JPS60251182A - Manufacture of porous refractory solid - Google Patents

Manufacture of porous refractory solid

Info

Publication number
JPS60251182A
JPS60251182A JP10656184A JP10656184A JPS60251182A JP S60251182 A JPS60251182 A JP S60251182A JP 10656184 A JP10656184 A JP 10656184A JP 10656184 A JP10656184 A JP 10656184A JP S60251182 A JPS60251182 A JP S60251182A
Authority
JP
Japan
Prior art keywords
organic
slurry
solid
porous
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10656184A
Other languages
Japanese (ja)
Inventor
京田 洋
遠藤 容弘
藤井 洋治
浅見 肇
宮崎 浩樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Shinagawa Shiro Renga KK
Original Assignee
Shinagawa Refractories Co Ltd
Shinagawa Shiro Renga KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd, Shinagawa Shiro Renga KK filed Critical Shinagawa Refractories Co Ltd
Priority to JP10656184A priority Critical patent/JPS60251182A/en
Publication of JPS60251182A publication Critical patent/JPS60251182A/en
Pending legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野1 この発明は固体伝熱変換子、触媒担体あるいはろ過材等
として使用される多孔性耐火固体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a method for producing a porous refractory solid used as a solid heat transfer converter, a catalyst carrier, a filter medium, or the like.

[従来技術] 近時、固体伝熱変換子、触媒担体あるいはろ過材として
通気性を有する多孔性固体が一注目されている。
[Prior Art] Recently, porous solids having air permeability have been attracting attention as solid heat transfer converters, catalyst carriers, or filter media.

かような多孔性固体の製造法としては例えば軟質ポリウ
レタンフォームを処理して気泡膜を除去して正十二面体
の積構造をもつスコツト7オームを製造し、このスコツ
トフオームにセラミック泥漿を含浸させ、余剰泥漿を除
去して乾燥した後焼成することによりスコツト7オーム
を気化除去するとともにセラミックを焼結させる方法が
ある。
As a method for manufacturing such a porous solid, for example, a flexible polyurethane foam is treated to remove the cell membrane to produce Scott 7 ohm having a regular dodecahedral product structure, and this Scott foam is impregnated with a ceramic slurry. There is a method in which the excess slurry is removed, dried, and then fired to vaporize and remove the Scotto 7 ohm and sinter the ceramic.

この方法により得られる多孔性固体(セラミック7オー
ム)は軽量であり、空孔率が大きく、また柱構造であり
、流動抵抗が小さい専権々の利点を有している。しかし
、前記多孔性固体は柱構造であるために耐圧強度あるい
は曲げ強度に劣り、また流動抵抗が過小であるために固
体伝熱変換子として使用する場合、充分な畜熱特性が得
られない等の欠点があった。
The porous solid (ceramic 7 ohm) obtained by this method is lightweight, has a high porosity, has a columnar structure, and has the exclusive advantages of low flow resistance. However, since the porous solid has a columnar structure, it has poor pressure resistance or bending strength, and its flow resistance is too low, so when used as a solid heat transfer converter, sufficient heat storage characteristics cannot be obtained. There was a drawback.

一方、通気性を有する多孔性固体の製法として耐火粒子
を焼結して得られる粒子焼結多孔体も提案されている。
On the other hand, a particle sintered porous body obtained by sintering refractory particles has also been proposed as a method for producing a porous solid having air permeability.

この方法は厳密に粒度を調整した耐火粒を焼結して製造
された比較的均一な気孔を有しる多孔体が得られるが、
しがし空孔率は3゛0〜50%程度であり、50%以上
の空孔率は得られないという問題があった。
This method produces a porous body with relatively uniform pores manufactured by sintering refractory grains whose particle size has been precisely adjusted.
However, the porosity was about 30% to 50%, and there was a problem that a porosity of 50% or more could not be obtained.

[発明の目的] この発明は上述の問題および従来品の大息を解決すべく
なされたものであって、その目的とするところは空孔率
が大きく、通気性を有し、かつ曲げ強度および耐圧強度
の大きい多孔性耐火固体の製造方法を提供するにある。
[Object of the invention] This invention was made to solve the above-mentioned problems and the problems of the conventional products, and its purpose is to have high porosity, air permeability, and high bending strength. The object of the present invention is to provide a method for producing a porous refractory solid having high compressive strength.

[発明の構成1 本発明は球表面が相互に接触した有機酸集合体の空隙へ
金属粉または耐火原料粉末またはそれら両者および溶液
を含有する泥漿を含浸し、この泥漿含浸有機環集合体の
固化処理時あるいは固化処理後、有機環を消去すること
を特徴とする通気性を有する多孔性耐火固体の製造方法
に存する。本発明によれば耐圧強度および曲げ強度に優
れ、また乱流流動が得られるだけでなく、金属粉および
耐火原料粉末を選択することにより種々の鴻気性を有す
る多孔性耐火固体が得られる。
[Structure 1 of the invention] The present invention impregnates the voids of an organic acid aggregate whose spherical surfaces are in contact with each other with a slurry containing metal powder, refractory raw material powder, or both and a solution, and solidifies the slurry-impregnated organic ring aggregate. The present invention relates to a method for producing a porous refractory solid having air permeability, characterized by eliminating organic rings during treatment or after solidification. According to the present invention, a porous refractory solid having excellent compressive strength and bending strength and turbulent flow can be obtained, and also has various air resistance properties by selecting metal powder and refractory raw material powder.

本発明に使用される有機環としては発泡スチロールビー
ズ、発泡ウレタン7オームビーズ、ポリエチレンビーズ
等が挙げられるが球表面が相互に接触していることが必
須条件であり、その接触は点接触ではなく、使用する最
小径有機環の最大断面積の172〜1/20の面積を持
つ接触であることが望ましく、1/2を超える場合には
多孔体の強度が低下し、また1/20より小なる場合に
は充分な通気特性が得難くなる。
The organic rings used in the present invention include expanded polystyrene beads, expanded urethane beads of 7 ohm, polyethylene beads, etc., but it is essential that the spherical surfaces are in contact with each other, and the contact is not a point contact. It is desirable that the contact has an area of 172 to 1/20 of the maximum cross-sectional area of the smallest diameter organic ring used; if it exceeds 1/2, the strength of the porous body will decrease, and if it is smaller than 1/20. In some cases, it becomes difficult to obtain sufficient ventilation characteristics.

有機環を接触する方法としては含浸用容器内に有機環を
充填した後パンチングプレートで押し付けるか、あるい
は有機環同志を接着剤で接着する方法等が挙げられる。
Examples of methods for bringing the organic rings into contact include filling the impregnating container with the organic rings and then pressing them with a punching plate, or bonding the organic rings together with an adhesive.

有機環の直径は目的とする用途に応じて適宜選択できる
が単−径の球を使用する場合は六方R密充填することが
好ましく、六方最密充填できない場合には空孔率が低下
する。
The diameter of the organic ring can be appropriately selected depending on the intended use, but when using single-diameter spheres, hexagonal R-close packing is preferred; if hexagonal close-packing is not possible, the porosity decreases.

2種の粒径の有機環を使用する場合、大径球はやはり六
方最密充填となることが望ましく、また小径球の径は大
径球の空隙に存在し、大径球4個に接する径であること
が望ましい。小径球が大径球と接しない場合、小径球の
消失により得られる多孔体の気孔が閉気孔となり、通気
性が阻害される。尚、多孔体の強度が低下するために3
種以上の球径の有機環を使用することは避けるべきであ
る。
When using organic rings with two types of particle sizes, it is desirable that the large-diameter spheres are hexagonally close-packed, and the diameter of the small-diameter spheres exists in the void of the large-diameter spheres and is in contact with the four large-diameter spheres. It is desirable that the diameter is the same. If the small-diameter spheres do not come into contact with the large-diameter spheres, the pores of the porous body obtained by the disappearance of the small-diameter spheres become closed pores, impeding air permeability. In addition, since the strength of the porous body decreases,
The use of organic rings with spherical diameters larger than a seed should be avoided.

本発明に使用する金属粉としては酸化、炭化および窒化
により耐火性が発現するALSi等が挙げられ、また耐
火原料粉末としてはカルシア、アルミナ、シリカ、マグ
ネシア、炭化珪素、窒化珪素、アルミナセメント、P−
アルミナ、ポルトランドセメント等の通常の耐火物に使
用されるものが使用可能であるが、その粒度は有機環で
構成される空隙径の1710以下であることが必要であ
り、1/10を超える場合、泥漿の含浸が困難となる。
Examples of the metal powder used in the present invention include ALSi, which exhibits fire resistance through oxidation, carbonization, and nitridation, and examples of the refractory raw material powder include calcia, alumina, silica, magnesia, silicon carbide, silicon nitride, alumina cement, P −
Those used in ordinary refractories such as alumina and Portland cement can be used, but the particle size must be 1710 or less of the pore diameter composed of organic rings, and if it exceeds 1/10. , it becomes difficult to impregnate the slurry.

また必要に応じて無機バインダーを泥漿に添加すること
ができる。
Moreover, an inorganic binder can be added to the slurry if necessary.

本発明の泥漿に使用する溶液としては水、非水系溶液等
が使用可能であるが、有機環を溶解させる溶液を使用し
た場合は泥漿含浸売時に有機環が泥漿中に溶出し、満足
な多孔体が得られない。
Water, non-aqueous solutions, etc. can be used as the solution for the slurry of the present invention, but if a solution that dissolves organic rings is used, the organic rings will be eluted into the slurry when the slurry is impregnated, resulting in satisfactory porosity. I can't get a body.

尚、泥漿の粘度は10〜200ボイズの範囲にあること
が望ましく、200ボイズを超える場合は泥漿の含浸が
困難となり、また10ボイズ未満の場合は溶液と粉体と
の分離即ち固液分離現象が発生し均一な濃度の泥漿が得
難くなる。上述の粘度を得るためには金属粉または耐火
原料粉末またはそれら両者表溶液の重量比率を7:3〜
1:10の範囲にする・必要がある。
The viscosity of the slurry is preferably in the range of 10 to 200 voids; if it exceeds 200 voids, it will be difficult to impregnate the slurry, and if it is less than 10 voids, the separation between the solution and the powder, that is, the solid-liquid separation phenomenon will occur. occurs, making it difficult to obtain slurry with a uniform concentration. In order to obtain the above-mentioned viscosity, the weight ratio of the metal powder, refractory raw material powder, or both solutions should be 7:3 to 7:3.
It is necessary to have a range of 1:10.

本発明の有機環の消去処理は泥漿が常温自硬性の場合は
硬化後有機球を溶解し得る溶剤中へ浸漬することにより
溶失させ、その後焼成により通気性を有する多孔性固体
の焼結を行なう。尚、泥漿が自硬性でない場合は焼結に
より有機環の消去と焼結を同時に行なうことにより多孔
性固体を得ることができる。
In the organic ring elimination process of the present invention, if the slurry is self-hardening at room temperature, after hardening, it is immersed in a solvent that can dissolve the organic spheres to dissolve it, and then fired to sinter the porous solid with air permeability. Let's do it. If the slurry is not self-hardening, a porous solid can be obtained by simultaneously eliminating organic rings and sintering.

尚、本発明の1例である単−径球の有機環2を泥漿1で
含浸した状態を第1図に示し、また第2図は有機環2を
消去させて、有機球消去後の空孔4を持つ耐火固体3よ
りなる通気性を有する多孔性耐火固体の構造を示す図で
ある。
FIG. 1 shows a state in which the organic ring 2 of a single-diameter sphere, which is an example of the present invention, is impregnated with the slurry 1, and FIG. 1 is a diagram showing the structure of a porous refractory solid having air permeability, which is composed of a refractory solid 3 having pores 4; FIG.

[実施例] 以下に実施例を挙げて本発明を更に説明する。[Example] The present invention will be further explained with reference to Examples below.

実施例1 直径5Tnuの単−径の発泡スチロールビーズを含浸容
器に振動充填した後、パンチングプレートを上方より2
 Kg/ am2で押し付け、この状態で上方より0.
3+aI11以下のアルミナ60重量部、アルミナセメ
ント5重量部および水35重量部よりなる泥漿を前記含
浸容器内の前記発泡スチロールビーズ集合体の空隙へ含
浸し、常温硬化後、酢酸エチル溶液に浸漬し、有機域を
溶失した。得られた多孔性耐火固体の特性を第1表に、
従来品と比較して示す。
Example 1 After vibrating and filling an impregnation container with single-diameter expanded polystyrene beads with a diameter of 5 Tnu, a punching plate was inserted from above.
Push with Kg/am2, and in this state apply 0.0 kg from above.
A slurry consisting of 60 parts by weight of alumina of 3+al or less than 11, 5 parts by weight of alumina cement, and 35 parts by weight of water is impregnated into the voids of the foamed polystyrene bead aggregate in the impregnating container, and after hardening at room temperature, it is immersed in an ethyl acetate solution to form an organic area was dissolved. The properties of the obtained porous refractory solid are shown in Table 1.
A comparison with the conventional product is shown.

実施例2 直径1(laIllおよび直径1ma+の発泡ウレタン
ビーズを60:40の重量比で混合しながら該発泡ウレ
タンビーX表面に自硬性エポキシレシンを塗布した後、
紙製含浸容器内に振動充填した。次に金属珪素と水より
なる泥漿を前記容器内の前記発泡ウレタンビーズ集合体
の空隙へ含浸し、乾燥後、窒素雰囲気中温度1400℃
で焼成を行ない、窒化珪素質多孔性耐火固体を製造した
。得られた多孔性耐火固体の特性を第1表に示す。
Example 2 After applying self-hardening epoxy resin to the surface of the foamed urethane beads X while mixing foamed urethane beads with a diameter of 1 (laIll) and a diameter of 1 ma+ at a weight ratio of 60:40,
Vibration was filled into a paper impregnated container. Next, a slurry made of metallic silicon and water is impregnated into the voids of the foamed urethane bead aggregate in the container, and after drying, the temperature is 1400°C in a nitrogen atmosphere.
A porous refractory solid made of silicon nitride was produced. The properties of the porous refractory solid obtained are shown in Table 1.

L発明の効果] 上述の第1表から明らかなように本発明により得られた
多孔性耐火固体は多孔性(空孔率)と強度とを併わせ持
つ優れた特性を持つものであった。
Effects of the Invention] As is clear from Table 1 above, the porous refractory solid obtained by the present invention had excellent characteristics of both porosity (porosity) and strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1例である単−径球の有機球を泥漿で
含浸した状態を示す図であり、第2図は有機球を消去さ
せて、有機球消去後の空孔を持つ耐火固体よりなる通気
性を有する多孔性耐火固体の構造を示す図である。図中
:1・・泥漿、2・・有槻球、3・・耐火固体、4・・
空孔特許出願人 品川白煉瓦株式会社 第2図
Fig. 1 is a diagram showing a state in which a single-diameter organic sphere, which is an example of the present invention, is impregnated with slurry, and Fig. 2 shows a state in which the organic sphere is eliminated and has pores after the organic sphere is eliminated. FIG. 2 is a diagram showing the structure of a porous refractory solid having air permeability made of a refractory solid. In the figure: 1. Sludge, 2. Spheroid, 3. Refractory solid, 4.
Hole patent applicant: Shinagawa Shirorenga Co., Ltd. Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、球表面が相互に接触した有機球集合体の空隙へ金属
粉または耐火原料粉末またはそれら両者および溶液を含
有する泥漿を含浸し、この泥漿含浸有機球集合体の固化
処理時あるいは同化処理後、有機球を消去することを特
徴とする通気性を有する多孔性耐火固体の製造方法。
1. Impregnating the voids of an organic sphere aggregate whose sphere surfaces are in contact with each other with a slurry containing metal powder, refractory raw material powder, or both and a solution, during solidification treatment or after assimilation treatment of the slurry-impregnated organic sphere aggregate. , a method for producing a porous refractory solid having air permeability, characterized in that organic spheres are eliminated.
JP10656184A 1984-05-28 1984-05-28 Manufacture of porous refractory solid Pending JPS60251182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10656184A JPS60251182A (en) 1984-05-28 1984-05-28 Manufacture of porous refractory solid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10656184A JPS60251182A (en) 1984-05-28 1984-05-28 Manufacture of porous refractory solid

Publications (1)

Publication Number Publication Date
JPS60251182A true JPS60251182A (en) 1985-12-11

Family

ID=14436717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10656184A Pending JPS60251182A (en) 1984-05-28 1984-05-28 Manufacture of porous refractory solid

Country Status (1)

Country Link
JP (1) JPS60251182A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049324A (en) * 1987-12-23 1991-09-17 Hi-Tech Ceramics, Inc. Method of making a furnace lining with a fiber filled reticulated ceramic

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS505410A (en) * 1973-05-18 1975-01-21
JPS5075608A (en) * 1973-11-07 1975-06-20

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS505410A (en) * 1973-05-18 1975-01-21
JPS5075608A (en) * 1973-11-07 1975-06-20

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049324A (en) * 1987-12-23 1991-09-17 Hi-Tech Ceramics, Inc. Method of making a furnace lining with a fiber filled reticulated ceramic

Similar Documents

Publication Publication Date Title
US6582651B1 (en) Metallic articles formed by reduction of nonmetallic articles and method of producing metallic articles
CN101503298B (en) Method for preparing silicon nitride porous ceramic by gel injection moulding
JP4808353B2 (en) Composite material containing activated carbon and expanded graphite
US20070032371A1 (en) Silicon carbide based, porous structural material being heat-resistant and super-lightweight
JPS6291448A (en) Burnt hollow ceramic sphere
CN113624048A (en) Porous ceramic with straight-hole gradient structure, capillary core and preparation method of porous ceramic
JP2001240480A (en) Porous ceramic structural body, its manufacturing method and fluid permeable member
JPH07509182A (en) Catalyst carrier and its manufacturing method
JPS60251182A (en) Manufacture of porous refractory solid
JPH0513116B2 (en)
JP2651170B2 (en) Ceramics porous body
JPH0736381B2 (en) Heat resistant jig and its manufacturing method
KR20220023531A (en) Porous support and manufacturing method thereof
JPS62246881A (en) Manufacture of refractory fibrous porous refractories
JP2002121087A (en) Ceramics porous sintered compact and method for producing the same
JP3496251B2 (en) Manufacturing method of porous ceramics
JPS59156954A (en) Manufacture of porous ceramics
JPH01212284A (en) Production of porous refractory solid
JPH0597537A (en) Production of ceramic porous material
JPS6046981A (en) Ceramic porous body
JP2001206785A (en) Method of producing silicon carbide porous body
JPH0383875A (en) Production of porous ceramic structure
JP2506502B2 (en) Method for manufacturing ceramic porous body
JPS6374962A (en) Porous reaction sintered si3n4 sic base composite ceramic material,manufacture and joining method
JPH04160078A (en) Production of ceramic porous body