KR20030044733A - Manufacture technology of porous ceramics that use surfactant - Google Patents

Manufacture technology of porous ceramics that use surfactant Download PDF

Info

Publication number
KR20030044733A
KR20030044733A KR1020010076036A KR20010076036A KR20030044733A KR 20030044733 A KR20030044733 A KR 20030044733A KR 1020010076036 A KR1020010076036 A KR 1020010076036A KR 20010076036 A KR20010076036 A KR 20010076036A KR 20030044733 A KR20030044733 A KR 20030044733A
Authority
KR
South Korea
Prior art keywords
slurry
foaming
surfactant
porous
porous ceramics
Prior art date
Application number
KR1020010076036A
Other languages
Korean (ko)
Other versions
KR100472124B1 (en
Inventor
김윤주
Original Assignee
김윤주
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김윤주 filed Critical 김윤주
Priority to KR10-2001-0076036A priority Critical patent/KR100472124B1/en
Publication of KR20030044733A publication Critical patent/KR20030044733A/en
Application granted granted Critical
Publication of KR100472124B1 publication Critical patent/KR100472124B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE: Provided is a manufacturing method of porous ceramics for lightweight pottery and construction materials by adding surfactants to ceramic slurry for foaming, forming by slip casting, and sintering. CONSTITUTION: The porous ceramics are manufactured by the conventional process of preparation of slurry, foaming, forming, drying and sintering. The slurry with 30-60vol.% of solid(clay) and 100-400cps of viscosity is prepared by mixing ceramic powder(<=3micrometer) with water and stirring over 3hrs for dispersion. Then, the slurry is foamed by adding 0.5-13wt.% of anionic surfactant, heating to 80-120deg.C, and stirring for formation of pores having a 100-500micrometer size. The porous ceramics(100-250micrometer of pore) are manufactured by forming the slurry by slip casting, drying formed products and sintering over 1150deg.C.

Description

계면활성제를 이용한 다공성 세라믹스의 제조기술 { Manufacture technology of porous ceramics that use surfactant}Manufacture technology of porous ceramics that use surfactant}

다공체란, 그 재질이 무기질, 유기질, 또는 천연물이나 인조물과는 상관없이, 그 고체 내에 다수의 세공을 갖는 상태에서 각종 재료로서 사용되는 것의 통칭이다. 여기에서 다공성세라믹스 {porous ceramics} 는 그 세공의 크기, 형상, 기공율 등에 의해 다양한 물리, 화학적 특성을 나타내고 있다. 특히 세라믹스는 유기나 금속재료에 비해 내열, 내식성이 우수하여 고온, 내식성이 요구되는 분야에 사용되고 있고, 다공성세라믹스 {porous ceramics}는 일상생활과 밀접한 관계를 지니고 있어서 건축재료, 생활용품, 자동차용품, 산업분야 등에서 경량화, 방음 방습 방진 차음 보온 등 기능성을 부여하고 최근에는 세공의 물리, 화학적 성질을 정밀하게 제어하여 고기능성 분야인 화학 물질의 분리, 정제, 이온교환, 촉매작용, 화학반응 분야로의 이용이 점차 확대되고 있다.A porous body is a general term for what is used as various materials in the state which has many pores in the solid, regardless of the material of an inorganic material, an organic material, or a natural thing or an artificial thing. Here, porous ceramics {porous ceramics} exhibits various physical and chemical properties by the pore size, shape, porosity, and the like. In particular, ceramics are used in fields requiring high temperature and corrosion resistance because they have better heat resistance and corrosion resistance than organic or metal materials. Porous ceramics {porous ceramics} are closely related to daily life. Functionality such as light weight, soundproof, moistureproof, dustproof, and sound insulation in industrial fields, and precisely control the physical and chemical properties of the pores, and recently, to the separation, purification, ion exchange, catalysis, chemical reaction, etc. Usage is expanding gradually.

특히, 도자기식기 및 세라믹 건축자재에서 중량이 무거워 내구성이 약하고 공해성분을 방출하는 프라스틱 제품이 세라믹을 대체하여 널리 사용되고있는 실정이지만 상기에 제시한 세라믹 제품의 특성 때문에 차츰 경량화된 세라믹 제품을 요구하고 있다.In particular, plastic products, which are heavy in ceramic tableware and ceramic building materials, have weak durability and emit pollutants, and are widely used in place of ceramics. However, due to the characteristics of the ceramic products described above, a lighter-weight ceramic product is required. .

이와같은 경량 세라믹을 제조하는 방법으로는 여러 가지가 있지만 슬러리를 발포하여 포말중의 기포를 기공으로 이용하는 방법은 출발원료의 제약이 적고 소성체의 기공율 조절이 용이하고, 원하는 모양이나 망상형 다공체도 제조할 수가 있다.There are many methods for producing such a lightweight ceramic, but the method of foaming the slurry and using the bubbles in the foam as pores is less restrictive of the starting material, the porosity of the plastic body can be easily adjusted, and the desired shape or reticulated porous body is also available. It can manufacture.

본 발명에서는 세라믹 분말체에 물과 계면활성제를 가하여 교반 및 가열함으로서 세라믹분말 사이에서 발포하여 형성된 포말 즉, 기포를 기공으로 이용하는 방법으로 다공성세라믹스 {porous ceramics} 를 제조하여 경량 도자기, 경량 건축자재 기타 세라믹 경량체를 제조하는 것을 목적으로 하였다.In the present invention, a porous ceramic, which is formed by foaming between ceramic powders by adding water and a surfactant to a ceramic powder by stirring and heating, by using foam as pores, produces porous ceramics {porous ceramics} It aimed at manufacturing a ceramic lightweight body.

본 발명이 속하는 기술 분야는 일반적으로 다공성세라믹스 {porous ceramics} 는 분말The technical field to which the present invention belongs generally is that porous ceramics

본 발명의 목적인 경량 세라믹 제조에서 포말중의 기포를 기공으로 이용하는 방법으로 슬러리에 계면활성제를 첨가하고 발포시켜, 다공성세라믹스 {porous ceramics} 를 제조하였다. 농도에 따른 물리적 특성을 측정하고, 열처리 온도 및 발포 시간 등의 변화를 측정하였는데 건조된 다공체와 소성된 다공체 모두 약 100㎛-500㎛의 균질한 기공 크기를 갖는 다공체 특성을 나타내었다. 이와는 다른 종래 기술인 중합체 스폰지 방법, 소성온도를 조절하여 구성입자 사이의 간극을 이용하는 방법, 발포제나 유기물을 혼합하여 이들이 차지하고 있는 공간을 이용하는 방법, 동결건조법을 이용하는 방법, 슬러리를 발포하여 포말 중의 기포를 기공으로이용하는 방법 등은 비교적 쉽게 실험적으로 다공체가 제조되지만 다공 크기의 제어가 불가능하고 연소시 발생되는 개스의 공해성 때문에 항시 문제점으로 제기되어왔다. 특히, 정교한 성형 방법인 슬립캐스팅이 거의 불가능하여 식기용 경량자기질 도자기 제조는 시도되지 않았지만 저자가 제안한 방법에서는 이러한 문제를 해결할 수 있었다.In the manufacture of lightweight ceramics, which is an object of the present invention, a surfactant is added to a slurry and foamed by using a bubble in a foam as a pore to prepare porous ceramics. The physical properties were measured according to the concentration, and the changes in the heat treatment temperature and the foaming time were measured. Both the dried and calcined porous bodies exhibited porous body properties with homogeneous pore sizes of about 100 μm-500 μm. Other conventional techniques such as the polymer sponge method, the method of using the gap between the constituent particles by controlling the firing temperature, the method of using the space occupied by mixing the blowing agent or organic matter, the method using the lyophilization method, the foam in the foam by foaming the slurry The method of using pores has always been a problem because the porous body is relatively easily experimentally manufactured, but the pore size cannot be controlled and the pollution of the gas generated during combustion is always a problem. In particular, the manufacture of lightweight ceramics for tableware has not been attempted because slip casting, which is a sophisticated molding method, is almost impossible, but the method proposed by the author could solve this problem.

[예3] 슬러리의 포말과 소성시 기공형성[Example 3] Pore formation during foaming and firing of slurry

실시 예 2의 계면활성제 {surfactant} 농도에 따른 발포 슬러리특성을 토대로 슬립캐스팅하여 건조한 시편을 1150 및 1200℃의 온도에서 소성하여 기공형성을 SEM 사진으로 조사한 결과, 온도가 증가하고, 계면활성제 {surfactant} 농도가 증가함에 따라 기공크기는 좀더 작아졌고, 기공사이의 거리는 더 가까워졌다. 본 실험에서는 최적의 포말량이 형성되는 계면활성제 {surfactant} 6.0wt%에서의 기공크기는 약100∼250㎛였다. 건조만 한 시편에서의 200∼300㎛의 기공보다 소성시 다소 작은 기공을 형성하였다.Based on the foam slurry characteristics according to the surfactant {surfactant} concentration of Example 2, the dried specimens were calcined at a temperature of 1150 and 1200 ℃ to investigate the pore formation by SEM photograph, the temperature was increased, the surfactant {surfactant } As the concentration increased, the pore size became smaller and the distance between the pores became closer. In this experiment, the pore size in the surfactant {surfactant} 6.0wt% to form the optimum amount of foam was about 100 ~ 250㎛. Smaller pores were formed during firing than 200-300 μm pores in dried specimens.

또한, SEM 사진을 통하여 기공과 기공이 window를 통해 서로 연결되어 있어, 시편내부에는 연속성 기공이 들어 있음을 확인 할 수 있었다.In addition, the pores and pores are connected to each other through the window through the SEM image, it was confirmed that the continuous pores contained in the specimen.

[예4] 물리적 특성[Example 4] Physical Characteristics

소성시편을 온도별 및 계면활성제 {surfactant} 증가에 따라 물리적 성질을 시험한 결과는 Fig. 3와 같다. 물리적 특성은 모든 시편이 온도가 상승함에 따라 소결이 진행되어, 수축율 및 비중은 증가하고, 기공율 및 흡수율은 감소하는 경향으로 나타났다. 한편 계면활성제 {surfactant} 증가에 따른 물리적 성질은 미세구조관찰과 압축강도의 경향과 유사하게 계면활성제 {surfactant} 증가에 따라 기공율, 흡수율, 수축율 등은 증가, 비중은 감소함을 알 수 있다. 그리고, 농도 6.0wt%이상에서는 6.0wt%이하와 반대의 경향을 나타냈다.The physical properties of the fired specimens at different temperatures and with increasing surfactant {surfactant} are shown in Fig. Same as 3. The physical properties showed that all specimens were sintered as the temperature increased, so that the shrinkage and specific gravity increased, and the porosity and absorption decreased. On the other hand, the physical properties of surfactant {surfactant} increased, similar to the tendency of microstructural observation and compressive strength, the increase of surfactant {surfactant} increased porosity, water absorption, shrinkage, etc., and the specific gravity decreased. At concentrations above 6.0 wt%, the opposite trends were observed below 6.0 wt%.

[예1] 원료의 입도 및 분산 슬러리의 특성[Example 1] Particle Size and Characteristics of Dispersion Slurry

본 발명에서 사용된 세라믹 분말체 출발원료의 평균 입도를 침강분석법으로 측정하였을때 약 3㎛되게 분쇄하였다. 슬러리의 원료입자는 다공성세라믹스 {porous ceramics} 의 골격(strut)을 형성하므로 입자의 크기가 증가할수록 일반적으로 기공크기는 증가하게 되는데 평균 입도가 약 3㎛되었을 때 100㎛-500㎛의 균질한 기공 크기가 형성되었다. 발포력은 슬러리의 점도에 큰 영향을 주었는데 점도가 낮은 경우에는 발포력은 우수하나 형성된 포말의 안정성이 급격히 낮아지고, 또한 점도가 높은 경우에는 발포력이 우수하지 못하는 결과가 나타났다. 본 실험에서는 Brookfield의 Model DV-II + Viscometer에 의하여 슬러리의 점도를 약 100cp∼400cp로 조절하여 발포공정에 사용하였고 이 때 제조한 발포 슬러리의 농도가 점토30∼60vol%의 범위에서 100㎛-500㎛의 균질한 기공을 갖고있었다.The average particle size of the ceramic powder starting material used in the present invention was pulverized to about 3 μm when measured by sedimentation analysis. Since the raw material particles of the slurry form a framework of porous ceramics {porous ceramics}, as the particle size increases, the pore size generally increases. When the average particle size is about 3㎛, homogeneous pores of 100㎛-500㎛ Size was formed. The foaming force had a great influence on the viscosity of the slurry, but when the viscosity was low, the foaming force was excellent, but the stability of the formed foam was drastically lowered, and when the viscosity was high, the foaming force was not excellent. In this experiment, Brookfield's Model DV-II + Viscometer adjusted the viscosity of the slurry to about 100 cps to 400 cps and used it in the foaming process. The concentration of the prepared slurry was 100 μm-500 in the range of 30 to 60 vol% clay. It had a homogeneous pore of 탆.

[예2] 계면활성제 {surfactant} 농도에 따른 발포 슬러리특성[Example 2] Foaming Slurry Characteristics According to Surfactant {surfactant} Concentration

Fig. 2은 계면활성제 {surfactant} 농도에 따른 슬러리의 발포시간을 나타낸 것이다. 이때 발포시간은 초기슬러리의 2배가되는 포말량이 형성되는데 소요시간을 말한다. 발포시간을 초기슬러리의 2배가되는 시간으로 잡은 이유는 농도가 낮을 때는 2배를 넘지 못하고, 농도가 높을 때는 3배를 넘지 못했기 때문이다.Fig. 2 shows the foaming time of the slurry according to the surfactant {surfactant} concentration. In this case, the foaming time refers to the time required for the foam amount to be doubled as the initial slurry. The reason why the foaming time is doubled as that of the initial slurry is that the concentration is not more than two times at low concentrations and not more than three times at high concentrations.

슬러리의 발포시간은 계면활성제 {surfactant} 의 농도가 6.0wt% 때까지 감소함을 알 수 있다. 즉 농도가 6.0wt%까지는 농도가 증가함에 따라 계면활성제 {surfactant} 의 표면장력이 감소하였기 때문이다. 그러나 그 이상에서는 발포시간이 증가하였고, 13wt%에서는 초기슬러리의 2배가되지 못하였는데, 그것은 6.0wt% 이상에서는 계면활성제 {surfactant}의 양이 많아짐으로써 초기슬러리의 점도가 높아졌기 때문이다. 따라서 본 발명에서의 초기슬러리 점도에 영향을 거의 주지 않고, 최적의 포말량을 주는 계면활성제 {surfactant}의 농도는 6.0wt%로 확인되었다.It can be seen that the foaming time of the slurry decreases until the concentration of the surfactant {surfactant} is 6.0wt%. That is, the surface tension of surfactant {surfactant} decreased as the concentration increased up to 6.0 wt%. However, above that, the foaming time was increased, and at 13wt%, the initial slurry was not doubled, because the viscosity of the initial slurry was increased by increasing the amount of surfactant {surfactant} above 6.0wt%. Therefore, the concentration of the surfactant {surfactant} which gives an optimum foaming amount with little influence on the initial slurry viscosity in the present invention was found to be 6.0wt%.

출발원료로 세라믹 분말체 사용하였고 제조공정은 슬러리 {slurry} 제조, 발포, 성형, 건조및 소성공정으로 이루어진다. 먼저 슬러리의 제조는 세라믹 분말체에 물을 가하여 고체의 농도를 30∼60vol%로 되게하고 3시간 이상 자석 또는 임펠러식 교반기에서 충분히 분산시켰다. 둘째, 다공성 형성 방법으로 이 슬러리에 음이온 계면활성제인 분말세제(HAITAI)를 0.5∼13wt%를 첨가하여 승온(80∼120℃) 시키면서 교반하는 방법인 혼합법(분산법+농축법)을 행하여 발포시켰다. 슬러리 {slurry} 에서의 계면활성제 {surfactant} 농도변화는 다공성세라믹스 {porous ceramics} 의 기공변화 및 물리적 특성을 좌우하는 중요한 요인이었다. 발포용 슬러리 {slurry} 의 농도는 발포제인 계면활성제 {surfactant} 농도가 증가할수록 발포력, 포말층의 안정도는 향상되었고 다공성 슬러리를 석고형에서 고정주입법 {slip casting} 으로 성형하여 건조한 다음 1150℃와 1200℃로 소성하였다.Ceramic powder is used as starting material and the production process consists of slurry {slurry} production, foaming, molding, drying and firing processes. First of all, the slurry was prepared by adding water to the ceramic powder to obtain a solid concentration of 30 to 60 vol% and sufficiently dispersed in a magnet or impeller stirrer for at least 3 hours. Second, a porous forming method was added to the slurry by adding 0.5-13 wt% of an anionic surfactant (HAITAI) to increase the temperature (80-120 ° C), followed by mixing (dispersion + concentration). I was. Changes in surfactant {surfactant} concentrations in slurry {slurry} were important factors that influenced the pore change and physical properties of porous ceramics. As the concentration of foaming slurry {slurry} increased with increasing concentration of surfactant {surfactant} as foaming agent, foaming power and stability of foam layer were improved, and the porous slurry was dried by gypsum type by fixed casting method and dried and then dried at 1150 ℃ and 1200 It was baked at 캜.

실시 예1 내지 4Examples 1-4

형태의 세라믹 원료로부터 제조하는데, 각 제조방법에 따라 기공구조의 특성및 크기가 달라지므로 각 용도에 맞는 제조방법을 택해야 한다. 다공성세라믹스 {porous ceramics} 를 제조하는 방법으로는 중합체 스폰지 방법, 소성온도를 조절하여 구성입자 사이의 간극을 이용하는 방법, 발포제나 유기물을 혼합하여 이들이 차지하고 있는 공간을 이용하는 방법, 동결건조법을 이용하는 방법, 슬러리를 발포하여 포말 중의 기포를 기공으로 이용하는 방법 등이 있다.It is manufactured from ceramic raw materials in the form. Since the characteristics and size of the pore structure vary depending on each manufacturing method, a manufacturing method suitable for each application should be selected. Porous ceramics {porous ceramics} method of the polymer sponge method, the method of using the gap between the constituent particles by controlling the firing temperature, the method of using the space occupied by mixing the blowing agent or organic matter, the method using the lyophilization method, The method of foaming a slurry, and using the bubble in foam as a pore is mentioned.

상기의 방법에서 중합체 스폰지 방법은 주로 망상형 다공체를 제조하는 방법으로 제조된 다공체의 물성은 우수하지만, 다양한 형상의 다공체를 제조하기는 어렵다. 다음으로 소성온도를 조절하여 구성입자 사이의 간극을 이용하는 방법은 입자의 크기와 충전법에 따라 형성되는 기공의 크기와 기공율이 결정되므로 비교적 다공체 물성을 쉽게 제어할 수 있는 장점은 있으나, 기공율의 한계가 있다. 발포제나 유기물을 혼합하여 이들의 공간을 이용하는 방법은 제조공정이 간단하고, 부피비중은 낮지만, 기공크기를 제어하는데 한계가 있다. 동결건조법을 이용한 방법은 출발원료인 다공질 미립자로 성형한다는 것인데, 어느 정도의 기계적 강도를 갖는 가압 조건을 찾는데 어려움이 있다.In the above method, the polymer sponge method is excellent in the physical properties of the porous body mainly produced by the method of producing a network-like porous body, but it is difficult to produce a porous body of various shapes. Next, the method of using the gap between the constituent particles by controlling the firing temperature has the advantage of easily controlling the physical properties of the porous body because the size and porosity of the pores are determined according to the particle size and the filling method. There is. The method of using these spaces by mixing the blowing agent or the organic material is simple in the manufacturing process, low in specific gravity, but there is a limit in controlling the pore size. The method using lyophilization is to mold into porous fine particles, which are starting materials, and it is difficult to find pressurization conditions having a certain mechanical strength.

1. 슬러리를 약 100cp∼400cp로 조절하여 발포공정에 사용하였고 이 때 제조한 발포 슬러리의 농도가 점토30∼60vol%의 범위에서 100㎛-500㎛의 균질한 기공을 갖고있었다.1. The slurry was adjusted to about 100 cps to 400 cps and used in the foaming process, and the prepared slurry had homogeneous pores of 100 μm to 500 μm in the range of 30 to 60 vol% of clay.

2. 시편의 미세구조관찰은 계면활성제 {surfactant} 농도가 증가할수록, 기공크기가 감소하고 기공들 사이의 거리는 좁아졌다. 최적의 포말량인 계면활성제{surfactant} 6.0wt%이상에서 건조제품의 기공 크기는 200∼300㎛의 범위이고 1150℃이상으로 소성된 소결체의 계면활성제 {surfactant} 농도 6.0wt%의 슬러리를 성형하여 1150℃로 소성하였을 때 겉보기 기공율 약 45%, 흡수율 약 50%, 부피비중 약 0.9의 다공성 세라믹 소결체를 얻을 수 있었다.2. Microstructural observation of the specimen showed that as surfactant concentration increased, the pore size decreased and the distance between pores narrowed. In the optimum foaming amount of surfactant {surfactant} 6.0wt% or more, the pore size of the dried product is in the range of 200 ~ 300㎛, and the slurry of surfactant concentration of surfactant {surfactant} of 6.0wt% fired at 1150 ℃ or more When calcined at 1150 ° C., a porous ceramic sintered body having an apparent porosity of about 45%, an absorption rate of about 50%, and a volume ratio of about 0.9 was obtained.

기공 크기는 약100∼250㎛범위인 다공성 세라믹가 제조되었다.Porous ceramics having a pore size in the range of about 100-250 μm were prepared.

3. 각각의 농도에서 소결 된 시편들의 압축강도는 계면활성제 {surfactant}농도가 증가 할수록 감소하였고, 최적의 포말량인 6.0wt%에서는 약 70kgf/㎠의 압축강도가 측정되었다.3. The compressive strength of the sintered specimens at each concentration decreased with increasing surfactant {surfactant} concentration, and the compressive strength of about 70kgf / ㎠ was measured at the optimum foaming amount of 6.0wt%.

4. 각 시편들의 물리적 특성은 모든 시편이 온도가 상승함에 따라 소결이 진행되어, 수축율 및 비중은 증가하고, 기공율 및 흡수율은 감소하는 경향으로 나타났고, 계면활성제 {surfactant} 증가에 따른 물리적 성질은 계면활성제 {surfactant} 증가에 따라 기공율, 흡수율, 수축율 등은 증가, 비중은 감소함을 알 수 있었다. 최적의 포말량인 계면활성제 {surfactant} 분말세제(HAITAI)를 6.0wt%이상 가하여 제조한 슬러리를 성형하여 1150℃에서 소성하였을 때 이렇게 제조된 다공성 세라믹 소결체의 물리적 특성은 흡수율 50%, 겉보기 기공율 45%, 수축율 약 15%, 비중 약 0.9로 나타났다.4. The physical properties of each specimen showed that all specimens were sintered as the temperature increased, so that the shrinkage and specific gravity increased, the porosity and absorption decreased, and the physical properties of the surfactant {surfactant} increased. As the surfactant {surfactant} increased, the porosity, absorption rate, shrinkage rate, etc. increased, and the specific gravity decreased. When the slurry prepared by adding more than 6.0wt% of surfactant {surfactant} powder detergent (HAITAI), which is the optimum foaming amount, was formed and calcined at 1150 ° C, the physical properties of the porous ceramic sintered body were 50% water absorption and 45% porosity. %, Shrinkage about 15%, specific gravity about 0.9.

Claims (2)

발포용 슬러리의 제조방법Manufacturing method of foam slurry 출발원료로 세라믹 분말체 사용하였고 제조공정은 슬러리 {slurry,세라믹분말체에 물을 가하여 반죽물 상태로 만든 것. 이장()이라고도 함} 제조, 발포, 성형, 건조 및 소성공정으로 이루어진다. 먼저 슬러리의 제조는 평균 입도가 3㎛이하의 세라믹 분말체에 물을 가하여 고체의 농도를 30∼60vol%로 되게하고 3시간 이상 자석 또는 임펠러식 교반기에서 충분히 분산시켜 발포용 슬러리의 제조하는 방법.Ceramic powder was used as starting material, and the manufacturing process was made by adding water to slurry {slurry, ceramic powder]. slip( Also referred to as}), manufacturing, foaming, molding, drying and firing processes. First, the slurry is prepared by adding water to a ceramic powder having an average particle size of 3 μm or less so that the solid concentration is 30 to 60 vol%, and sufficiently dispersed in a magnet or impeller stirrer for at least 3 hours to prepare a slurry for foaming. 다공성 형성방법Porous Formation Method 다공성 형성 방법으로 청구항 1의 발포용 슬러리에 음이온 계면활성제인 분말세제로 HAITAI 등을 0.5∼13wt%를 첨가하여 가열하여 승온(80∼120℃) 시키면서 교반하는 방법인 혼합법(분산법+농축법)을 행하여 발포시켜 기공 크기가 약 100㎛-500㎛의 균질한 기공을 갖게 하는 방법. 또한, 다공성 세라믹 제품은 건조제품의 기공 크기는 200∼300㎛의 범위이고 1150℃이상으로 소성된 소결체의 기공 크기는 약100∼250㎛범위인 다공성 세라믹 제조 방법.Mixing method (dispersion method + concentration method), which is a method of stirring while heating and heating (80-120 ° C) by adding 0.5-13 wt% of HAITAI, etc., with a powder detergent which is an anionic surfactant to the foaming slurry of claim 1 as a porous forming method. And foaming so as to have homogeneous pores having a pore size of about 100 μm-500 μm. In the porous ceramic product, the pore size of the dried product is in the range of 200 ~ 300㎛ and the pore size of the sintered body fired at more than 1150 ℃ range of about 100 ~ 250㎛.
KR10-2001-0076036A 2001-11-30 2001-11-30 Fabricating method of porous ceramics using surfactant KR100472124B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0076036A KR100472124B1 (en) 2001-11-30 2001-11-30 Fabricating method of porous ceramics using surfactant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0076036A KR100472124B1 (en) 2001-11-30 2001-11-30 Fabricating method of porous ceramics using surfactant

Publications (2)

Publication Number Publication Date
KR20030044733A true KR20030044733A (en) 2003-06-09
KR100472124B1 KR100472124B1 (en) 2005-03-08

Family

ID=29572797

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0076036A KR100472124B1 (en) 2001-11-30 2001-11-30 Fabricating method of porous ceramics using surfactant

Country Status (1)

Country Link
KR (1) KR100472124B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100850568B1 (en) * 2007-05-09 2008-08-06 오스템임플란트 주식회사 Method for manufacturing ceramic implant having a porous surface and the implant manufactured by the method
WO2012107599A1 (en) 2011-02-08 2012-08-16 Neos Additives, S.L. Low-density ceramic composition
WO2015114175A1 (en) 2014-01-28 2015-08-06 Neos Additives, S.L Low-density ceramic composition and use of product produced therefrom

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940011630B1 (en) * 1989-08-14 1994-12-22 대우전자주식회사 Custom ic measuring apparatus in proximity fuses
JPH05221743A (en) * 1992-02-04 1993-08-31 Riken Corp Porous ceramic acoustic material
JP3246233B2 (en) * 1994-11-09 2002-01-15 三菱マテリアル株式会社 Mixed raw material for manufacturing porous ceramic sintered body
JPH09157066A (en) * 1995-12-04 1997-06-17 Mitsubishi Materials Corp Production of porous ceramic sintered body
KR100353162B1 (en) * 1999-12-16 2002-09-18 박재구 The preparation of porous ceramics by using foaming process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100850568B1 (en) * 2007-05-09 2008-08-06 오스템임플란트 주식회사 Method for manufacturing ceramic implant having a porous surface and the implant manufactured by the method
WO2012107599A1 (en) 2011-02-08 2012-08-16 Neos Additives, S.L. Low-density ceramic composition
WO2015114175A1 (en) 2014-01-28 2015-08-06 Neos Additives, S.L Low-density ceramic composition and use of product produced therefrom

Also Published As

Publication number Publication date
KR100472124B1 (en) 2005-03-08

Similar Documents

Publication Publication Date Title
Huo et al. Novel mullite ceramic foams with high porosity and strength using only fly ash hollow spheres as raw material
Studart et al. Processing routes to macroporous ceramics: a review
CN101503298B (en) Method for preparing silicon nitride porous ceramic by gel injection moulding
Mao et al. Gelcasting of alumina foams consolidated by epoxy resin
Tulliani et al. Development and mechanical characterization of novel ceramic foams fabricated by gel-casting
IL180965A (en) Method of manufacturing porous ceramics
Wu et al. Processing, microstructures and mechanical properties of aqueous gelcasted and solid-state-sintered porous SiC ceramics
WO2006079208A1 (en) Lightweight proppant and method of making same
Isobe et al. Pore size control of Al2O3 ceramics using two-step sintering
Ahmad et al. Short review: Ceramic foam fabrication techniques for wastewater treatment application
Wu et al. Isotropic freeze casting of through-porous hydroxyapatite ceramics
KR101494501B1 (en) Manufacturing method of functional porous ceramics material using direct forming method and functional porous ceramics material
JP2001240480A (en) Porous ceramic structural body, its manufacturing method and fluid permeable member
Liu et al. Ultralight and mechanically robust SiC foams with interconnected cellular architecture
Kovárík et al. Porous geopolymers: processing routes and properties
Ma et al. Preparation of porous Si3N4 ceramics with unidirectionally aligned channels
KR20030044733A (en) Manufacture technology of porous ceramics that use surfactant
Deng et al. Fabrication of porous ceramics by direct foaming
Izuhara et al. Highly porous cordierite ceramics fabricated by in situ solidification
Liu Fabrication of porous ceramics and composites by a novel freeze casting process
Altinkok et al. Compressive behavior of Al2O3—SiC ceramic composite foams fabricated by decomposition of aluminum sulfate aqueous solution
Muda et al. Effect of SiO2 solid loading and sintering temperatures on the physical properties of SiO2-NiO foam
Pradhan et al. Tailoring porosity and pore characteristics in oxide ceramic foams through controlled processing
Kamitani et al. Fabrication of highly porous alumina-based ceramics with connected spaces by employing PMMA microspheres as a template
Yang et al. Porous ceramic from particle-stabilised foams via gelcasting

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100204

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee