat dissipation member 27 connected to the heat sink 28.
(第4の実施形態)
 次に、本発明の第4の実施形態について図6を参照して説明する。
 上記第1の実施形態の沸騰冷却器20では、チャンバー24が水平となるように配置したが、これに限定されない。沸騰冷却器20は、図6に示すように縦型に配置しても良い。即ち、受熱部材26、放熱部材27の法線が、鉛直方向の受熱板22及び放熱板23に対して直交する位置関係となるように、受熱部材26及び放熱部材27を位置させても良い。この場合も、受熱部材26と放熱部材27とのうち、少なくとも受熱部材26は液体の冷媒C1に浸漬される。このような構成とすることで、設計の自由度を高めることができる。
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described with reference to FIG.
In the boiling cooler 20 of the first embodiment, the chamber 24 is arranged to be horizontal, but the invention is not limited to this. The boiling cooler 20 may be arranged vertically as shown in FIG. That is, the heat receiving member 26 and the heat radiating member 27 may be positioned so that the normal lines of the heat receiving member 26 and the heat radiating member 27 are orthogonal to the heat receiving plate 22 and the heat radiating plate 23 in the vertical direction. Also in this case, at least the heat receiving member 26 of the heat receiving member 26 and the heat radiating member 27 is immersed in the liquid refrigerant C1. With such a configuration, the degree of freedom in design can be increased.
 図6に示す沸騰冷却器20の例においては、発熱体10に接続された受熱部材26を、ヒートシンク28と接続する放熱部材27より鉛直方向下方に設けている。このような構成により、発熱体10の熱を受けた受熱部材26は、液状の冷媒C1に熱を伝えることでその冷媒C1を相変化させて気泡を発生させる。ここで発生した気泡は浮力により鉛直方向上方に移動して、冷却器となるヒートシンク28と接続した放熱部材27に接触して熱が奪われる。これにより、気体の冷媒C2は凝縮し液滴となる。 In the example of the boiling cooler 20 shown in FIG. 6, the heat receiving member 26 connected to the heating element 10 is provided below the heat radiating member 27 connected to the heat sink 28 in the vertical direction. With such a configuration, the heat receiving member 26 that has received the heat of the heating element 10 transfers heat to the liquid refrigerant C1 to change the phase of the refrigerant C1 to generate bubbles. The bubbles generated here move upward in the vertical direction by buoyancy, and come into contact with the heat radiating member 27 connected to the heat sink 28 serving as a cooler, and heat is taken away. As a result, the gaseous refrigerant C2 is condensed into droplets.
 受熱部材26及び放熱部材27の位置関係は、受熱部材26に対して放熱部材27が下方、又は受熱部材26に対して放熱部材27が上方のいずれであってもよい。
 しかしながら、少なくとも、受熱部材26の高さまで冷媒Cを注入し、受熱部材26を液体の冷媒C1に浸漬させるようにする必要がある。これにより、いずれの位置関係であったとしても発熱体10を搭載する受熱部材26が液体の冷媒Cに浸る。受熱部材26により沸騰が起こって相変化を利用した循環が起こり、熱がチャンバー24が全体に伝えられヒートシンク28により放熱される。
The positional relationship between the heat receiving member 26 and the heat radiating member 27 may be that the heat radiating member 27 is below the heat receiving member 26 or the heat radiating member 27 is above the heat receiving member 26.
However, it is necessary to inject the refrigerant C up to at least the height of the heat receiving member 26 so that the heat receiving member 26 is immersed in the liquid refrigerant C1. As a result, regardless of the positional relationship, the heat receiving member 26 on which the heating element 10 is mounted is immersed in the liquid refrigerant C. Boiling occurs by the heat receiving member 26 and circulation using the phase change occurs, and heat is transmitted to the entire chamber 24 and is radiated by the heat sink 28.
(第5の実施形態)
 次に、本発明の第5の実施形態について図7を参照して説明する。
 上記第1の実施形態の沸騰冷却器20では、チャンバー24を構成している受熱板22に受熱部材26を配置し、受熱板22に対向する放熱板23に放熱部材27を配置している。この第5の実施形態では、図7に示すように、受熱部材26と放熱部材27とを、一枚の熱伝導板32に配置しても良い。
(Fifth embodiment)
Next, a fifth embodiment of the present invention will be described with reference to FIG.
In the boiling cooler 20 of the first embodiment, the heat receiving member 26 is arranged on the heat receiving plate 22 constituting the chamber 24, and the heat radiating member 27 is arranged on the heat radiating plate 23 facing the heat receiving plate 22. In the fifth embodiment, as shown in FIG. 7, the heat receiving member 26 and the heat radiating member 27 may be arranged on one heat conducting plate 32.
 この熱伝導板32を採用することで、部材が共通化されることにより、全体の部品数を減少させて生産性を向上させることができる。この熱伝導板32は例えば金属により構成されている。発熱体10の熱が、その金属を伝熱することにより受熱部材26から放熱部材27へ移動し、冷媒Cを介した熱輸送と合わせた相乗効果を発揮できる。 By adopting the heat conductive plate 32, the number of parts can be reduced and productivity can be improved by sharing the members. The heat conductive plate 32 is made of, for example, metal. The heat of the heating element 10 is transferred from the heat receiving member 26 to the heat radiating member 27 by transferring the metal, and a synergistic effect combined with heat transport through the refrigerant C can be exhibited.
 この受熱放熱部材32は、切削や鍛造により作製しても良い。あるいは、別々に作製した受熱部材26と放熱部材27のフィンをろう付けにより取り付けても良い。熱伝導板32と対向するように配置された密閉板33は、熱伝導性の良いアルミニウムや銅で作製しても良いし、生産性を考えアクリル等の樹脂により作製しても良い。 The heat receiving and radiating member 32 may be manufactured by cutting or forging. Or you may attach the heat-receiving member 26 and the fin of the heat radiating member 27 which were produced separately by brazing. The sealing plate 33 disposed so as to face the heat conductive plate 32 may be made of aluminum or copper having good heat conductivity, or may be made of a resin such as acrylic in consideration of productivity.
(第6の実施形態)
 次に、本発明の第6の実施形態について図8~図10を参照して説明する。
 上記第1の実施形態の沸騰冷却器20では、チャンバー24が水平となるように配置したが、これに限定されない。図8~図10に示すように、第6の実施形態においては、沸騰冷却器10を図9及び図10に示すように縦型に配置して、その上部位置にバッファタンク40を配置しても良い。
(Sixth embodiment)
Next, a sixth embodiment of the present invention will be described with reference to FIGS.
In the boiling cooler 20 of the first embodiment, the chamber 24 is arranged to be horizontal, but the invention is not limited to this. As shown in FIGS. 8 to 10, in the sixth embodiment, the boiling cooler 10 is arranged vertically as shown in FIGS. 9 and 10, and the buffer tank 40 is arranged in the upper position thereof. Also good.
 即ち、ヒートシンク28の鉛直方向上端付近に発熱体10を設置した場合、発熱体10に接続される受熱部材26を液体の冷媒C1に浸漬させなければならない。これによってチャンバー24の内部の大部分を液体の冷媒C1が占有することになる。しかし、チャンバー24内の内部空間にて、液体の冷媒C1が大部分占めるようになると、受熱部材26にて相変化により液体の冷媒C1が気体の冷媒C2に気化することでその体積が大きくなる。これによって冷媒Cが収容できるスペースが無くなり、チャンバー24内の圧力が必要以上に上昇することになる。この場合、冷媒Cの沸点が上昇するため、発熱体10を既定の温度に冷却することができなくなるおそれがある。 That is, when the heating element 10 is installed in the vicinity of the upper end of the heat sink 28 in the vertical direction, the heat receiving member 26 connected to the heating element 10 must be immersed in the liquid refrigerant C1. As a result, most of the interior of the chamber 24 is occupied by the liquid refrigerant C1. However, when the liquid refrigerant C1 is mostly occupied in the internal space of the chamber 24, the volume of the liquid refrigerant C1 is increased by vaporizing the liquid refrigerant C1 into the gas refrigerant C2 due to the phase change in the heat receiving member 26. . As a result, there is no space in which the refrigerant C can be stored, and the pressure in the chamber 24 rises more than necessary. In this case, since the boiling point of the refrigerant C increases, the heating element 10 may not be cooled to a predetermined temperature.
 このような内圧上昇を抑えるために、気体の冷媒C2の避難場所となるのが図8~図10に示されるバッファタンク40である。このバッファタンク40は、放熱板23の上部に突出するように配置される。バッファタンク40の内部に気体の冷媒C2を収容するためのバッファ空間が形成される。このバッファタンク40は、放熱板23の鉛直方向上部でありかつヒートシンク28の上方位置に配置される。一方、発熱体10に接続される受熱部材26は、バッファタンク40の対向位置に配置される。 In order to suppress such an increase in internal pressure, the buffer tank 40 shown in FIGS. 8 to 10 serves as an evacuation site for the gaseous refrigerant C2. The buffer tank 40 is disposed so as to protrude above the heat sink 23. A buffer space for accommodating the gaseous refrigerant C2 is formed inside the buffer tank 40. The buffer tank 40 is arranged above the heat sink 23 in the vertical direction and above the heat sink 28. On the other hand, the heat receiving member 26 connected to the heating element 10 is disposed at a position facing the buffer tank 40.
 このときの冷媒Cの動作図を図10に示す。発熱体10に接続される受熱部材26では、液体の冷媒C1が沸騰して気泡が発生する。その気泡が受熱部材26から離脱するとき、気泡(気体の冷媒C1)が占有する空間が開放され、その空間に液体の冷媒C2が流れ込むことにより循環が生じる。これにより発熱体10の熱が、チャンバー24全体に拡散され、鉛直方向下部の放熱部材27に搭載されたヒートシンク28により空気中により放熱される。 FIG. 10 shows an operation diagram of the refrigerant C at this time. In the heat receiving member 26 connected to the heating element 10, the liquid refrigerant C1 boils and bubbles are generated. When the bubbles are detached from the heat receiving member 26, the space occupied by the bubbles (gaseous refrigerant C1) is opened, and the liquid refrigerant C2 flows into the space to cause circulation. Thereby, the heat of the heating element 10 is diffused throughout the chamber 24 and is radiated in the air by the heat sink 28 mounted on the heat radiating member 27 at the lower part in the vertical direction.
 このとき、放熱板23の上部に設置されたバッファタンク40の内部空間に、受熱部材26で発生した気体を収められる。その結果、チャンバー24内の内圧上昇を抑え、チャンバー24の上部に設置した発熱体10に対しても冷却効果を引き出すことができる。また、発熱体10の熱量が大きい場合には、沸騰する液体の冷媒C2の量が多いため受熱部材26付近に多くの液体の冷媒C2が存在することが必要となる。その場合、バッファタンク40の一部に冷媒Cを貯蔵することにより、不足する冷媒Cを補うことで、大きな発熱量の発熱体10にも対応することができる。 At this time, the gas generated by the heat receiving member 26 can be stored in the internal space of the buffer tank 40 installed on the upper part of the heat sink 23. As a result, an increase in internal pressure in the chamber 24 can be suppressed, and a cooling effect can be brought out even for the heating element 10 installed on the upper portion of the chamber 24. Further, when the amount of heat of the heating element 10 is large, it is necessary that a large amount of liquid refrigerant C2 exists near the heat receiving member 26 because the amount of boiling liquid refrigerant C2 is large. In that case, by storing the refrigerant C in a part of the buffer tank 40 to supplement the insufficient refrigerant C, it is possible to cope with the heating element 10 having a large calorific value.
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。 The embodiment of the present invention has been described in detail above with reference to the drawings. However, the specific configuration is not limited to this embodiment, and design changes and the like within a scope not departing from the gist of the present invention are included.
 この出願は、2010年5月19日に出願された日本出願特願2010-115539を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2010-115539 filed on May 19, 2010, the entire disclosure of which is incorporated herein.
本発明は、沸騰冷却器に適用することができる。この沸騰冷却器によれば、LSIやICの発熱を、沸騰・液化といった冷媒の相変化現象を利用することで抑制することができる。 The present invention can be applied to a boiling cooler. According to this boiling cooler, heat generation of LSI and IC can be suppressed by utilizing a phase change phenomenon of refrigerant such as boiling and liquefaction.
10      発熱体
20   沸騰冷却器 
21   側板部 
22   受熱板 
23   放熱板 
24   チャンバー 
26   受熱部材 
27   放熱部材 
28   ヒートシンク 
32   熱伝導板 
C1(C)    液体の冷媒 
C2(C)    気体の冷媒
10 Heating element 20 Boiling cooler
21 Side plate
22 Heat receiving plate
23 Heat sink
24 chambers
26 Heat receiving member
27 Heat dissipation member
28 Heat sink
32 Heat conduction plate
C1 (C) Liquid refrigerant
C2 (C) Gaseous refrigerant

Claims (9)

  1.  発熱体が外側の面に設けられた熱伝導板、および前記熱伝導板の内側に設けられ、液体と気体との間で相変化する冷媒が充填された密閉空間を有するチャンバーと、
     前記熱伝導板の外側の面に設けられたヒートシンクと、
     前記熱伝導板を挟んで前記発熱体と対向するように前記熱伝導板の内側の面に設けられ、前記発熱体で発生した熱を冷媒に伝達する受熱部材と、
     前記熱伝導板の内側の面に設けられ、前記冷媒により伝達された熱を受け入れて前記ヒートシンクに放熱する放熱部材とを備え、
     前記受熱部材及び前記放熱部材は、前記熱伝導板の面方向に互いに離間して配置されており、
     前記受熱部材が液体の前記冷媒に浸漬されている沸騰冷却器。
    A heat conduction plate provided with an exothermic body on the outer surface, and a chamber having a sealed space provided inside the heat conduction plate and filled with a refrigerant that changes phase between liquid and gas;
    A heat sink provided on the outer surface of the heat conducting plate;
    A heat receiving member that is provided on an inner surface of the heat conductive plate so as to face the heat generating member across the heat conductive plate, and that transfers heat generated by the heat generating member to the refrigerant;
    A heat dissipating member that is provided on the inner surface of the heat conducting plate, receives heat transferred by the refrigerant, and dissipates heat to the heat sink;
    The heat receiving member and the heat radiating member are arranged apart from each other in the surface direction of the heat conducting plate,
    A boiling cooler in which the heat receiving member is immersed in the liquid refrigerant.
  2.  前記熱伝導板は、前記密閉空間を挟んで互いに対向して配置された受熱板及び放熱板であって、
     前記発熱体及び前記受熱部材が、前記受熱板に設けられ、
     前記ヒートシンク及び前記放熱部材が、前記放熱板に設けられている請求項1に記載の沸騰冷却器。
    The heat conducting plate is a heat receiving plate and a heat radiating plate arranged to face each other across the sealed space,
    The heating element and the heat receiving member are provided on the heat receiving plate,
    The boiling cooler according to claim 1, wherein the heat sink and the heat radiating member are provided on the heat radiating plate.
  3.  前記受熱部材の前記受熱板からの高さ及び前記放熱部材の前記放熱板からの高さが、それぞれ前記受熱板と前記放熱板との間の距離の略2分の1の寸法に設定されている請求項2に記載の沸騰冷却器。 The height of the heat receiving member from the heat receiving plate and the height of the heat radiating member from the heat radiating plate are set to approximately one-half the distance between the heat receiving plate and the heat radiating plate, respectively. The boiling cooler according to claim 2.
  4.  前記受熱部材は、前記放熱板の内側の面から少なくとも1mm以上離間され、
     前記放熱部材は、前記受熱板の内側の面から少なくとも1mm以上離間されている請求項2又は3に記載の沸騰冷却器。
    The heat receiving member is separated from the inner surface of the heat sink by at least 1 mm,
    4. The boiling cooler according to claim 2, wherein the heat radiating member is separated from the inner surface of the heat receiving plate by at least 1 mm or more. 5.
  5.  前記受熱部材及び前記放熱部材は、前記熱伝導板の内側の面に立設された複数のフィンからなる請求項1から4のいずれか一項に記載の沸騰冷却器。 The boiling cooler according to any one of claims 1 to 4, wherein the heat receiving member and the heat radiating member are formed of a plurality of fins erected on an inner surface of the heat conducting plate.
  6.  前記受熱部材及び前記放熱部材は、前記熱伝導板の内側の面に固定された直方体状をなすブロックである請求項1から4のいずれか一項に記載の沸騰冷却器。 The boiling cooler according to any one of claims 1 to 4, wherein the heat receiving member and the heat radiating member are cuboid blocks fixed to an inner surface of the heat conducting plate.
  7.  前記受熱部材及び前記放熱部材の表面に、表面粗さ1μm~100μmの範囲の粗面化加工が施されている請求項1から6のいずれか一項に記載の沸騰冷却器。 The boiling cooler according to any one of claims 1 to 6, wherein the surface of the heat receiving member and the heat radiating member is subjected to a surface roughening process having a surface roughness in a range of 1 µm to 100 µm.
  8.  前記チャンバーが、気体の前記冷媒が入り込むバッファタンクを備える請求項1から7のいずれか一項に記載の沸騰冷却器。 The boiling cooler according to any one of claims 1 to 7, wherein the chamber includes a buffer tank into which the gaseous refrigerant enters.
  9.  前記受熱部材及び前記放熱部材が液体の前記冷媒に浸漬されている請求項1に記載の沸騰冷却器。 The boiling cooler according to claim 1, wherein the heat receiving member and the heat radiating member are immersed in the liquid refrigerant.
PCT/JP2011/061320 2010-05-19 2011-05-17 Ebullient cooling device WO2011145618A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011800203157A CN102869943A (en) 2010-05-19 2011-05-17 Ebullient cooling device
JP2012515893A JPWO2011145618A1 (en) 2010-05-19 2011-05-17 Boiling cooler
US13/698,149 US20130056178A1 (en) 2010-05-19 2011-05-17 Ebullient cooling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010115539 2010-05-19
JP2010-115539 2010-05-19

Publications (1)

Publication Number Publication Date
WO2011145618A1 true WO2011145618A1 (en) 2011-11-24

Family

ID=44991720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061320 WO2011145618A1 (en) 2010-05-19 2011-05-17 Ebullient cooling device

Country Status (4)

Country Link
US (1) US20130056178A1 (en)
JP (1) JPWO2011145618A1 (en)
CN (1) CN102869943A (en)
WO (1) WO2011145618A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015103798A (en) * 2013-11-27 2015-06-04 旭徳科技股▲ふん▼有限公司 Heat dissipation substrate
WO2018030478A1 (en) * 2016-08-10 2018-02-15 古河電気工業株式会社 Vapor chamber
JP2020063895A (en) * 2018-09-14 2020-04-23 古河電気工業株式会社 Cooling device and cooling system using cooling device
WO2020196331A1 (en) * 2019-03-22 2020-10-01 日立化成株式会社 Cooling structure
WO2020196332A1 (en) * 2019-03-22 2020-10-01 日立化成株式会社 Cooling structure
WO2020209138A1 (en) * 2019-04-11 2020-10-15 古河電気工業株式会社 Cooling device
WO2020213464A1 (en) * 2019-04-18 2020-10-22 古河電気工業株式会社 Heat sink
JPWO2020196334A1 (en) * 2019-03-22 2021-10-21 昭和電工マテリアルズ株式会社 Cooling structure
JP7404107B2 (en) 2020-02-27 2023-12-25 三菱重工業株式会社 Cooling system

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014192279A1 (en) * 2013-05-29 2017-02-23 日本電気株式会社 Cooling device and manufacturing method thereof
WO2016075838A1 (en) * 2014-11-14 2016-05-19 株式会社ExaScaler Cooling system and cooling method for electronic apparatus
JP6064083B1 (en) * 2015-08-31 2017-01-18 株式会社ExaScaler Electronic equipment cooling system
US10262920B1 (en) * 2016-12-05 2019-04-16 Xilinx, Inc. Stacked silicon package having a thermal capacitance element
JP7097308B2 (en) * 2017-07-28 2022-07-07 古河電気工業株式会社 Wick structure and heat pipe containing the wick structure
CN109413929B (en) * 2017-08-16 2020-11-24 鹏鼎控股(深圳)股份有限公司 Heat sink and method for manufacturing the same
US10381562B1 (en) * 2018-05-17 2019-08-13 Qualcomm Incorporated Method and apparatus for cooling of an electronic device
CN109673131B (en) * 2018-12-05 2020-12-15 浙江欧托电气有限公司 New forms of energy charging device mainboard water-cooling board wing temperature regulating device
AT522831B1 (en) * 2019-08-08 2023-05-15 Dau Gmbh & Co Kg Air heat exchanger and method for its production and electronic structure equipped therewith
CN110736972B (en) * 2019-11-15 2022-03-04 上海禾赛科技有限公司 Laser radar's heat radiation structure and laser radar
CN112902715A (en) * 2019-12-03 2021-06-04 中兴通讯股份有限公司 Liquid cooling board and heat dissipation equipment
US20230147067A1 (en) * 2021-11-05 2023-05-11 Rochester Institute Of Technology Cooling device having a boiling chamber with submerged condensation and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160592A (en) * 1980-05-14 1981-12-10 Hitachi Ltd Boiling cooler
JPS60253790A (en) * 1984-05-30 1985-12-14 Hitachi Ltd Heat transfer device
JP2002267378A (en) * 2001-03-12 2002-09-18 Showa Denko Kk Heat pipe
JP2003214779A (en) * 2002-01-25 2003-07-30 Fujikura Ltd Flat heat pipe
JP2005337701A (en) * 2004-04-27 2005-12-08 Japan Science & Technology Agency Cooling device
JP2009088125A (en) * 2007-09-28 2009-04-23 Panasonic Corp Cooling unit, and electronic equipment equipped with the same
JP2009532886A (en) * 2006-03-31 2009-09-10 ヴァプロ,インク. Low cost boiling cooler using liquid boiling

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3741292A (en) * 1971-06-30 1973-06-26 Ibm Liquid encapsulated air cooled module
JPS6020676B2 (en) * 1977-06-29 1985-05-23 株式会社日立製作所 Manufacturing method of rough fins for heat exchangers
JPS57131990A (en) * 1981-02-09 1982-08-16 Matsushita Electric Ind Co Ltd Gravitation type heat pipe
JPS5965459A (en) * 1982-10-06 1984-04-13 Fujitsu Ltd Dipped evaporation cooling device
JPH02287095A (en) * 1989-04-26 1990-11-27 Isuzu Ceramics Kenkyusho:Kk Heat pipe of ceramics
US5168919A (en) * 1990-06-29 1992-12-08 Digital Equipment Corporation Air cooled heat exchanger for multi-chip assemblies
JPH07104110B2 (en) * 1990-11-13 1995-11-13 さとみ 伊藤 Heat dissipation device
FR2699365B1 (en) * 1992-12-16 1995-02-10 Alcatel Telspace System for dissipating the heat energy released by an electronic component.
JPH0745761A (en) * 1993-07-30 1995-02-14 Takeo Yoshino Liquid-cooled hybrid ic
JPH07161888A (en) * 1993-12-07 1995-06-23 Nippondenso Co Ltd Boiling cooling unit and manufacture thereof
US5411077A (en) * 1994-04-11 1995-05-02 Minnesota Mining And Manufacturing Company Flexible thermal transfer apparatus for cooling electronic components
US6357517B1 (en) * 1994-07-04 2002-03-19 Denso Corporation Cooling apparatus boiling and condensing refrigerant
JP3525498B2 (en) * 1994-07-13 2004-05-10 株式会社デンソー Boiling cooling device
JPH0897338A (en) * 1994-09-26 1996-04-12 Fuji Electric Co Ltd Cooler for power semiconductor device
JP3890685B2 (en) * 1997-07-11 2007-03-07 株式会社デンソー Boiling cooler
JPH1187583A (en) * 1997-09-11 1999-03-30 Denso Corp Boiling cooler
JPH11330329A (en) * 1998-05-20 1999-11-30 Denso Corp Vaporizing cooling device
JP3900702B2 (en) * 1998-08-31 2007-04-04 株式会社デンソー Boiling cooler
JP2000049266A (en) * 1998-05-25 2000-02-18 Denso Corp Boiling cooler
US5937937A (en) * 1998-06-18 1999-08-17 Motorola, Inc. Heat sink and method for removing heat from a plurality of components
JP3964580B2 (en) * 1999-09-03 2007-08-22 富士通株式会社 Cooling unit
JP3376346B2 (en) * 2000-09-25 2003-02-10 株式会社東芝 Cooling device, circuit module having the cooling device, and electronic equipment
US6474074B2 (en) * 2000-11-30 2002-11-05 International Business Machines Corporation Apparatus for dense chip packaging using heat pipes and thermoelectric coolers
JP2002198675A (en) * 2000-12-26 2002-07-12 Fujitsu Ltd Electronic apparatus
US6483705B2 (en) * 2001-03-19 2002-11-19 Harris Corporation Electronic module including a cooling substrate and related methods
US6418019B1 (en) * 2001-03-19 2002-07-09 Harris Corporation Electronic module including a cooling substrate with fluid dissociation electrodes and related methods
JP2003232594A (en) * 2002-02-07 2003-08-22 Denso Corp Boiling and cooling device
JP2004037039A (en) * 2002-07-05 2004-02-05 Sony Corp Cooling device, electronic equipment device and display device, and cooling device manufacturing method
US6880626B2 (en) * 2002-08-28 2005-04-19 Thermal Corp. Vapor chamber with sintered grooved wick
US7258160B2 (en) * 2002-09-25 2007-08-21 Sony Corporation Heat transfer element, cooling device and electronic device having the element
TWI235906B (en) * 2003-02-27 2005-07-11 Shwin-Chung Wong Microchannel heat pipe spreaders and microchannel loop heat pipes housed in a metal case and embodiments of the same
JP2005140492A (en) * 2003-06-12 2005-06-02 Denso Corp Counter oscillation flow type heat transport device
JP2005019905A (en) * 2003-06-30 2005-01-20 Matsushita Electric Ind Co Ltd Cooler
JP2005086078A (en) * 2003-09-10 2005-03-31 Denso Corp Cooling device for heating element
JP2005229047A (en) * 2004-02-16 2005-08-25 Hitachi Ltd Cooling system for electronic equipment, and the electronic equipment using same
JP4367223B2 (en) * 2004-05-10 2009-11-18 パナソニック株式会社 Heat transfer device
US6899165B1 (en) * 2004-06-15 2005-05-31 Hua Yin Electric Co., Ltd. Structure of a heat-pipe cooler
US20060090882A1 (en) * 2004-10-28 2006-05-04 Ioan Sauciuc Thin film evaporation heat dissipation device that prevents bubble formation
US7246655B2 (en) * 2004-12-17 2007-07-24 Fujikura Ltd. Heat transfer device
US20080236795A1 (en) * 2007-03-26 2008-10-02 Seung Mun You Low-profile heat-spreading liquid chamber using boiling
JP2006344636A (en) * 2005-06-07 2006-12-21 Fuji Electric Holdings Co Ltd Parallel loop type heat dispersion plate
JP2007109695A (en) * 2005-10-11 2007-04-26 Sumitomo Precision Prod Co Ltd Element cooler excellent in starting characteristics
US7369410B2 (en) * 2006-05-03 2008-05-06 International Business Machines Corporation Apparatuses for dissipating heat from semiconductor devices
US20080093058A1 (en) * 2006-10-24 2008-04-24 Jesse Jaejin Kim Systems and methods for orientation and direction-free cooling of devices
JP2010062234A (en) * 2008-09-02 2010-03-18 Sony Corp Heat spreader, electronic equipment and method of manufacturing heat spreader
JPWO2010084717A1 (en) * 2009-01-23 2012-07-12 日本電気株式会社 Cooling system
US20110067841A1 (en) * 2009-09-24 2011-03-24 Gm Global Technology Operations, Inc. Heat sink systems and devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160592A (en) * 1980-05-14 1981-12-10 Hitachi Ltd Boiling cooler
JPS60253790A (en) * 1984-05-30 1985-12-14 Hitachi Ltd Heat transfer device
JP2002267378A (en) * 2001-03-12 2002-09-18 Showa Denko Kk Heat pipe
JP2003214779A (en) * 2002-01-25 2003-07-30 Fujikura Ltd Flat heat pipe
JP2005337701A (en) * 2004-04-27 2005-12-08 Japan Science & Technology Agency Cooling device
JP2009532886A (en) * 2006-03-31 2009-09-10 ヴァプロ,インク. Low cost boiling cooler using liquid boiling
JP2009088125A (en) * 2007-09-28 2009-04-23 Panasonic Corp Cooling unit, and electronic equipment equipped with the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015103798A (en) * 2013-11-27 2015-06-04 旭徳科技股▲ふん▼有限公司 Heat dissipation substrate
WO2018030478A1 (en) * 2016-08-10 2018-02-15 古河電気工業株式会社 Vapor chamber
JP2020063895A (en) * 2018-09-14 2020-04-23 古河電気工業株式会社 Cooling device and cooling system using cooling device
TWI778292B (en) * 2018-09-14 2022-09-21 日商古河電氣工業股份有限公司 Cooling device and cooling system using cooling device
WO2020196332A1 (en) * 2019-03-22 2020-10-01 日立化成株式会社 Cooling structure
JPWO2020196332A1 (en) * 2019-03-22 2021-10-21 昭和電工マテリアルズ株式会社 Cooling structure
JPWO2020196331A1 (en) * 2019-03-22 2021-10-21 昭和電工マテリアルズ株式会社 Cooling structure
JPWO2020196334A1 (en) * 2019-03-22 2021-10-21 昭和電工マテリアルズ株式会社 Cooling structure
WO2020196331A1 (en) * 2019-03-22 2020-10-01 日立化成株式会社 Cooling structure
JP7164022B2 (en) 2019-03-22 2022-11-01 昭和電工マテリアルズ株式会社 cooling structure
JP7164020B2 (en) 2019-03-22 2022-11-01 昭和電工マテリアルズ株式会社 cooling structure
JP7164019B2 (en) 2019-03-22 2022-11-01 昭和電工マテリアルズ株式会社 cooling structure
WO2020209138A1 (en) * 2019-04-11 2020-10-15 古河電気工業株式会社 Cooling device
US11337336B2 (en) 2019-04-11 2022-05-17 Furukawa Electric Co., Ltd. Cooling device
WO2020213464A1 (en) * 2019-04-18 2020-10-22 古河電気工業株式会社 Heat sink
US11112186B2 (en) 2019-04-18 2021-09-07 Furukawa Electric Co., Ltd. Heat pipe heatsink with internal structural support plate
JP7404107B2 (en) 2020-02-27 2023-12-25 三菱重工業株式会社 Cooling system

Also Published As

Publication number Publication date
CN102869943A (en) 2013-01-09
JPWO2011145618A1 (en) 2013-07-22
US20130056178A1 (en) 2013-03-07

Similar Documents

Publication Publication Date Title
WO2011145618A1 (en) Ebullient cooling device
US8813834B2 (en) Quick temperature-equlizing heat-dissipating device
JP5644767B2 (en) Heat transport structure of electronic equipment
EP2057678B1 (en) Three-dimensional thermal spreading in an air-cooled thermal device
US8982559B2 (en) Heat sink, cooling module and coolable electronic board
JP5757086B2 (en) COOLING STRUCTURE, ELECTRONIC DEVICE, AND COOLING METHOD
WO2013102973A1 (en) Cooling device and electronic equipment using same
WO2010084717A1 (en) Cooling device
US9578781B2 (en) Heat management for electronic enclosures
US20100032141A1 (en) cooling system utilizing carbon nanotubes for cooling of electrical systems
WO2013140761A1 (en) Cooling structure for electronic substrate, and electronic device using same
WO2015146110A1 (en) Phase-change cooler and phase-change cooling method
JP5874935B2 (en) Flat plate cooling device and method of using the same
JP2013007501A (en) Cooling device
US20200064074A1 (en) Condenser and heat dissipation apparatus
JP2013033807A (en) Cooling device and electronic apparatus using the same
WO2013005622A1 (en) Cooling device and method for manufacturing same
JP2018133529A (en) Cooling device
JP2010080507A (en) Electronic apparatus
US20120024500A1 (en) Thermosyphon for cooling electronic components
JP5860728B2 (en) Electronic equipment cooling system
EP2801781B1 (en) Cooling device
WO2013073696A1 (en) Cooling device and electronic device using same
WO2017208461A1 (en) Boiling cooling device and electronic device having same mounted thereon
JP2006269694A (en) Power apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180020315.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783552

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012515893

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13698149

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11783552

Country of ref document: EP

Kind code of ref document: A1