JP2001240480A - Porous ceramic structural body, its manufacturing method and fluid permeable member - Google Patents

Porous ceramic structural body, its manufacturing method and fluid permeable member

Info

Publication number
JP2001240480A
JP2001240480A JP2000054005A JP2000054005A JP2001240480A JP 2001240480 A JP2001240480 A JP 2001240480A JP 2000054005 A JP2000054005 A JP 2000054005A JP 2000054005 A JP2000054005 A JP 2000054005A JP 2001240480 A JP2001240480 A JP 2001240480A
Authority
JP
Japan
Prior art keywords
porous ceramic
pores
slurry
diameter
structure according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000054005A
Other languages
Japanese (ja)
Other versions
JP4514274B2 (en
Inventor
Usou Ou
雨叢 王
Kazuhiro Nishizono
和博 西薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000054005A priority Critical patent/JP4514274B2/en
Publication of JP2001240480A publication Critical patent/JP2001240480A/en
Application granted granted Critical
Publication of JP4514274B2 publication Critical patent/JP4514274B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/04Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by dissolving-out added substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Filtering Materials (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a porous ceramic structural body and a fluid permeable member which are excellent in isotropic strength and fluid permeation characteristics. SOLUTION: This porous ceramic structural body 1 is obtained in such a way that between skeleton parts 2 of dense ceramics, pores 3 are made exist whose mean diameter is 0.01-10 mm, and 90% of pore diameters are included within the range of ±30% of the mean pore diameter, and adjacent pores 3, 3 are communicating through communicating pores 5, and the mean diameter of the communicating pores is >=1/4 of the mean diameter of the pores 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、種々のフィルタや
触媒担持体等の流体透過部材や生体代替部材等の構造体
の気孔内に物質の出入りがある多孔質セラミック構造体
およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous ceramic structure in which a substance enters and exits through pores of a structure such as a fluid permeable member such as a filter or a catalyst carrier or a living body substitute member, and a method of manufacturing the same. .

【0002】[0002]

【従来技術】従来から、多孔質セラミック構造体は高温
での安定性および耐食性に優れることから、断熱材、耐
火物や、流体ろ過用フィルタ、触媒担持体等の流体透過
部材、さらには人工生体部材等としての応用が期待され
ている。
2. Description of the Related Art Conventionally, a porous ceramic structure has excellent stability and corrosion resistance at a high temperature, so that a heat-insulating material, a refractory, a fluid-permeable member such as a filter for fluid filtration, a catalyst carrier, and an artificial living body. The application as a member etc. is expected.

【0003】かかる多孔質セラミック構造体を作製する
方法としては、例えば、特公昭63−63249号公報
では、ハニカム等の円筒管内に炭酸ガスを発生する発泡
剤を添加したセラミック原料含有スラリーを充填してこ
れを発泡、焼成することにより円筒管内に多孔質セラミ
ックスを充填した排ガス浄化用構造体を作製できること
が記載されている。
[0003] As a method for producing such a porous ceramic structure, for example, Japanese Patent Publication No. 63-63249 discloses a method in which a cylindrical tube such as a honeycomb is filled with a slurry containing a ceramic raw material to which a foaming agent generating carbon dioxide gas is added. It is described that an exhaust gas purifying structure in which a cylindrical pipe is filled with porous ceramics can be produced by foaming and firing the same.

【0004】また、特開平10−130002号公報で
は、セラミック原料である金属を含有するゾルに圧力を
加えノズルから押し出して繊維状とし、これをシート上
に堆積させて三次元網目状構造物を作製することが記載
されている。
In Japanese Patent Application Laid-Open No. 10-130002, a sol containing a metal, which is a ceramic raw material, is applied with pressure and extruded from a nozzle into a fibrous form, which is deposited on a sheet to form a three-dimensional network-like structure. Production is described.

【0005】さらに、特開平5−330941号公報で
は、セラミック原料粉末を含有するスラリー内にウレタ
ンフォーム等の合成樹脂発泡体を浸漬して前記フォーム
表面に被膜を形成した後、これを熱間静水圧プレス(H
IP)焼成することによって合成樹脂発泡体を焼失させ
セラミック被膜からなる高強度の多孔質セラミック構造
体を作製できることが記載されている。
Further, in Japanese Patent Application Laid-Open No. Hei 5-3094091, a synthetic resin foam such as urethane foam is immersed in a slurry containing a ceramic raw material powder to form a film on the foam surface, which is then hot-statically treated. Hydraulic press (H
It is described that a high-strength porous ceramic structure composed of a ceramic coating can be produced by burning out a synthetic resin foam by IP) baking.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、特公昭
63−63249号公報の円筒管内に多孔質セラミック
スを充填した構造体では、強度等の特性に異方性がある
ために単純形状の用途にしか使用できないという問題が
あり、また、構造体の気孔径を制御することが困難であ
り、構造体としての機械的強度と高い気孔率とを最適化
することができず、また、構造体の気孔間の連通性を制
御することが困難であり、フィルタや触媒担持体等の流
体透過部材の流体透過特性や人工生体部材内での骨生成
特性との透過特性が低下し、充分な特性が得られないと
いう問題があった。
However, in the structure of Japanese Patent Publication No. 63-63249 in which a porous ceramic is filled in a cylindrical tube, the structure such as strength is anisotropic, so that the structure is only used for a simple shape. There is a problem that it cannot be used, and it is difficult to control the pore diameter of the structure, and it is not possible to optimize the mechanical strength and the high porosity of the structure. It is difficult to control the communication between them, and the fluid permeability of the fluid permeable member such as a filter or a catalyst carrier and the permeability with the bone formation property in the artificial biological member are reduced, and sufficient characteristics are obtained. There was a problem that can not be.

【0007】また、特開平10−130002号公報の
セラミック繊維を堆積させた多孔質体では、繊維同士の
接触部の結合力が弱いために構造体自体の強度が弱いと
ともに、気孔径を制御することができないという問題が
あった。
Further, in the porous body in which ceramic fibers are deposited as disclosed in Japanese Patent Application Laid-Open No. Hei 10-130002, the strength of the structure itself is weak due to the weak bonding force of the contact portion between the fibers, and the pore diameter is controlled. There was a problem that it was not possible.

【0008】さらに、特開平5−330941号公報の
ウレタンフォームを用いた多孔質構造体では、ウレタン
フォームが焼失することによって、骨格となるセラミッ
ク被膜は中空体となるために機械的強度が不十分である
という問題があった。
Furthermore, in the porous structure using urethane foam disclosed in Japanese Patent Application Laid-Open No. 5-3094091, the mechanical strength is insufficient because the ceramic coating serving as a skeleton becomes a hollow body due to the burning out of the urethane foam. There was a problem that is.

【0009】本発明は上記課題を解決するためになされ
たもので、その目的は、等方的で高い機械的強度および
気孔率を有し、かつ気孔間の連通性を高めて高い透過性
能を有する多孔質セラミック構造体を作製することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide isotropic and high mechanical strength and porosity, and to enhance communication between pores to achieve high permeability. To manufacture a porous ceramic structure having the same.

【0010】[0010]

【課題を解決するための手段】本発明者等は、多孔質セ
ラミック構造体の骨格構造および気孔構造について検討
した結果、骨格部形成用のスラリーまたはゾル内に焼成
により焼失する気孔形成用の球状体を添加して成型型内
に流し込んだ後、前記気孔形成用の球状体同士が所定の
割合に接触するように変形せしめ、これを焼成すること
によって、中実の骨格部と均一な大きさの気孔を有する
多孔質セラミック構造体が作製できるとともに、気孔間
の連通性を高めることができることを知見した。
The present inventors have studied the skeletal structure and pore structure of the porous ceramic structure, and found that the spheroid for forming pores burned out in the slurry or sol for forming the skeleton by firing. After the body is added and poured into the mold, the spheres for forming pores are deformed so as to come into contact with each other at a predetermined ratio, and are baked to obtain a solid skeleton and a uniform size. It has been found that a porous ceramic structure having the above pores can be produced and the continuity between the pores can be enhanced.

【0011】すなわち、本発明の多孔質セラミック構造
体は、緻密質セラミックスからなる骨格部間に気孔が存
在し、平均気孔径が0.01〜10mmで、かつ前記気
孔の径が前記平均気孔径に対して±30%以内である割
合が90%以上であるとともに、隣接する気孔が連通孔
によって連通され、該連通孔の平均径が前記平均気孔径
の1/4以上であることを特徴とするものである。
That is, in the porous ceramic structure of the present invention, pores are present between the skeleton portions made of dense ceramics, the average pore diameter is 0.01 to 10 mm, and the diameter of the pores is the average pore diameter. The ratio is within ± 30% with respect to 90% or more, and the adjacent pores are communicated by the communication holes, and the average diameter of the communication holes is 1/4 or more of the average pore diameter. Is what you do.

【0012】ここで、前記気孔内に相対密度60%以下
の多孔質セラミックスを充填してもよく、前記多孔質セ
ラミックスが、特に窒化ケイ素、アルミナ、アルミネー
ト、ホウ酸アルミニウム、ムライトの群から選ばれる少
なくとも1種を主体とするセラミックスからなるアスペ
クト比3以上の針状または板状粒子を含有することが望
ましい。
The pores may be filled with a porous ceramic having a relative density of 60% or less, and the porous ceramic is selected from the group consisting of silicon nitride, alumina, aluminate, aluminum borate and mullite. It is preferable to contain needle-like or plate-like particles having an aspect ratio of 3 or more made of at least one type of ceramics.

【0013】また、本発明の多孔質セラミックスの製造
方法は、骨格部を形成するセラミック原料を含有するス
ラリーまたはゾルを作製する工程と、前記スラリーまた
はゾル内に平均径0.01〜10mmで、かつ該平均径
に対して±30%以内である割合が90%以上である気
孔形成用の球状体を添加する工程と、該球状体を添加し
たスラリーまたはゾルを成形型内に流し込んだ後、前記
球状体同士が面接触するように前記球状体を変形させる
工程と、該球状体を除去して気孔を形成した後、残部を
焼成する工程とを具備することを特徴とするものであ
る。
Further, the method for producing a porous ceramic according to the present invention comprises the steps of: preparing a slurry or sol containing a ceramic raw material forming a skeleton; and forming a slurry or sol having an average diameter of 0.01 to 10 mm in the slurry or sol. And a step of adding a pore-forming sphere having a ratio of within ± 30% to the average diameter of 90% or more, and after pouring the slurry or sol to which the sphere is added into a molding die, The method is characterized by comprising a step of deforming the spherical body so that the spherical bodies come into surface contact with each other, and a step of firing the remaining part after removing the spherical body to form pores.

【0014】ここで、前記気孔内に相対密度60%以下
の多孔質セラミックスを充填してなることが望ましく、
特に、気孔形成用の球状体が多孔質セラミックスを形成
するセラミック原料と有機物を含有する顆粒であっても
よい。さらに、前記顆粒が澱粉を含有し、前記気孔形成
時に焼失することが望ましい。
Preferably, the pores are filled with a porous ceramic having a relative density of 60% or less.
In particular, the spheres for forming pores may be granules containing a ceramic raw material forming a porous ceramic and an organic substance. Further, it is desirable that the granules contain starch and burn out when the pores are formed.

【0015】また、上記多孔質セラミック構造体は、流
体透過部材の一部材として好適に使用できる。
The porous ceramic structure can be suitably used as one member of a fluid permeable member.

【0016】[0016]

【発明の実施の形態】本発明の多孔質セラミック構造体
の一例について、その模式図を図1に示す。図1によれ
ば、多孔質セラミック構造体1は、相対密度が90%以
上、特に92%以上、さらに95%以上の緻密質セラミ
ックスからなる骨格部2間に不規則に連通した気孔3
が、望ましくは気孔率60%以上、特に65%以上、さ
らに70%以上形成された構成からなり、また、図1に
よれば、気孔3内には多孔質セラミックス4が充填され
ている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic view showing an example of a porous ceramic structure of the present invention. According to FIG. 1, the porous ceramic structure 1 has pores 3 irregularly communicating between skeleton parts 2 made of dense ceramics having a relative density of 90% or more, particularly 92% or more, and more preferably 95% or more.
However, the porosity is desirably 60% or more, particularly 65% or more, and more preferably 70% or more. According to FIG. 1, the pores 3 are filled with porous ceramics 4.

【0017】本発明によれば、骨格部2は三次元網目状
セラミックスで、かつ中実体であり、また、骨格部2に
よって気孔3が形成されており、これによって、構造体
1が等方的な特性を有し、単純形状から複雑形状まであ
らゆる形状の部材に適用できるとともに、機械的特性や
透過特性などにおいて異方性を有しないため、透過部材
などの構造体としての信頼性が大きく改善される。
According to the present invention, the skeleton 2 is a three-dimensional mesh-like ceramic and is a solid body, and the skeleton 2 defines the pores 3 so that the structure 1 is isotropic. It can be applied to members of any shape, from simple to complex, and has no anisotropy in mechanical and transmission characteristics, greatly improving the reliability of structures such as transmission members. Is done.

【0018】また、本発明によれば、気孔3は平均気孔
径が0.01〜10mmで、かつ該気孔平均径に対して
±30%以内である割合が90%以上と均一な気孔径を
有することが大きな特徴であり、これによって、気孔径
の大きな特定の気孔3に応力集中することがなく構造体
1の機械的強度を高めることができることから、構造体
1の気孔率を高めることができる結果、構造体1をフィ
ルタや触媒担持体等の流体透過部材として用いた際のフ
ィルタ性能や触媒性能が向上する。
According to the present invention, the pores 3 have an average pore diameter of 0.01 to 10 mm and a uniform pore diameter of 90% or more with respect to the average pore diameter within ± 30%. It is a major feature that the mechanical strength of the structure 1 can be increased without stress concentration on the specific pores 3 having a large pore diameter. Therefore, the porosity of the structure 1 can be increased. As a result, filter performance and catalyst performance when the structure 1 is used as a fluid permeable member such as a filter or a catalyst carrier are improved.

【0019】また、本発明によれば、上記気孔3のうち
隣接する気孔3、3間は、連通孔5によって連通される
とともに、連通孔5の平均径が気孔3の平均気孔径の1
/4以上であることが大きな特徴であり、これによって
流体透過部材等の外部と物質の出入りをする構造体1の
物質の透過特性を向上させることができる。
Further, according to the present invention, the adjacent pores 3, among the pores 3, are communicated with each other by the communication hole 5, and the average diameter of the communication hole 5 is one of the average pore diameter of the pore 3.
A major characteristic is that the ratio is / 4 or more, whereby the material permeation characteristics of the structure 1 that allows the material to enter and exit from the outside such as a fluid permeable member can be improved.

【0020】なお、本発明における気孔率、気孔径とは
破面SEM写真によって測定される気孔の画像解析によ
って求められる値である。また、上記連通孔5の平均径
も破面SEM写真によって測定される気孔の画像解析に
よって求められる。
The porosity and pore diameter in the present invention are values obtained by image analysis of pores measured by a fracture surface SEM photograph. Further, the average diameter of the communication holes 5 is also obtained by image analysis of the pores measured by the SEM photograph of the fracture surface.

【0021】また、気孔3内には多孔質セラミックス4
の気孔径を制御できるとともに、構造体1の強度を高め
る上で、多孔質セラミックス4を充填することが望まし
く、また、多孔質セラミックス4の相対密度は、構造体
1の気孔率、特に流体透過部材の透過率を高めるために
60%以下、特に40%以下であることが望ましい。
The pores 3 have porous ceramics 4 therein.
In order to control the pore diameter of the porous ceramics 4 and increase the strength of the structure 1, it is desirable to fill the porous ceramics 4 with the porous ceramics 4. In order to increase the transmittance of the member, it is desirably 60% or less, particularly preferably 40% or less.

【0022】なお、上記骨格部2および気孔3に充填さ
れる多孔質セラミックス4は、Al 23、ZrO2、ム
ライト、コージェライト、チタン酸アルミニウム等の酸
化物、Si34、AlN、TiN等の窒化物、SiC、
TiC等の炭化物、TiB2、AlB2、ZrB2等のホ
ウ化物、SiAlON、AlON等の酸窒化物、TiC
N等の炭窒化物の群から選ばれる少なくとも1種以上を
主結晶とする焼結または未焼結のセラミックスが好適に
適用できる。
The skeleton 2 and the pores 3 are filled.
The porous ceramics 4 to be used TwoOThree, ZrOTwo,
Acids such as light, cordierite, and aluminum titanate
Compound, SiThreeNFour, AlN, nitrides such as TiN, SiC,
Carbides such as TiC, TiBTwo, AlBTwo, ZrBTwoE
Oxides, oxynitrides such as SiAlON, AlON, TiC
At least one selected from the group of carbonitrides such as N
Sintered or unsintered ceramics as the main crystal is suitable
Applicable.

【0023】上記多孔質セラミックスの中でも高温での
使用によっても反応等が生じず安定した性能を有する酸
化物を主体とすることが望ましく、また、多孔質セラミ
ックス内の気孔率を高めるためには、前記多孔質セラミ
ックスがアスペクト比3以上の針状または板状粒子を含
有するもの、具体的には、窒化ケイ素、アルミナ、アル
ミネート、ホウ酸アルミニウム、ムライトの群から選ば
れる少なくとも1種を含有することが望ましい。なお、
本発明におけるアスペクト比とは、針状または板状結晶
粒子の(長手方向の粒径/該粒子の厚み)で表されるも
のである。
Among the above-mentioned porous ceramics, it is desirable to use mainly an oxide having stable performance without reaction or the like even when used at a high temperature. In order to increase the porosity in the porous ceramics, The porous ceramic contains needle-like or plate-like particles having an aspect ratio of 3 or more, specifically, contains at least one selected from the group consisting of silicon nitride, alumina, aluminate, aluminum borate, and mullite. It is desirable. In addition,
The aspect ratio in the present invention is represented by (the particle size in the longitudinal direction / the thickness of the particles) of the acicular or plate-like crystal particles.

【0024】また、上記針状または板状粒子のアスペク
ト比を高めるためには、窒化ケイ素については、焼結助
剤としてY23等の希土類元素酸化物を1.5重量%以
上含有せしめること、さらに窒化ケイ素原料中の不可避
不純物としての酸素をも含めたSiO2の添加量がSi
2換算量で1.5重量%以上含有せしめることが望ま
しいく、また、アルミナについては、TiO2、Mg
O、SiO2、CaO等の焼結助剤成分を含有せしめる
ことが望ましい。
Further, in order to increase the aspect ratio of the needle-like or plate-like particles, silicon nitride should contain a rare earth oxide such as Y 2 O 3 as a sintering aid in an amount of 1.5% by weight or more. In addition, the addition amount of SiO 2 including oxygen as an unavoidable impurity in the silicon nitride raw material is
It is desirable that the content be 1.5% by weight or more in terms of O 2 , and alumina is TiO 2 , Mg
It is desirable to include sintering aid components such as O, SiO 2 , and CaO.

【0025】特に、骨格部2を形成するセラミックスと
して、Al23やムライトを主体とする場合には、該主
結晶相の内部に1μm以下のTiO2等の微粒子を析出
分散させることによって骨格体4の強度をさらに高める
ことができる。
In particular, when the ceramics forming the skeleton 2 are mainly composed of Al 2 O 3 or mullite, fine particles such as TiO 2 of 1 μm or less are precipitated and dispersed in the main crystal phase. The strength of the body 4 can be further increased.

【0026】次に、本発明の多孔質セラミック構造体を
作製する方法について説明する。まず、骨格部を形成す
るための例えば平均粒径0.1〜2μmのセラミック原
料粉末に対して、所望により有機バインダ、分散剤、造
粘剤、可塑剤、溶媒等を添加してスラリーを作製する
か、または、骨格部を形成する金属酸化物のアルコキシ
ド溶液を加水分解するか、またはコロイド溶液を用いて
骨格部用の前駆体ゾルを作製する。
Next, a method for producing the porous ceramic structure of the present invention will be described. First, an organic binder, a dispersing agent, a thickener, a plasticizer, a solvent, and the like are added to a ceramic raw material powder having an average particle size of 0.1 to 2 μm for forming a skeletal portion, thereby forming a slurry. Alternatively, an alkoxide solution of the metal oxide forming the skeleton is hydrolyzed, or a precursor sol for the skeleton is prepared using a colloid solution.

【0027】次に、上記スラリーまたは前駆体ゾル内
に、平均径、すなわち平均直径0.01〜10mmの気
孔形成用の球状体を添加、混合する。該球状体として
は、例えば、アクリル樹脂、ワックス、ゴム等の加熱に
より焼失または溶出するもの、または熱または酸等によ
って溶出または分解するAl、Si、Sn、Pb、I
n、Cu、Ag等の金属からなり、これによって構造体
の骨格部内に気孔を形成することができる。
Next, a spherical body for forming pores having an average diameter, that is, an average diameter of 0.01 to 10 mm is added and mixed into the slurry or the precursor sol. Examples of the spherical body include those which are burned out or eluted by heating of acrylic resin, wax, rubber, etc., or Al, Si, Sn, Pb, I which are eluted or decomposed by heat or acid.
It is made of a metal such as n, Cu, Ag or the like, whereby pores can be formed in the skeleton of the structure.

【0028】本発明によれば、前記気孔の大きさを均一
化して骨格体の機械的強度を高めるとともに、後述する
スラリー中の球状体の充填率を高めて、気孔の体積比率
および気孔間の接触割合を高めるために、図2に示す球
状体の直径分布において、前記球状体の直径が前記平均
径D0に対して±30%以内のD1(D0×0.7)〜D2
(D0×1.3)である割合が全球状体の90%以上で
あるように均一化することが重要であり、このためには
前記球状体を前記範囲内となるように2種以上のふるい
にて篩別する等の方法を用いることが望ましい。なお、
前記球状体としては、楕円体や八面体以上の多面体をも
用いることができる。
According to the present invention, the size of the pores is made uniform to increase the mechanical strength of the skeleton, and the filling ratio of the spheres in the slurry described later is increased, so that the volume ratio of the pores and the space between the pores are increased. In order to increase the contact ratio, in the diameter distribution of the spherical body shown in FIG. 2, the diameter of the spherical body is D 1 (D 0 × 0.7) to D 2 within ± 30% of the average diameter D 0 .
It is important to homogenize so that the ratio of (D 0 × 1.3) is 90% or more of the whole sphere, and for this purpose, two or more kinds of the sphere are contained within the above range. It is desirable to use a method such as sieving with a sieve. In addition,
As the spherical body, an ellipsoid or a polyhedron of octahedron or more can also be used.

【0029】そして、上記球状体を添加、混合したスラ
リーまたはゾルを所定形状の成形型内に流し込むが、本
発明によれば、構造体の気孔率を高めるために、また後
述の球状体の変形性を高めるために、前記成形型内の充
填物については球状体がスラリー表面に突出するような
比率に調整することが望ましい。また、前記流し込みの
後、成形型に振動を与えて球状体の充填性を高めること
もできる。
Then, the slurry or sol to which the above-mentioned spheres are added and mixed is poured into a mold having a predetermined shape. According to the present invention, in order to increase the porosity of the structure, and to deform the spheres described later. In order to enhance the properties, it is desirable to adjust the ratio of the filler in the mold so that the spherical body protrudes from the slurry surface. In addition, after the pouring, the mold can be subjected to vibration to enhance the filling of the spherical body.

【0030】さらに、上記スラリーを充填した成形型に
対して表面から板状体等によって加圧し、前記球状体同
士が面接触するように前記成形型を変形させて成形す
る。なお、上記成形の際に、前記球状体の変形性を高め
るため成形体を所定の温度、例えば、50〜150℃に
加熱することもできる。
Further, a pressure is applied to the mold filled with the slurry from the surface with a plate-like body or the like, and the mold is deformed and molded so that the spherical bodies come into surface contact with each other. At the time of the molding, the molded body may be heated to a predetermined temperature, for example, 50 to 150 ° C. in order to enhance the deformability of the spherical body.

【0031】次に、上記成形体中の溶剤分を除去した
後、前記球状体を除去して気孔を作製し、残部である骨
格部が相対密度90%以上に緻密化する温度にて焼成す
ることによって多孔質セラミック構造体を作製すること
ができる。
Next, after removing the solvent component in the molded body, the spherical body is removed to form pores, and firing is performed at a temperature at which the remaining skeleton is densified to a relative density of 90% or more. Thus, a porous ceramic structure can be manufactured.

【0032】また、TiO2等のナノサイズの微粒子を
Al23やムライト結晶内に分散させた骨格部を作製す
るには、焼成中に雰囲気を酸化性雰囲気へ、温度を50
〜300℃低温へ変化させてTiO2の主結晶相への固
溶量を減少させるか、TiO2と等モルのMgOを添加
して焼成中に雰囲気を非酸化性雰囲気へ、温度を50〜
300℃低温へ変化させてTiO2とMgOのAl23
への固溶量を減少させればよい。
In order to prepare a skeleton in which nano-sized fine particles such as TiO 2 are dispersed in Al 2 O 3 or mullite crystal, the atmosphere is changed to an oxidizing atmosphere during firing and the temperature is reduced to 50%.
300 or ℃ by changing to a low reducing solid solution amount of the TiO 2 in the main crystal phase, the non-oxidizing atmosphere atmosphere during firing by the addition of equimolar MgO and TiO 2, 50 to a temperature
Change to low temperature of 300 ° C to make TiO 2 and MgO Al 2 O 3
What is necessary is just to reduce the amount of solid solution to the.

【0033】なお、前記球状体を除去する具体的な方法
は、例えば、前記球状体が有機物からなる場合には、こ
れを加熱して焼失または流失する方法や前記球状体のみ
が溶出する有機溶剤等により溶出させる方法、球状体が
金属からなる場合には、これを熱または酸等によって分
解、溶出させる方法等が好適に使用可能である。なお、
前記球状体のうち、弾性変形するものについては上述の
加圧した状態で球状体を除去することが望ましい。
The specific method of removing the sphere is, for example, when the sphere is made of an organic substance, a method of heating and burning or losing the sphere, or an organic solvent in which only the sphere is eluted. In the case where the spherical body is made of a metal, a method of decomposing and eluting the spherical body with heat or acid or the like can be suitably used. In addition,
Of the spherical bodies, it is desirable to remove those spherical bodies that are elastically deformed under the above-mentioned pressurized state.

【0034】また、所望により、上記方法によって作製
された気孔を有する成形体または焼結体からなる構造体
の気孔内に多孔質セラミックスを充填する。
Further, if desired, porous ceramics may be filled in the pores of the structure formed of the compact or sintered body having pores produced by the above method.

【0035】多孔質セラミックスの充填方法は、例え
ば、1)多孔質セラミックス原料粉末を含有するスラリ
ーまたは多孔質セラミックスを作製可能なゾル中に、前
記骨格体を浸漬して骨格体の気孔内に前記スラリーまた
はゾルを含浸後、加熱乾燥、凍結乾燥、超臨界乾燥等に
より乾燥し、所望により焼成する方法、2)骨格体中に
CVD法等の気相反応法によって気孔に反応性ガスを透
過しながら所定化合物を析出させる方法等が挙げられ
る。
The method for filling the porous ceramics includes, for example, 1) immersing the skeleton in a slurry containing a porous ceramic raw material powder or a sol capable of producing a porous ceramic, and filling the skeleton into the pores of the skeleton. A method in which the slurry or sol is impregnated, dried by heat drying, freeze drying, supercritical drying, etc., and fired if desired. 2) Reactive gas is permeated into pores by a gas phase reaction method such as CVD into the skeleton. And a method of precipitating a predetermined compound.

【0036】さらに、多孔質セラミックス中に上述した
針状または板状粒子を含有せしめる方法としては、上記
方法以外にも粒状のセラミック原料粉末を含有するスラ
リーを充填した後、焼成によって針状化または板状化を
促進して構造体の気孔内に相対密度60%以下の多孔質
でアスペクト比の高い多孔質セラミックスを作製するこ
とができる。
Further, as a method for incorporating the above-mentioned needle-like or plate-like particles into the porous ceramic, in addition to the above-mentioned method, after filling a slurry containing a granular ceramic raw material powder, the mixture is made into a needle-like shape by sintering. By promoting plate formation, a porous ceramic having a relative density of 60% or less and a high aspect ratio can be produced in the pores of the structure.

【0037】上記アスペクト比を高めるためには、針状
または板状の種結晶粒子を添加したり、粒成長を促進す
る焼結助剤を添加したり、特に5時間以上の長時間焼成
を行うことが望ましい。
In order to increase the above aspect ratio, needle-like or plate-like seed crystal particles are added, a sintering aid for promoting grain growth is added, and calcination is carried out for a long period of time, particularly 5 hours or more. It is desirable.

【0038】また、本発明においては、上記球状体とし
て構造体の気孔内に充填される多孔質セラミックスの原
料を含有する顆粒を用いることもできる。この場合に
は、まず、多孔質セラミックスを形成する、例えば平均
粒径0.1〜2μmのセラミックス原料粉末に対して、
所望により有機バインダ、分散剤、溶媒等を添加してス
ラリーを作製するか、または、多孔質セラミックスを形
成するための金属酸化物を含有するアルコキシド溶液を
加水分解するか、コロイド溶液を用いて多孔質セラミッ
クス用の前駆体ゾルを作製し、スプレードライ等の公知
の造粒方法によって平均気孔径0.01〜10mmの顆
粒を作製する。
In the present invention, granules containing a raw material for porous ceramics filled in the pores of the structure can be used as the spherical body. In this case, first, for a ceramic raw material powder having a mean particle size of 0.1 to 2 μm for forming a porous ceramic,
If desired, an organic binder, a dispersant, a solvent, etc. may be added to form a slurry, or an alkoxide solution containing a metal oxide for forming a porous ceramic may be hydrolyzed, or a porous solution may be formed using a colloid solution. A precursor sol for porous ceramics is prepared, and granules having an average pore diameter of 0.01 to 10 mm are prepared by a known granulation method such as spray drying.

【0039】この時、上記スラリーまたはゾル内に例え
ば澱粉等の加熱により焼失する有機物を添加すれば、多
孔質セラミックスの気孔率を高めることができる。
At this time, the porosity of the porous ceramic can be increased by adding, to the slurry or sol, an organic substance such as starch which is burned off by heating.

【0040】そして、上述した骨格部用のスラリーまた
はゾル内に多孔質セラミックス用の顆粒を添加、混合し
て上述したように成形型内に流し込み、前記多孔質セラ
ミックス用の造粒粉末同士が面接触となるように前記成
形型を変形させて加圧成形する。
Then, granules for porous ceramics are added to the above-mentioned slurry or sol for the skeleton portion, mixed and poured into the molding die as described above, and the granulated powder for porous ceramics faces each other. The molding die is deformed so as to be in contact with each other and press-molded.

【0041】その後、所望により乾燥し、上記成形体を
加熱して骨格部および多孔質セラミックス造粒粉末中の
有機質成分を焼失させた後、前記骨格部が緻密化する温
度にて焼成することによって多孔質セラミック構造体を
作製できる。
Thereafter, if necessary, drying is performed, and the above-mentioned molded body is heated to burn off the skeleton portion and the organic components in the porous ceramic granulated powder, and then fired at a temperature at which the skeleton portion becomes dense. A porous ceramic structure can be produced.

【0042】また、本発明の多孔質セラミックス構造体
は、粉塵等の固体や、液体、気体等を分離するフィルタ
やその支持部材、触媒担持体、金属溶湯等の流体透過部
材、または人工骨、人工関節等の生体代替部材として好
適に使用可能である。
Further, the porous ceramic structure of the present invention can be used as a filter for separating solids such as dust, liquids, gases, etc., a supporting member thereof, a catalyst carrier, a fluid permeable member such as a molten metal, or an artificial bone. It can be suitably used as a living body substitute such as an artificial joint.

【0043】また、上記用途のうち、例えば、流体透過
部材として用いる場合には、平板形状からなり一方の表
面から他方の表面、または一方の表面から一方の側面に
流体を透過させることができ、また管形状からなり内面
側に流した流体を外面へ、または外面側に流した流体を
内面へ透過させるものであってもよく、本発明のよれ
ば、等方的な機械的特性と流体透過特性を有することか
らいずれの場合においても高い機械的特性と流体透過特
性とを併せ持つ優れた流体透過部材となる。
In the above-mentioned applications, for example, when used as a fluid permeable member, it can be formed in a flat plate shape and can transmit a fluid from one surface to the other surface or from one surface to one side surface, Further, it may have a tubular shape and allow the fluid flowing on the inner surface side to pass to the outer surface or the fluid flowing on the outer surface side to the inner surface. According to the present invention, isotropic mechanical properties and fluid permeation In any case, the fluid permeable member has excellent mechanical properties and fluid permeable properties.

【0044】[0044]

【実施例】(実施例1)平均粒径0.7μmのアルミナ
粉末、平均粒径0.3μmのアルミナとシリカを重量比
72/28の比率で混合したムライト原料粉末、及び平
均粒径0.7μmの窒化ケイ素粉末(酸素含有量0.9
wt%)に平均粒径1μmのイットリア5重量%と平均
粒径0.7μmのアルミナ3重量%を焼結助剤として添
加したものそれぞれに対して、有機バインダと、分散剤
と、水とを添加してスラリーを作製した。
EXAMPLES Example 1 Alumina powder having an average particle diameter of 0.7 μm, mullite raw material powder obtained by mixing alumina and silica having an average particle diameter of 0.3 μm in a weight ratio of 72/28, and an average particle diameter of 0.1 μm. 7 μm silicon nitride powder (oxygen content 0.9
wt%) and 5% by weight of yttria having an average particle size of 1 μm and 3% by weight of alumina having an average particle size of 0.7 μm as sintering aids, and an organic binder, a dispersant, and water were added. This was added to make a slurry.

【0045】一方、マイクロトラック法による分析にお
いて表1に示す平均径、および該平均径に対して±30
%の範囲内の割合が表1に示す値である(表1では分布
と記載)アクリルボールを所望により篩別して準備し
た。
On the other hand, in the analysis by the microtrack method, the average diameter shown in Table 1 and ± 30
% Of the acrylic balls having the values shown in Table 1 (described as distribution in Table 1) were prepared by sieving as desired.

【0046】次に、上述のスラリーに対して前記アクリ
ルボールをスラリー表面から突出するように混合し、こ
れを60mmφ×20mm厚みの石膏型中に流入し、振
動させることによりアクリルボールの充填性を高めた。
この時、アクリルボールがスラリー乾燥体表面から突出
するようにボール量を予め調整した。そして、石膏型の
上面にセラミックスの板状体を載置してネジ止めによっ
て表1に示す圧力となるようにかしめた状態で、脱水乾
燥した後、500℃に加熱してアクリル球状体を焼失し
た。
Next, the acrylic ball is mixed with the slurry so as to protrude from the surface of the slurry, flows into a gypsum mold having a thickness of 60 mmφ × 20 mm, and is vibrated to improve the filling property of the acrylic ball. Enhanced.
At this time, the ball amount was adjusted in advance so that the acrylic ball protruded from the surface of the dried slurry. Then, the plate-shaped ceramic body is placed on the top surface of the gypsum mold, caulked by screwing to the pressure shown in Table 1, dehydrated and dried, and then heated to 500 ° C. to burn off the acrylic spherical body. did.

【0047】そして、上記成形体を成形型から取り出し
て、アルミナとムライトについては大気中にてそれぞれ
1650℃と1600℃で、窒化ケイ素については窒素
雰囲気中にて1750℃で5時間焼成した。
The compact was taken out of the mold, and alumina and mullite were fired at 1650 ° C. and 1600 ° C. in air, respectively, and silicon nitride was fired at 1750 ° C. in a nitrogen atmosphere for 5 hours.

【0048】得られた焼結体の骨格部の密度をアルキメ
デス法により測定した結果、いずれも相対密度98%以
上であった。また、試料の寸法密度を測定し、構造体の
気孔率を求めた。また、構造体の断面または破面につい
てのSEM写真より一視野における気孔の平均径と、隣
接する気孔間の連通孔径、すなわちネック部の直径の平
均値を測定した。さらに、JISR1601に基づいて
3点曲げ強度を測定した。
As a result of measuring the density of the skeleton portion of the obtained sintered body by the Archimedes method, the relative density was 98% or more in all cases. In addition, the dimensional density of the sample was measured to determine the porosity of the structure. Further, the average diameter of pores in one visual field and the diameter of communication holes between adjacent pores, that is, the average value of the diameter of the neck portion were measured from a SEM photograph of a cross section or a fractured surface of the structure. Further, the three-point bending strength was measured based on JISR1601.

【0049】さらに上記試料を50mmφ×10mm厚
みに加工して円筒状のハウジング内に載置し、一方の表
面側から流速10m/sで空気を流して構造体内を透過
させた時の圧力損失を圧差計にて測定した。結果は表1
に示した。
Further, the sample was processed to a thickness of 50 mmφ × 10 mm, placed in a cylindrical housing, and the pressure loss caused when air was allowed to flow through the structure by flowing air at a flow rate of 10 m / s from one surface side. It measured with the pressure difference meter. Table 1 shows the results
It was shown to.

【0050】(実施例2)実施例1の試料No.12に
対して、TiO2を1重量%添加すること、また、焼成
を水素雰囲気中1500℃で5時間焼成した後、大気中
で1200℃にて10時間アニールする以外は実施例1
と同様に多孔質セラミック構造体を作製し、同様に評価
した(試料No.12)。結果は表1に示した。
(Example 2) Example 1 was the same as Example 1 except that 1% by weight of TiO 2 was added to the sample No. 12 and the firing was performed at 1500 ° C. for 5 hours in a hydrogen atmosphere, followed by annealing at 1200 ° C. in the air for 10 hours.
A porous ceramic structure was prepared in the same manner as described above, and evaluated similarly (Sample No. 12). The results are shown in Table 1.

【0051】(比較例)実施例1の試料No.3の骨格
部形成用スラリー内にウレタンフォーム(孔径:0.6
mm)を浸漬して、引き上げ、乾燥することによってフ
ォーム表面に前記スラリーの被膜を形成した後、これを
1500℃で焼成してウレタンフォームを焼失させて多
孔質セラミック構造体を作製し、実施例1と同様に評価
した(試料No.13)。結果は表1に示した。
Comparative Example Sample No. 1 of Example 1 Urethane foam (pore diameter: 0.6) in the slurry for forming the skeleton portion 3
mm) was dipped, pulled up, and dried to form a film of the slurry on the foam surface, and then fired at 1500 ° C. to burn off the urethane foam to produce a porous ceramic structure. Evaluation was performed in the same manner as Sample No. 1 (Sample No. 13). The results are shown in Table 1.

【0052】[0052]

【表1】 [Table 1]

【0053】表1の結果から明らかなように、平均径が
0.01mmより小さい球状体を用い構造体の気孔径が
0.01mmより小さい試料No.1では、骨格部自体
の強度が低下して構造体の曲げ強度が低下するととも
に、圧力損失が大きくなった。また、成形型を加圧しな
い試料No.7では、圧力損失が大きくなった。さら
に、平均径が10mmより大きい球状体を用い構造体の
気孔径が10mmより大きい試料No.6では、構造体
の曲げ強度が低下した。また、球状体の平均径に対して
±30%以内の割合が90%より小さい、すなわち粒径
の分布が広い試料No.9では、気孔間の連通性が悪く
なり、圧力損失が高く、また、部分的に大きな直径のボ
ールが存在して曲げ強度が低下した。さらに、試料N
o.13については、強度が低下した。
As is clear from the results shown in Table 1, a spherical body having an average diameter smaller than 0.01 mm was used, and the pore size of the structure was smaller than 0.01 mm. In No. 1, the strength of the skeleton itself was reduced, the bending strength of the structure was reduced, and the pressure loss was increased. In addition, for sample No. In No. 7, the pressure loss increased. Further, a spherical body having an average diameter larger than 10 mm was used, and the pore size of the structure was larger than 10 mm. In No. 6, the bending strength of the structure decreased. Further, the ratio of the average diameter of the spherical body within ± 30% is smaller than 90%, that is, the sample No. having a wide particle size distribution. In No. 9, the communication between the pores was deteriorated, the pressure loss was high, and the bending strength was reduced due to the presence of a ball having a large diameter in part. Further, the sample N
o. As for 13, the strength was reduced.

【0054】これに対して、本発明に従う試料No.2
〜5、8、10〜12では、いずれも曲げ強度20MP
a以上、圧力損失2kPa以下の優れた特性を有するも
のであった。
On the other hand, the sample No. 2
55,8,10-12, bending strength 20MP
a and excellent pressure loss of 2 kPa or less.

【0055】(実施例3)実施例1の試料No.3の構
造体を、平均粒径0.7μmのアルミナ粉末を含有する
スラリー内に浸漬して、構造体の気孔内に前記スラリー
を充填した後、凍結乾燥処理によって乾燥し、大気中1
500℃で焼成して、試料No.3の気孔内に多孔質セ
ラミックスを充填した試料を作製した。
Example 3 Sample No. 1 of Example 1 was used. The structure of No. 3 was immersed in a slurry containing alumina powder having an average particle size of 0.7 μm, and the pores of the structure were filled with the slurry, dried by freeze-drying, and dried in air.
Baking at 500 ° C. A sample in which the pores of No. 3 were filled with porous ceramics was prepared.

【0056】得られた構造体について、破面SEMによ
り気孔率および平均気孔径を測定したところ、充填した
多孔質体の相対密度32%、水銀圧入法による平均気孔
径0.022mmであった。また、実施例1と同様に曲
げ強度と流速10m/sでの圧力損失を測定した結果、
曲げ強度31MPa、圧力損失1.58MPaであっ
た。
When the porosity and the average pore diameter of the obtained structure were measured by a fracture surface SEM, the relative density of the filled porous body was 32%, and the average pore diameter by a mercury intrusion method was 0.022 mm. Further, as a result of measuring the bending strength and the pressure loss at a flow velocity of 10 m / s in the same manner as in Example 1,
The bending strength was 31 MPa and the pressure loss was 1.58 MPa.

【0057】(実施例4)実施例3の多孔質セラミック
ス用のスラリーに澱粉を85重量%の比率で添加したス
ラリーをスプレードライによって造粒し、篩別して、平
均径1.0mm、直径が0.7〜1.3mmの範囲内の
比率が92%の顆粒とした。
Example 4 A slurry obtained by adding starch at a ratio of 85% by weight to the slurry for porous ceramics of Example 3 was granulated by spray drying, sieved, and had an average diameter of 1.0 mm and a diameter of 0 mm. The granules had a ratio of 92% within a range of 0.7 to 1.3 mm.

【0058】この顆粒を実施例1のNo.3のアクリル
ボールに代えて用い、成形型のかしめ圧を0.1MPa
とする以外は実施例1と同様に構造体を作製した結果、
骨格部の気孔率、すなわち多孔質セラミックスの体積比
率が81%、平均気孔径0.8mm、連通孔径0.23
mmであり、多孔質セラミックスの相対密度78%、平
均気孔径0.08mmであった。また、実施例1と同様
に曲げ強度と流速10m/sでの圧力損失を測定した結
果、曲げ強度30MPa、圧力損失1.35MPaであ
った。
The granules were prepared in the same manner as in Example 1 Used in place of the acrylic ball of No. 3 and the caulking pressure of the mold was 0.1 MPa
As a result of producing a structure in the same manner as in Example 1 except that
The porosity of the skeleton portion, that is, the volume ratio of the porous ceramic is 81%, the average pore diameter is 0.8 mm, and the communication hole diameter is 0.23.
mm, the relative density of the porous ceramic was 78%, and the average pore diameter was 0.08 mm. Further, the bending strength and the pressure loss at a flow velocity of 10 m / s were measured in the same manner as in Example 1, and as a result, the bending strength was 30 MPa and the pressure loss was 1.35 MPa.

【0059】(実施例5)表2に示す組成(残部は窒化
ケイ素、酸素量0.9〜1.1重量%)の原料粉末に対
して、実施例3と同様に有機溶剤を含有する多孔質セラ
ミックス用のスラリーを調製し、これに実施例1の試料
No.11の多孔質セラミック構造体を浸漬して該構造
体の気孔内に前記スラリーを充填した後、凍結乾燥処理
して、窒素雰囲気中、1800℃にて5時間焼成した。
Example 5 A raw material powder having the composition shown in Table 2 (the remainder being silicon nitride and an oxygen content of 0.9 to 1.1% by weight) was mixed with a porous material containing an organic solvent in the same manner as in Example 3. A slurry for porous ceramics was prepared. After the porous ceramic structure of No. 11 was immersed and the pores of the structure were filled with the slurry, the slurry was freeze-dried and fired at 1800 ° C. for 5 hours in a nitrogen atmosphere.

【0060】また、この試料について、実施例1と同様
に評価するとともに、試料破面のSEM写真を用いてル
ーゼックス画像処理解析によって、多孔質セラミックス
についての結晶の短径および長径の平均値、およびアス
ペクト比が3以上の粒子の含有比率を測定した。結果は
表2に示した。
Further, this sample was evaluated in the same manner as in Example 1, and the average value of the minor axis and major axis of the crystal of the porous ceramic was determined by Luzex image processing analysis using an SEM photograph of the fracture surface of the sample. The content ratio of particles having an aspect ratio of 3 or more was measured. The results are shown in Table 2.

【0061】[0061]

【表2】 [Table 2]

【0062】(実施例6)アスペクト比3、粉末の平均
長径が10μmのアルミナを30重量%を含み残部が平
均粒径0.7μmの粉末からなるアルミナ原料に対し
て、焼結助剤としてTiO2を1重量%とMg(OH)2
をMgO換算量で0.5重量%と、SiO2を0.3重
量%との比率で添加した原料粉末に対して、有機溶剤を
含有するスラリーを調製し、これに実施例1の試料N
o.3の多孔質セラミック構造体を浸漬して該構造体の
気孔内に前記スラリーを充填した後、凍結乾燥処理し
て、大気中、1400℃にて5時間焼成した。得られた
試料について、実施例1と同様に評価するとともに、試
料破面のSEM写真を用いてルーゼックス画像処理解析
によって、多孔質セラミックスについての結晶の短径お
よび長径の平均値、およびアスペクト比が3以上の粒子
の含有比率を測定した。結果は表3に示した。
(Example 6) An alumina raw material comprising 30% by weight of alumina having an aspect ratio of 3, powder having an average major axis of 10 µm and the remainder having an average particle size of 0.7 µm was prepared by using TiO as a sintering aid. 2 and 1% by weight of Mg (OH) 2
Was added to a raw material powder containing 0.5% by weight in terms of MgO and 0.3% by weight of SiO 2, and a slurry containing an organic solvent was prepared.
o. After the porous ceramic structure of No. 3 was immersed and the pores of the structure were filled with the slurry, the slurry was freeze-dried and fired at 1400 ° C. for 5 hours in the air. The obtained sample was evaluated in the same manner as in Example 1, and the average value of the minor axis and major axis of the crystal and the aspect ratio of the porous ceramic were determined by Luzex image processing analysis using an SEM photograph of the fracture surface of the sample. The content ratio of three or more particles was measured. The results are shown in Table 3.

【0063】(実施例7)表3に示す組成(残部はアル
ミナ)の原料粉末に対して、有機溶剤を含有するスラリ
ーを調製し、これに実施例1の試料No.3の多孔質セ
ラミック構造体を浸漬して該構造体の気孔内に前記スラ
リーを充填した後、凍結乾燥処理して、大気中、表3の
条件で5時間焼成した。得られた試料について、実施例
1と同様に評価するとともに、試料破面のSEM写真を
用いてルーゼックス画像処理解析によって、多孔質セラ
ミックスについての結晶の短径および長径の平均値、お
よびアスペクト比が3以上の粒子の含有比率を測定し
た。また、XRD測定の強度比から、97%以上の結晶
相を主結晶相として表3に示した。結果は表3に示し
た。
(Example 7) A slurry containing an organic solvent was prepared with respect to the raw material powder having the composition shown in Table 3 (the remainder being alumina). After the porous ceramic structure of No. 3 was immersed and the pores of the structure were filled with the slurry, the slurry was freeze-dried and fired in air under the conditions shown in Table 3 for 5 hours. The obtained sample was evaluated in the same manner as in Example 1, and the average value of the minor axis and major axis of the crystal and the aspect ratio of the porous ceramic were determined by Luzex image processing analysis using an SEM photograph of the fracture surface of the sample. The content ratio of three or more particles was measured. Also, from the intensity ratio of the XRD measurement, Table 3 shows a crystal phase of 97% or more as a main crystal phase. The results are shown in Table 3.

【0064】[0064]

【表3】 [Table 3]

【0065】表2、表3の結果から明らかなように、い
ずれも高い曲げ強度と高い流体透過特性を有するもので
あることがわかった。
As is evident from the results in Tables 2 and 3, it was found that both had high bending strength and high fluid permeability.

【0066】[0066]

【発明の効果】以上詳述したとおり、本発明の多孔質セ
ラミック構造体によれば、等方的に高い強度と流体透過
特性等の物質の出入特性を高めることができる。
As described in detail above, according to the porous ceramic structure of the present invention, it is possible to enhance the ingress and egress characteristics of substances such as isotropic high strength and fluid permeation characteristics.

【0067】[0067]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の多孔質セラミック構造体の組織構造に
ついての模式図である。
FIG. 1 is a schematic diagram illustrating a tissue structure of a porous ceramic structure of the present invention.

【図2】本発明の多孔質セラミック構造体の製造方法に
おける球状体直径の分布の一例を示す図である。
FIG. 2 is a diagram illustrating an example of a distribution of a spherical body diameter in the method for manufacturing a porous ceramic structure of the present invention.

【符号の説明】[Explanation of symbols]

1 多孔質セラミック構造体 2 骨格部 3 気孔 4 多孔質セラミックス 5 連通孔 DESCRIPTION OF SYMBOLS 1 Porous ceramic structure 2 Skeleton 3 Pores 4 Porous ceramic 5 Communication hole

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 37/00 B01J 37/00 K C04B 38/04 C04B 38/04 B 38/06 38/06 D E G J Fターム(参考) 4D019 AA01 AA03 BA05 BB07 BB20 BC07 BD01 CB06 4G019 FA04 FA13 GA01 GA02 4G069 AA01 AA12 BA01A BA01B BA04A BA04B BA13A BA13B BA22C BA29C BA37 BB06A BB06B BB11A BB11B BC08A BC09B BC12B BC13B BC16A BC16B BC40B BC42B BD03A BD03B BD05A BD05B BE08C DA05 EB14X EB14Y EC17X EC17Y EC19 EC21X EC21Y ED03 FA01 FB06 FB30 FB36 FB66 FB74 FB78 FC03 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01J 37/00 B01J 37/00 K C04B 38/04 C04B 38/04 B 38/06 38/06 D E G J F term (reference) 4D019 AA01 AA03 BA05 BB07 BB20 BC07 BD01 CB06 4G019 FA04 FA13 GA01 GA02 4G069 AA01 AA12 BA01A BA01B BA04A BA04B BA13A BA13B BD22C BA29C BA37 BB06A BB06B13 BCBBC BCBC BC BC BC BC BC EB14X EB14Y EC17X EC17Y EC19 EC21X EC21Y ED03 FA01 FB06 FB30 FB36 FB66 FB74 FB78 FC03

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】緻密質セラミックスからなる骨格部間に気
孔が存在し、該気孔の平均気孔径が0.01〜10mm
で、かつ前記気孔の径が前記平均気孔径に対して±30
%以内である割合が90%以上であるとともに、隣接す
る気孔が連通孔によって連通され、該連通孔の平均径が
前記平均気孔径の1/4以上であることを特徴とする多
孔質セラミック構造体。
1. Pores are present between skeleton portions made of dense ceramics, and the average pore diameter of the pores is 0.01 to 10 mm.
And the diameter of the pores is ± 30 with respect to the average pore diameter.
% Is 90% or more, adjacent pores are communicated by communication holes, and the average diameter of the communication holes is 1/4 or more of the average pore diameter. body.
【請求項2】前記気孔内に相対密度60%以下の多孔質
セラミックスを充填してなることを特徴とする請求項1
記載の多孔質セラミック構造体。
2. The method according to claim 1, wherein the pores are filled with a porous ceramic having a relative density of 60% or less.
The porous ceramic structure according to any one of the preceding claims.
【請求項3】前記多孔質セラミックスがアスペクト比3
以上の針状または板状粒子を含有することを特徴とする
請求項2記載の多孔質セラミック構造体。
3. The porous ceramic has an aspect ratio of 3
3. The porous ceramic structure according to claim 2, comprising the above-mentioned needle-like or plate-like particles.
【請求項4】前記針状または板状粒子が、窒化ケイ素、
アルミナ、アルミネート、ホウ酸アルミニウム、ムライ
トの群から選ばれる少なくとも1種を主体とするセラミ
ックスからなることを特徴とする請求項3記載の多孔質
セラミック構造体。
4. The method according to claim 1, wherein the needle-like or plate-like particles are silicon nitride,
4. The porous ceramic structure according to claim 3, comprising a ceramic mainly composed of at least one selected from the group consisting of alumina, aluminate, aluminum borate, and mullite.
【請求項5】骨格部を形成するセラミック原料を含有す
るスラリーまたはゾルを作製する工程と、前記スラリー
またはゾル内に平均径0.01〜10mmで、かつ該平
均径に対して±30%以内である割合が90%以上であ
る気孔形成用の球状体を添加する工程と、該球状体を添
加したスラリーまたはゾルを成形型内に流し込んだ後、
前記球状体同士が面接触するように前記球状体を変形さ
せる工程と、該球状体を除去して気孔を形成した後、残
部を焼成する工程とを具備することを特徴とする多孔質
セラミック構造体の製造方法。
5. A step of preparing a slurry or sol containing a ceramic raw material for forming a skeleton portion, wherein said slurry or sol has an average diameter of 0.01 to 10 mm and within ± 30% of said average diameter. Adding a spherical body for forming pores having a ratio of 90% or more, and pouring a slurry or sol to which the spherical body is added into a molding die;
A porous ceramic structure, comprising: a step of deforming the spherical body so that the spherical bodies come into surface contact with each other; and a step of removing the spherical body to form pores and then firing the remaining part. How to make the body.
【請求項6】前記気孔内に相対密度が60%以下の多孔
質セラミックスを充填してなることを特徴とする請求項
5記載の多孔質セラミック構造体の製造方法。
6. The method for producing a porous ceramic structure according to claim 5, wherein said pores are filled with a porous ceramic having a relative density of 60% or less.
【請求項7】気孔形成用の球状体が多孔質セラミックス
を形成するセラミック原料と有機物とを含有する顆粒で
あることを特徴とする請求項6記載の多孔質セラミック
構造体の製造方法。
7. The method for producing a porous ceramic structure according to claim 6, wherein the spherical body for forming pores is a granule containing a ceramic raw material forming a porous ceramic and an organic substance.
【請求項8】前記顆粒が澱粉を含有し、前記気孔形成時
に焼失することを特徴とする請求項7記載の多孔質セラ
ミック構造体の製造方法。
8. The method for producing a porous ceramic structure according to claim 7, wherein said granules contain starch and are burned out during said pore formation.
【請求項9】請求項1乃至4のいずれか記載の多孔質セ
ラミック構造体を具備する流体透過部材。
9. A fluid permeable member comprising the porous ceramic structure according to claim 1.
JP2000054005A 2000-02-29 2000-02-29 Method for producing porous ceramic structure Expired - Fee Related JP4514274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000054005A JP4514274B2 (en) 2000-02-29 2000-02-29 Method for producing porous ceramic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000054005A JP4514274B2 (en) 2000-02-29 2000-02-29 Method for producing porous ceramic structure

Publications (2)

Publication Number Publication Date
JP2001240480A true JP2001240480A (en) 2001-09-04
JP4514274B2 JP4514274B2 (en) 2010-07-28

Family

ID=18575316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000054005A Expired - Fee Related JP4514274B2 (en) 2000-02-29 2000-02-29 Method for producing porous ceramic structure

Country Status (1)

Country Link
JP (1) JP4514274B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004080916A1 (en) * 2003-03-10 2004-09-23 Ngk Insulators, Ltd. Inorganic porous body and method for producing same
WO2005009922A1 (en) * 2003-07-25 2005-02-03 Ngk Insulators, Ltd. Ceramic porous body and method for evaluating its permeability
JP2005288350A (en) * 2004-03-31 2005-10-20 National Institute Of Advanced Industrial & Technology Efficient heat insulating method and device for high-pressure device
WO2006041118A1 (en) * 2004-10-15 2006-04-20 Taisei Kogyo Co., Ltd. Process for producing porous sinter, porous-sinter molding material, and porous sinter
JP2007051033A (en) * 2005-08-18 2007-03-01 Noritake Co Ltd Porous ceramic support
US7357976B2 (en) 2004-06-15 2008-04-15 Honda Motor Co., Ltd. Ceramic molded body and metal matrix composite
JP2008100892A (en) * 2006-10-20 2008-05-01 Nitsukatoo:Kk Member for vacuum chuck composed of porous alumina sintered compact, and its production method
WO2009145910A1 (en) * 2008-05-30 2009-12-03 Corning Incorporated Low back pressure porous honeycomb and method for producing the same
JP2010202472A (en) * 2009-03-05 2010-09-16 Mitsui Mining & Smelting Co Ltd Ceramic fired body and method of manufacturing the same
KR20110063512A (en) * 2008-09-23 2011-06-10 하.체. 스타르크 게엠베하 Valve metal and valve metal oxide agglomerate powders and method for the production thereof
WO2013146594A1 (en) * 2012-03-29 2013-10-03 株式会社クボタ Ceramic filter
WO2015025951A1 (en) * 2013-08-23 2015-02-26 東洋炭素株式会社 Porous ceramic and method for producing same
JP2015044698A (en) * 2013-08-27 2015-03-12 栃木県 Eucryptite porous body, and method for manufacturing the same
JP2017024987A (en) * 2011-09-20 2017-02-02 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツングEvonik Roehm GmbH Method for producing light ceramic materials
CN116751073A (en) * 2023-08-23 2023-09-15 天津南极星隔热材料有限公司 Preparation method of lightweight heat-insulating aluminum borate porous ceramic with multistage pore structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101918620B1 (en) * 2017-06-02 2018-11-15 안동대학교 산학협력단 Recovery method of high purity MMA and alumina from crude marble

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197375A (en) * 1988-02-01 1989-08-09 Ngk Spark Plug Co Ltd Porous body and production of porous body
JPH04104974A (en) * 1990-08-24 1992-04-07 Sk Kaken Co Ltd Porous material having open-cell structure and method for forming the same
JPH05117053A (en) * 1991-10-25 1993-05-14 Mitsubishi Heavy Ind Ltd Micronization of pore in porous material
JP2000053475A (en) * 1998-07-30 2000-02-22 Shokan Ri Open-cell formed concrete and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197375A (en) * 1988-02-01 1989-08-09 Ngk Spark Plug Co Ltd Porous body and production of porous body
JPH04104974A (en) * 1990-08-24 1992-04-07 Sk Kaken Co Ltd Porous material having open-cell structure and method for forming the same
JPH05117053A (en) * 1991-10-25 1993-05-14 Mitsubishi Heavy Ind Ltd Micronization of pore in porous material
JP2000053475A (en) * 1998-07-30 2000-02-22 Shokan Ri Open-cell formed concrete and its production

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004080916A1 (en) * 2003-03-10 2004-09-23 Ngk Insulators, Ltd. Inorganic porous body and method for producing same
WO2005009922A1 (en) * 2003-07-25 2005-02-03 Ngk Insulators, Ltd. Ceramic porous body and method for evaluating its permeability
US7488366B2 (en) 2003-07-25 2009-02-10 Ngk Insulators, Ltd. Ceramic porous body and method for evaluating its permeability
JP2005288350A (en) * 2004-03-31 2005-10-20 National Institute Of Advanced Industrial & Technology Efficient heat insulating method and device for high-pressure device
US7357976B2 (en) 2004-06-15 2008-04-15 Honda Motor Co., Ltd. Ceramic molded body and metal matrix composite
JP5503838B2 (en) * 2004-10-15 2014-05-28 太盛工業株式会社 Method for producing porous sintered body, porous sintered molding material, and porous sintered body
WO2006041118A1 (en) * 2004-10-15 2006-04-20 Taisei Kogyo Co., Ltd. Process for producing porous sinter, porous-sinter molding material, and porous sinter
US11819917B2 (en) 2004-10-15 2023-11-21 Taisei Kogyo Co., Ltd. Method of making a porous sintered body, a compound for making the porous sintered body, and the porous sintered body
US9272333B2 (en) 2004-10-15 2016-03-01 Taisei Kogyo Co., Ltd. Method of making a porous sintered body, a compound for making the porous sintered body, and the porous sintered body
JP2007051033A (en) * 2005-08-18 2007-03-01 Noritake Co Ltd Porous ceramic support
JP2008100892A (en) * 2006-10-20 2008-05-01 Nitsukatoo:Kk Member for vacuum chuck composed of porous alumina sintered compact, and its production method
WO2009145910A1 (en) * 2008-05-30 2009-12-03 Corning Incorporated Low back pressure porous honeycomb and method for producing the same
KR20110063512A (en) * 2008-09-23 2011-06-10 하.체. 스타르크 게엠베하 Valve metal and valve metal oxide agglomerate powders and method for the production thereof
KR101712678B1 (en) 2008-09-23 2017-03-06 하.체. 스타르크 게엠베하 Valve metal and valve metal oxide agglomerate powders and method for the production thereof
JP2010202472A (en) * 2009-03-05 2010-09-16 Mitsui Mining & Smelting Co Ltd Ceramic fired body and method of manufacturing the same
JP2017024987A (en) * 2011-09-20 2017-02-02 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツングEvonik Roehm GmbH Method for producing light ceramic materials
JPWO2013146594A1 (en) * 2012-03-29 2015-12-14 株式会社クボタ Ceramic filter
WO2013146594A1 (en) * 2012-03-29 2013-10-03 株式会社クボタ Ceramic filter
WO2015025951A1 (en) * 2013-08-23 2015-02-26 東洋炭素株式会社 Porous ceramic and method for producing same
JP2015044698A (en) * 2013-08-27 2015-03-12 栃木県 Eucryptite porous body, and method for manufacturing the same
CN116751073A (en) * 2023-08-23 2023-09-15 天津南极星隔热材料有限公司 Preparation method of lightweight heat-insulating aluminum borate porous ceramic with multistage pore structure
CN116751073B (en) * 2023-08-23 2023-10-24 天津南极星隔热材料有限公司 Preparation method of lightweight heat-insulating aluminum borate porous ceramic with multistage pore structure

Also Published As

Publication number Publication date
JP4514274B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
JP2001240480A (en) Porous ceramic structural body, its manufacturing method and fluid permeable member
US6210612B1 (en) Method for the manufacture of porous ceramic articles
US6565797B2 (en) Method for production of silicon nitride filter
US9079798B2 (en) Method for making porous mullite-containing composites
PL209724B1 (en) Silicon carbide based porous article and method for preparation thereof
CN109279909B (en) Preparation method of high-strength boron carbide porous ceramic
JPH07194688A (en) Biomedical implant material and its manufacturing method
JPH09157060A (en) Inorganic sintered porous body and filter
WO2006079208A1 (en) Lightweight proppant and method of making same
WO2006035645A1 (en) Method for manufacturing porous article, porous article and honeycomb structure
EP1197253B1 (en) Method for producing a silicon nitride filter
CN109320257B (en) Preparation method of high-strength high-porosity porous silicon nitride ceramic
US7368076B2 (en) Method for producing a silicon nitride filter
JP5082067B2 (en) Method for producing high-strength macroporous porous ceramic and porous body thereof
EP0704414A1 (en) Alumina fiber granules, process for producing the granules and a process for producing a porous article using the granules
JP2001206785A (en) Method of producing silicon carbide porous body
JPH11292653A (en) Ceramic porous body and its production
JP2588276B2 (en) Silicon carbide porous sintered body and method for producing the same
CN112535907B (en) High-density ceramic fiber filter material and preparation method thereof
JP3881476B2 (en) Fluid permeable member and manufacturing method thereof
KR101991351B1 (en) Method for manufacturing functional porous ceramics material and functional porous ceramics material
KR20030044733A (en) Manufacture technology of porous ceramics that use surfactant
JP2000335985A (en) Silicon nitride ceramic porous body, its production, and silicon nitride ceramic filter
Ohji Handbook of Advanced Ceramics: Chapter 11.2. 2. Porous Ceramic Materials
JP2000169254A (en) Air permeable ceramic structure and fluid permeating member using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20010213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091105

LAPS Cancellation because of no payment of annual fees