JP4514274B2 - Method for producing porous ceramic structure - Google Patents

Method for producing porous ceramic structure Download PDF

Info

Publication number
JP4514274B2
JP4514274B2 JP2000054005A JP2000054005A JP4514274B2 JP 4514274 B2 JP4514274 B2 JP 4514274B2 JP 2000054005 A JP2000054005 A JP 2000054005A JP 2000054005 A JP2000054005 A JP 2000054005A JP 4514274 B2 JP4514274 B2 JP 4514274B2
Authority
JP
Japan
Prior art keywords
porous ceramic
slurry
pores
porous
skeleton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000054005A
Other languages
Japanese (ja)
Other versions
JP2001240480A (en
Inventor
雨叢 王
和博 西薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000054005A priority Critical patent/JP4514274B2/en
Publication of JP2001240480A publication Critical patent/JP2001240480A/en
Application granted granted Critical
Publication of JP4514274B2 publication Critical patent/JP4514274B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/04Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by dissolving-out added substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Filtering Materials (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、種々のフィルタや触媒担持体等の流体透過部材や生体代替部材等の構造体の気孔内に物質の出入りがある多孔質セラミック構造体の製造方法に関する。
【0002】
【従来技術】
従来から、多孔質セラミック構造体は高温での安定性および耐食性に優れることから、断熱材、耐火物や、流体ろ過用フィルタ、触媒担持体等の流体透過部材、さらには人工生体部材等としての応用が期待されている。
【0003】
かかる多孔質セラミック構造体を作製する方法としては、例えば、特公昭63−63249号公報では、ハニカム等の円筒管内に炭酸ガスを発生する発泡剤を添加したセラミック原料含有スラリーを充填してこれを発泡、焼成することにより円筒管内に多孔質セラミックスを充填した排ガス浄化用構造体を作製できることが記載されている。
【0004】
また、特開平10−130002号公報では、セラミック原料である金属を含有するゾルに圧力を加えノズルから押し出して繊維状とし、これをシート上に堆積させて三次元網目状構造物を作製することが記載されている。
【0005】
さらに、特開平5−330941号公報では、セラミック原料粉末を含有するスラリー内にウレタンフォーム等の合成樹脂発泡体を浸漬して前記フォーム表面に被膜を形成した後、これを熱間静水圧プレス(HIP)焼成することによって合成樹脂発泡体を焼失させセラミック被膜からなる高強度の多孔質セラミック構造体を作製できることが記載されている。
【0006】
【発明が解決しようとする課題】
しかしながら、特公昭63−63249号公報の円筒管内に多孔質セラミックスを充填した構造体では、強度等の特性に異方性があるために単純形状の用途にしか使用できないという問題があり、また、構造体の気孔径を制御することが困難であり、構造体としての機械的強度と高い気孔率とを最適化することができず、また、構造体の気孔間の連通性を制御することが困難であり、フィルタや触媒担持体等の流体透過部材の流体透過特性や人工生体部材内での骨生成特性との透過特性が低下し、充分な特性が得られないという問題があった。
【0007】
また、特開平10−130002号公報のセラミック繊維を堆積させた多孔質体では、繊維同士の接触部の結合力が弱いために構造体自体の強度が弱いとともに、気孔径を制御することができないという問題があった。
【0008】
さらに、特開平5−330941号公報のウレタンフォームを用いた多孔質構造体では、ウレタンフォームが焼失することによって、骨格となるセラミック被膜は中空体となるために機械的強度が不十分であるという問題があった。
【0009】
本発明は上記課題を解決するためになされたもので、その目的は、等方的で高い機械的強度および気孔率を有し、かつ気孔間の連通性を高めて高い透過性能を有する多孔質セラミック構造体の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明者等は、多孔質セラミック構造体の骨格構造および気孔構造について検討した結果、骨格部形成用のスラリーまたはゾル内に焼成により焼失する気孔形成用の球状体を添加して成型型内に流し込んだ後、前記気孔形成用の球状体同士が所定の割合に接触するように変形せしめ、これを焼成することによって、中実の骨格部と均一な大きさの気孔を有する多孔質セラミック構造体が作製できるとともに、気孔間の連通性を高めることができることを知見した。
【0013】
発明の多孔質セラミック構造体の製造方法は、骨格部を形成するセラミック原料および有機質成分を含有するスラリーまたはゾルを作製する工程と、前記スラリーまたはゾル内に平均径0.01〜10mmで、かつ該平均径に対して±30%以内である割合が90%以上であり、多孔質セラミックスを形成するセラミック原料と有機質成分とを含有する顆粒からなる球状体を添加する工程と、該球状体を添加した前記スラリーまたはゾルを成形型内に流し込んだ後、前記球状体同士が面接触するように前記球状体を変形させて成形体を作製する工程と、該成形体を加熱して前記有機質成分を焼失させた後、前記骨格部が緻密化する温度で焼成する工程とを具備することを特徴とするものである。
【0014】
ここで、前記顆粒が澱粉を含有し、該澱粉は加熱により焼失することが望ましい。
【0015】
また、上記多孔質セラミック構造体は、流体透過部材の一部材として好適に使用できる。
【0016】
【発明の実施の形態】
本発明の製造方法により得られた多孔質セラミック構造体の一例について、その模式図を図1に示す。図1によれば、多孔質セラミック構造体1は、相対密度が90%以上、特に92%以上、さらに95%以上の緻密質セラミックスからなる骨格部2間に不規則に連通した気孔3が、望ましくは気孔率60%以上、特に65%以上、さらに70%以上形成された構成からなり、また、図1によれば、気孔3内には多孔質セラミックス4が充填されている。
【0017】
このような多孔質セラミック構造体によれば、骨格部2は三次元網目状セラミックスで、かつ中実体であり、また、骨格部2によって気孔3が形成されており、これによって、構造体1が等方的な特性を有し、単純形状から複雑形状まであらゆる形状の部材に適用できるとともに、機械的特性や透過特性などにおいて異方性を有しないため、透過部材などの構造体としての信頼性が大きく改善される。
【0018】
また、このような多孔質セラミック構造体によれば、気孔3は平均気孔径が0.01〜10mmで、かつ該気孔平均径に対して±30%以内である割合が90%以上と均一な気孔径を有することが大きな特徴であり、これによって、気孔径の大きな特定の気孔3に応力集中することがなく構造体1の機械的強度を高めることができることから、構造体1の気孔率を高めることができる結果、構造体1をフィルタや触媒担持体等の流体透過部材として用いた際のフィルタ性能や触媒性能が向上する。
【0019】
また、このような多孔質セラミック構造体によれば、上記気孔3のうち隣接する気孔3、3間は、連通孔5によって連通されるとともに、連通孔5の平均径が気孔3の平均気孔径の1/4以上であることが大きな特徴であり、これによって流体透過部材等の外部と物質の出入りをする構造体1の物質の透過特性を向上させることができる。
【0020】
なお、多孔質セラミック構造体における気孔率、気孔径とは破面SEM写真によって測定される気孔の画像解析によって求められる値である。また、上記連通孔5の平均径も破面SEM写真によって測定される気孔の画像解析によって求められる。
【0021】
また、気孔3内には多孔質セラミックス4の気孔径を制御できるとともに、構造体1の強度を高める上で、多孔質セラミックス4を充填することが望ましく、また、多孔質セラミックス4の相対密度は、構造体1の気孔率、特に流体透過部材の透過率を高めるために60%以下、特に40%以下であることが望ましい。
【0022】
なお、上記骨格部2および気孔3に充填される多孔質セラミックス4は、Al23、ZrO2、ムライト、コージェライト、チタン酸アルミニウム等の酸化物、Si34、AlN、TiN等の窒化物、SiC、TiC等の炭化物、TiB2、AlB2、ZrB2等のホウ化物、SiAlON、AlON等の酸窒化物、TiCN等の炭窒化物の群から選ばれる少なくとも1種以上を主結晶とする焼結または未焼結のセラミックスが好適に適用できる。
【0023】
上記多孔質セラミックスの中でも高温での使用によっても反応等が生じず安定した性能を有する酸化物を主体とすることが望ましく、また、多孔質セラミックス内の気孔率を高めるためには、前記多孔質セラミックスがアスペクト比3以上の針状または板状粒子を含有するもの、具体的には、窒化ケイ素、アルミナ、アルミネート、ホウ酸アルミニウム、ムライトの群から選ばれる少なくとも1種を含有することが望ましい。なお、本発明におけるアスペクト比とは、針状または板状結晶粒子の(長手方向の粒径/該粒子の厚み)で表されるものである。
【0024】
また、上記針状または板状粒子のアスペクト比を高めるためには、窒化ケイ素については、焼結助剤としてY23等の希土類元素酸化物を1.5重量%以上含有せしめること、さらに窒化ケイ素原料中の不可避不純物としての酸素をも含めたSiO2の添加量がSiO2換算量で1.5重量%以上含有せしめることが望ましいく、また、アルミナについては、TiO2、MgO、SiO2、CaO等の焼結助剤成分を含有せしめることが望ましい。
【0025】
特に、骨格部2を形成するセラミックスとして、Al23やムライトを主体とする場合には、該主結晶相の内部に1μm以下のTiO2等の微粒子を析出分散させることによって骨格体4の強度をさらに高めることができる。
【0026】
次に、本発明の多孔質セラミック構造体を作製する方法について説明する。
まず、骨格部を形成するための例えば平均粒径0.1〜2μmのセラミック原料粉末に対して、所望により有機バインダ、分散剤、造粘剤、可塑剤、溶媒等を添加してスラリーを作製するか、または、骨格部を形成する金属酸化物のアルコキシド溶液を加水分解するか、またはコロイド溶液を用いて骨格部用の前駆体ゾルを作製する。
【0027】
次に、上記スラリーまたは前駆体ゾル内に、平均径、すなわち平均直径0.01〜10mmの気孔形成用の球状体を添加、混合する。該球状体としては、構造体の気孔内に充填される多孔質セラミックスの原料を含有する顆粒を用いる。このような球状体は、多孔質セラミックスを形成する、例えば平均粒径0.1〜2μmのセラミックス原料粉末に対して、所望により有機バインダ、分散剤、溶媒等を添加してスラリーを作製するか、または、多孔質セラミックスを形成するための金属酸化物を含有するアルコキシド溶液を加水分解するか、コロイド溶液を用いて多孔質セラミックス用の前駆体ゾルを作製し、スプレードライ等の公知の造粒方法によって得られた平均気孔径0.01〜10mmの顆粒である。この時、上記スラリーまたはゾル内に例えば澱粉等の加熱により焼失する有機物を添加すれば、多孔質セラミックスの気孔率を高めることができる。
【0028】
本発明によれば、前記気孔の大きさを均一化して骨格体の機械的強度を高めるとともに、後述するスラリー中の球状体の充填率を高めて、気孔の体積比率および気孔間の接触割合を高めるために、図2に示す球状体の直径分布において、前記球状体の直径が前記平均径D0に対して±30%以内のD1(D0×0.7)〜D2(D0×1.3)である割合が全球状体の90%以上であるように均一化することが重要であり、このためには前記球状体を前記範囲内となるように2種以上のふるいにて篩別する等の方法を用いることが望ましい。なお、前記球状体としては、楕円体や八面体以上の多面体をも用いることができる。
【0029】
そして、上記球状体を添加、混合したスラリーまたはゾルを所定形状の成形型内に流し込むが、本発明によれば、構造体の気孔率を高めるために、また後述の球状体の変形性を高めるために、球状体がスラリー表面に突出するような比率に調整することが望ましい。また、前記流し込みの後、成形型に振動を与えて球状体の充填性を高めることもできる。
【0030】
さらに、上記スラリーを充填した成形型に対して表面から板状体等によって加圧し、前記球状体同士が面接触するように前記成形型を変形させて成形する。なお、上記成形の際に、前記球状体の変形性を高めるため成形体を所定の温度、例えば、50〜150℃に加熱することもできる。
【0031】
次に、上記成形体を加熱して有機質成分を焼失させた後、骨格部が相対密度90%以上に緻密化する温度にて焼成することによって多孔質セラミック構造体を作製することができる。
【0032】
また、TiO2等のナノサイズの微粒子をAl23やムライト結晶内に分散させた骨格部を作製するには、焼成中に雰囲気を酸化性雰囲気へ、温度を50〜300℃低温へ変化させてTiO2の主結晶相への固溶量を減少させるか、TiO2と等モルのMgOを添加して焼成中に雰囲気を非酸化性雰囲気へ、温度を50〜300℃低温へ変化させてTiO2とMgOのAl23への固溶量を減少させればよい。
【0042】
また、本発明の製造方法により得られた多孔質セラミックス構造体は、粉塵等の固体や、液体、気体等を分離するフィルタやその支持部材、触媒担持体、金属溶湯等の流体透過部材、または人工骨、人工関節等の生体代替部材として好適に使用可能である。
【0043】
また、上記用途のうち、例えば、流体透過部材として用いる場合には、平板形状からなり一方の表面から他方の表面、または一方の表面から一方の側面に流体を透過させることができ、また管形状からなり内面側に流した流体を外面へ、または外面側に流した流体を内面へ透過させるものであってもよく、本発明の製造方法により得られた多孔質セラミックス構造体によれば、等方的な機械的特性と流体透過特性を有することからいずれの場合においても高い機械的特性と流体透過特性とを併せ持つ優れた流体透過部材となる。
【0044】
【実施例】
参考例1)
平均粒径0.7μmのアルミナ粉末、平均粒径0.3μmのアルミナとシリカを重量比72/28の比率で混合したムライト原料粉末、及び平均粒径0.7μmの窒化ケイ素粉末(酸素含有量0.9wt%)に平均粒径1μmのイットリア5重量%と平均粒径0.7μmのアルミナ3重量%を焼結助剤として添加したものそれぞれに対して、有機バインダと、分散剤と、水とを添加してスラリーを作製した。
【0045】
一方、マイクロトラック法による分析において表1に示す平均径、および該平均径に対して±30%の範囲内の割合が表1に示す値である(表1では分布と記載)アクリルボールを所望により篩別して準備した。
【0046】
次に、上述のスラリーに対して前記アクリルボールをスラリー表面から突出するように混合し、これを60mmφ×20mm厚みの石膏型中に流入し、振動させることによりアクリルボールの充填性を高めた。この時、アクリルボールがスラリー乾燥体表面から突出するようにボール量を予め調整した。そして、石膏型の上面にセラミックスの板状体を載置してネジ止めによって表1に示す圧力となるようにかしめた状態で、脱水乾燥した後、500℃に加熱してアクリル球状体を焼失した。
【0047】
そして、上記成形体を成形型から取り出して、アルミナとムライトについては大気中にてそれぞれ1650℃と1600℃で、窒化ケイ素については窒素雰囲気中にて1750℃で5時間焼成した。
【0048】
得られた焼結体の骨格部の密度をアルキメデス法により測定した結果、いずれも相対密度98%以上であった。また、試料の寸法密度を測定し、構造体の気孔率を求めた。また、構造体の断面または破面についてのSEM写真より一視野における気孔の平均径と、隣接する気孔間の連通孔径、すなわちネック部の直径の平均値を測定した。さらに、JISR1601に基づいて3点曲げ強度を測定した。
【0049】
さらに上記試料を50mmφ×10mm厚みに加工して円筒状のハウジング内に載置し、一方の表面側から流速10m/sで空気を流して構造体内を透過させた時の圧力損失を圧差計にて測定した。結果は表1に示した。
【0050】
参考例2)
参考例1の試料No.12に対して、TiOを1重量%添加すること、また、焼成を水素雰囲気中1500℃で5時間焼成した後、大気中で1200℃にて10時間アニールする以外は参考例1と同様に多孔質セラミック構造体を作製し、同様に評価した(試料No.12)。結果は表1に示した。
【0051】
(比較例)
参考例1の試料No.3の骨格部形成用スラリー内にウレタンフォーム(孔径:0.6mm)を浸漬して、引き上げ、乾燥することによってフォーム表面に前記スラリーの被膜を形成した後、これを1500℃で焼成してウレタンフォームを焼失させて多孔質セラミック構造体を作製し、参考例1と同様に評価した(試料No.13)。結果は表1に示した。
【0052】
【表1】

Figure 0004514274
【0053】
表1の結果から明らかなように、平均径が0.01mmより小さい球状体を用い構造体の気孔径が0.01mmより小さい試料No.1では、骨格部自体の強度が低下して構造体の曲げ強度が低下するとともに、圧力損失が大きくなった。また、成形型を加圧しない試料No.7では、圧力損失が大きくなった。さらに、平均径が10mmより大きい球状体を用い構造体の気孔径が10mmより大きい試料No.6では、構造体の曲げ強度が低下した。また、球状体の平均径に対して±30%以内の割合が90%より小さい、すなわち粒径の分布が広い試料No.9では、気孔間の連通性が悪くなり、圧力損失が高く、また、部分的に大きな直径のボールが存在して曲げ強度が低下した。さらに、試料No.13については、強度が低下した。
【0054】
これに対して、試料No.2〜5、8、10〜12では、いずれも曲げ強度20MPa以上、圧力損失2kPa以下の優れた特性を有するものであった。
【0055】
参考例3)
参考例1の試料No.3の構造体を、平均粒径0.7μmのアルミナ粉末を含有するスラリー内に浸漬して、構造体の気孔内に前記スラリーを充填した後、凍結乾燥処理によって乾燥し、大気中1500℃で焼成して、試料No.3の気孔内に多孔質セラミックスを充填した試料を作製した。
【0056】
得られた構造体について、破面SEMにより気孔率および平均気孔径を測定したところ、充填した多孔質体の相対密度32%、水銀圧入法による平均気孔径0.022mmであった。また、参考例1と同様に曲げ強度と流速10m/sでの圧力損失を測定した結果、曲げ強度31MPa、圧力損失1.58MPaであった。
【0057】
(実施例
参考例3の多孔質セラミックス用のスラリーに澱粉を85重量%の比率で添加したスラリーをスプレードライによって造粒し、篩別して、平均径1.0mm、直径が0.7〜1.3mmの範囲内の比率が92%の顆粒とした。
【0058】
この顆粒を参考例1のNo.3のアクリルボールに代えて用い、成形型のかしめ圧を0.1MPaとする以外は参考例1と同様に構造体を作製した結果、骨格部の気孔率、すなわち多孔質セラミックスの体積比率が81%、平均気孔径0.8mm、連通孔径0.23mmであり、多孔質セラミックスの相対密度78%、平均気孔径0.08mmであった。また、参考例1と同様に曲げ強度と流速10m/sでの圧力損失を測定した結果、曲げ強度30MPa、圧力損失1.35MPaであった。
【0059】
参考
表2に示す組成(残部は窒化ケイ素、酸素量0.9〜1.1重量%)の原料粉末に対して、参考例3と同様に有機溶剤を含有する多孔質セラミックス用のスラリーを調製し、これに参考例1の試料No.11の多孔質セラミック構造体を浸漬して該構造体の気孔内に前記スラリーを充填した後、凍結乾燥処理して、窒素雰囲気中、1800℃にて5時間焼成した。
【0060】
また、この試料について、参考例1と同様に評価するとともに、試料破面のSEM写真を用いてルーゼックス画像処理解析によって、多孔質セラミックスについての結晶の短径および長径の平均値、およびアスペクト比が3以上の粒子の含有比率を測定した。結果は表2に示した。
【0061】
【表2】
Figure 0004514274
【0062】
参考
アスペクト比3、粉末の平均長径が10μmのアルミナを30重量%を含み残部が平均粒径0.7μmの粉末からなるアルミナ原料に対して、焼結助剤としてTiOを1重量%とMg(OH)をMgO換算量で0.5重量%と、SiOを0.3重量%との比率で添加した原料粉末に対して、有機溶剤を含有するスラリーを調製し、これに参考例1の試料No.3の多孔質セラミック構造体を浸漬して該構造体の気孔内に前記スラリーを充填した後、凍結乾燥処理して、大気中、1400℃にて5時間焼成した。得られた試料について、参考例1と同様に評価するとともに、試料破面のSEM写真を用いてルーゼックス画像処理解析によって、多孔質セラミックスについての結晶の短径および長径の平均値、およびアスペクト比が3以上の粒子の含有比率を測定した。結果は表3に示した。
【0063】
参考
表3に示す組成(残部はアルミナ)の原料粉末に対して、有機溶剤を含有するスラリーを調製し、これに参考例1の試料No.3の多孔質セラミック構造体を浸漬して該構造体の気孔内に前記スラリーを充填した後、凍結乾燥処理して、大気中、表3の条件で5時間焼成した。得られた試料について、参考例1と同様に評価するとともに、試料破面のSEM写真を用いてルーゼックス画像処理解析によって、多孔質セラミックスについての結晶の短径および長径の平均値、およびアスペクト比が3以上の粒子の含有比率を測定した。また、XRD測定の強度比から、97%以上の結晶相を主結晶相として表3に示した。結果は表3に示した。
【0064】
【表3】
Figure 0004514274
【0065】
表2、表3の結果から明らかなように、いずれも高い曲げ強度と高い流体透過特性を有するものであることがわかった。
【0066】
【発明の効果】
以上詳述したとおり、本発明の多孔質セラミック構造体の製造方法によれば、等方的に高い強度と流体透過特性等の物質の出入特性を高めることができる多孔質セラミック構造体を提供できる
【0067】
【図面の簡単な説明】
【図1】 本発明の多孔質セラミック構造体の製造方法により得られた多孔質セラミック構造体の組織構造についての模式図である。
【図2】 本発明の多孔質セラミック構造体の製造方法における球状体直径の分布の一例を示す図である。
【符号の説明】
1 多孔質セラミック構造体
2 骨格部
3 気孔
4 多孔質セラミックス
5 連通孔[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a porous ceramic structure in the pores of the various filters and catalyst supports, such as a fluid transmitting member and a biological substitute member like structure of it is out of the material.
[0002]
[Prior art]
Conventionally, porous ceramic structures are excellent in stability and corrosion resistance at high temperatures, so that they can be used as heat-insulating materials, refractories, fluid-permeable members such as filters for fluid filtration, catalyst carriers, and artificial biological members. Application is expected.
[0003]
As a method for producing such a porous ceramic structure, for example, in Japanese Examined Patent Publication No. 63-63249, a ceramic raw material containing slurry added with a blowing agent that generates carbon dioxide gas in a cylindrical tube such as a honeycomb is filled with this. It is described that an exhaust gas purifying structure in which a cylindrical tube is filled with porous ceramics can be produced by foaming and firing.
[0004]
In JP-A-10-130002, pressure is applied to a sol containing a metal, which is a ceramic raw material, and it is extruded from a nozzle to form a fiber, which is then deposited on a sheet to produce a three-dimensional network structure. Is described.
[0005]
Further, in JP-A-5-330941, a synthetic resin foam such as urethane foam is immersed in a slurry containing ceramic raw material powder to form a film on the surface of the foam, which is then subjected to hot isostatic pressing ( It is described that a high-strength porous ceramic structure made of a ceramic coating can be produced by burning out a synthetic resin foam by firing (HIP).
[0006]
[Problems to be solved by the invention]
However, the structure in which a porous ceramic is filled in a cylindrical tube of Japanese Examined Patent Publication No. 63-63249 has a problem that it can only be used for simple shapes due to anisotropy in properties such as strength, It is difficult to control the pore size of the structure, the mechanical strength and high porosity as the structure cannot be optimized, and the communication between the pores of the structure can be controlled. There is a problem that the fluid permeation characteristics of a fluid permeation member such as a filter and a catalyst carrier and the permeation characteristics with the bone formation characteristics in the artificial body member are lowered, and sufficient characteristics cannot be obtained.
[0007]
Further, in the porous body in which ceramic fibers are deposited in JP-A-10-130002, the strength of the structure itself is weak and the pore diameter cannot be controlled because the bonding force between the contact portions of the fibers is weak. There was a problem.
[0008]
Furthermore, in the porous structure using the urethane foam disclosed in Japanese Patent Application Laid-Open No. 5-3094091, the ceramic film that becomes the skeleton becomes a hollow body due to the burning of the urethane foam, so that the mechanical strength is insufficient. There was a problem.
[0009]
The present invention has been made in order to solve the above-mentioned problems, and its object is to provide a porous material having isotropic and high mechanical strength and porosity, and having high permeability by increasing the connectivity between the pores. An object of the present invention is to provide a method for manufacturing a ceramic structure.
[0010]
[Means for Solving the Problems]
As a result of studying the skeletal structure and pore structure of the porous ceramic structure, the present inventors added a spherical body for pore formation that burns down by firing into the slurry or sol for forming the skeleton part, and put it in the mold. After pouring, the porous ceramic structure having a solid skeleton and uniform size pores is deformed so that the spherical bodies for pore formation are brought into contact with each other at a predetermined ratio and fired. It has been found that it is possible to improve the connectivity between pores.
[0013]
The method for producing a porous ceramic structure of the present invention includes a step of producing a slurry or sol containing a ceramic raw material and an organic component forming a skeleton, and an average diameter of 0.01 to 10 mm in the slurry or sol. and a step of adding the ratio is within 30% ± respect to the average diameter Ri der 90%, spheroids ing from granules containing a ceramic raw material and organic component to form a porous ceramic, the after flushing the slurry or sol was added spheroids into the mold, the steps you form a compact said spheres each other by deforming the spherical body so as to surface contact, then heating the molded body And the step of firing at a temperature at which the skeleton portion is densified after the organic component is burned off .
[0014]
Here, it is desirable that the granules contain starch, and the starch is burned off by heating .
[0015]
Moreover, the said porous ceramic structure can be used conveniently as one member of a fluid permeation | transmission member.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a schematic diagram of an example of a porous ceramic structure obtained by the production method of the present invention. According to FIG. 1, the porous ceramic structure 1 has pores 3 irregularly communicating between the skeleton parts 2 made of dense ceramics having a relative density of 90% or more, particularly 92% or more, and further 95% or more. Desirably, the porosity is 60% or more, particularly 65% or more, and further 70% or more. According to FIG. 1, the pores 3 are filled with a porous ceramic 4.
[0017]
According to such a porous ceramic structure , the skeleton 2 is a three-dimensional network ceramic and is solid, and the skeleton 2 has pores 3 formed therein. It has isotropic characteristics and can be applied to members of any shape, from simple shapes to complex shapes, and it has no anisotropy in mechanical properties and transmission characteristics, so it is reliable as a structure such as transmission members Is greatly improved.
[0018]
In addition, according to such a porous ceramic structure , the pores 3 have an average pore diameter of 0.01 to 10 mm, and a ratio within ± 30% with respect to the pore average diameter is uniformly 90% or more. It has a large feature that it has a pore diameter, and this can increase the mechanical strength of the structure 1 without concentrating stress on a specific pore 3 having a large pore diameter. As a result, the filter performance and the catalyst performance when the structure 1 is used as a fluid permeable member such as a filter or a catalyst carrier are improved.
[0019]
In addition, according to such a porous ceramic structure, adjacent pores 3, 3 among the pores 3 are communicated by the communication holes 5, and the average diameter of the communication holes 5 is the average pore diameter of the pores 3. It is a great feature that the transmission characteristic of the substance of the structure 1 that allows the substance to enter and exit from the outside, such as the fluid permeable member, can be improved.
[0020]
The porosity and pore diameter in the porous ceramic structure are values obtained by image analysis of pores measured by a fracture surface SEM photograph. Moreover, the average diameter of the communication hole 5 is also obtained by image analysis of pores measured by a fracture surface SEM photograph.
[0021]
In addition, the pore diameter of the porous ceramics 4 can be controlled in the pores 3 and it is desirable to fill the porous ceramics 4 in order to increase the strength of the structure 1, and the relative density of the porous ceramics 4 is In order to increase the porosity of the structure 1, particularly the transmittance of the fluid permeable member, it is desirably 60% or less, particularly 40% or less.
[0022]
The porous ceramics 4 filled in the skeleton 2 and the pores 3 are made of oxides such as Al 2 O 3 , ZrO 2 , mullite, cordierite, aluminum titanate, Si 3 N 4 , AlN, TiN, etc. Main crystals of at least one selected from the group consisting of nitrides, carbides such as SiC and TiC, borides such as TiB 2 , AlB 2 and ZrB 2 , oxynitrides such as SiAlON and AlON, and carbonitrides such as TiCN Sintered or unsintered ceramics can be suitably applied.
[0023]
Among the porous ceramics, it is desirable that the porous ceramic is mainly composed of an oxide that does not cause a reaction even when used at a high temperature and has stable performance, and in order to increase the porosity in the porous ceramic, It is desirable that the ceramic contains needle-like or plate-like particles having an aspect ratio of 3 or more, specifically, at least one selected from the group consisting of silicon nitride, alumina, aluminate, aluminum borate, and mullite. . In addition, the aspect ratio in the present invention is represented by (the particle size in the longitudinal direction / the thickness of the particles) of needle-like or plate-like crystal particles.
[0024]
In order to increase the aspect ratio of the needle-like or plate-like particles, silicon nitride is allowed to contain 1.5% by weight or more of a rare earth element oxide such as Y 2 O 3 as a sintering aid, the addition amount of SiO 2 that oxygen be included as inevitable impurities in the silicon nitride raw material may be desirable allowed to contain more than 1.5 wt% in terms of SiO 2 amount Ku, also, for alumina, TiO 2, MgO, SiO 2. It is desirable to include a sintering aid component such as CaO.
[0025]
In particular, when Al 2 O 3 or mullite is mainly used as the ceramic forming the skeleton part 2, fine particles such as TiO 2 of 1 μm or less are precipitated and dispersed in the main crystal phase. The strength can be further increased.
[0026]
Next, a method for producing the porous ceramic structure of the present invention will be described.
First, for example, an organic binder, a dispersant, a thickener, a plasticizer, a solvent, and the like are added to a ceramic raw material powder having an average particle diameter of 0.1 to 2 μm for forming a skeleton, and a slurry is prepared. Alternatively, the alkoxide solution of the metal oxide forming the skeleton is hydrolyzed, or a precursor sol for the skeleton is prepared using a colloid solution.
[0027]
Next, pores for forming pores having an average diameter, that is, an average diameter of 0.01 to 10 mm are added and mixed in the slurry or precursor sol. As the spherical body, a granule containing a raw material of porous ceramics filled in the pores of the structure is used. Such a spherical body forms a porous ceramic, for example, is a slurry prepared by adding an organic binder, a dispersant, a solvent, etc. to a ceramic raw material powder having an average particle diameter of 0.1 to 2 μm as desired. Alternatively, hydrolyzing an alkoxide solution containing a metal oxide for forming porous ceramics or preparing a precursor sol for porous ceramics using a colloidal solution, and known granulation such as spray drying Granules having an average pore diameter of 0.01 to 10 mm obtained by the method. At this time, the porosity of the porous ceramics can be increased by adding, for example, an organic substance that is burned down by heating, such as starch, into the slurry or sol.
[0028]
According to the present invention, the pore size is made uniform to increase the mechanical strength of the skeletal body, and the filling rate of spheres in the slurry to be described later is increased so that the volume ratio of the pores and the contact ratio between the pores are increased. to increase, in the diameter distribution of the spherical body shown in FIG. 2, D 1 (D 0 × 0.7) within 30% ± diameter of the spherical body with respect to the average diameter D 0 ~D 2 (D 0 X1.3) It is important to homogenize so that the ratio is 90% or more of the total spheres. For this purpose, the spheres should be classified into two or more types of sieves so as to be within the above range. It is desirable to use a method such as sieving. As the spherical body, an ellipsoid or an octahedron or higher polyhedron can also be used.
[0029]
Then, the slurry or sol added and mixed with the spherical body is poured into a mold having a predetermined shape. According to the present invention, the deformability of the spherical body described later is increased in order to increase the porosity of the structure. for it is desirable that spherical-shaped body is adjusted to a ratio such as to protrude into the slurry surface. Further, after the pouring, the mold can be vibrated to enhance the filling property of the spherical body.
[0030]
Further, the molding die filled with the slurry is pressurized with a plate-like body or the like from the surface, and the molding die is deformed and molded so that the spherical bodies are in surface contact with each other. In addition, in the case of the said shaping | molding, in order to improve the deformability of the said spherical body, a molded object can also be heated to predetermined temperature, for example, 50-150 degreeC.
[0031]
Then, after they burn out organic component and heating the molded body, it is possible to prepare a porous ceramic structure by baking at a temperature skeletal portion is densified to a relative density of 90% or more.
[0032]
In order to produce a skeleton part in which nano-sized fine particles such as TiO 2 are dispersed in Al 2 O 3 or mullite crystals, the atmosphere is changed to an oxidizing atmosphere and the temperature is changed to a low temperature of 50 to 300 ° C. during firing. or were reduced to the amount of solid solution to TiO 2 in the main crystalline phase is, the atmosphere during firing by the addition of equimolar MgO and TiO 2 to the non-oxidizing atmosphere, the temperature is changed to 50 to 300 ° C. cold Thus, the amount of TiO 2 and MgO dissolved in Al 2 O 3 may be reduced.
[0042]
Further, the porous ceramic structure obtained by the production method of the present invention includes a filter that separates solids such as dust, liquid, gas, and the like, a supporting member thereof, a catalyst carrier, a fluid permeable member such as a molten metal, or the like. It can be suitably used as a biological substitute member such as an artificial bone or an artificial joint.
[0043]
In addition, among the above uses, for example, when used as a fluid permeable member, it has a flat plate shape, and allows fluid to permeate from one surface to the other surface, or from one surface to one side surface. The fluid flowing on the inner surface side may be transmitted to the outer surface, or the fluid flowing on the outer surface side may be transmitted to the inner surface. According to the porous ceramic structure obtained by the manufacturing method of the present invention, etc. In both cases, it has excellent mechanical characteristics and fluid permeation characteristics, so that it has excellent mechanical characteristics and fluid permeation characteristics.
[0044]
【Example】
( Reference Example 1)
Alumina powder having an average particle size of 0.7 μm, mullite raw material powder in which alumina and silica having an average particle size of 0.3 μm are mixed at a weight ratio of 72/28, and silicon nitride powder having an average particle size of 0.7 μm (oxygen content) 0.9 wt%) to which 5% by weight of yttria having an average particle diameter of 1 μm and 3% by weight of alumina having an average particle diameter of 0.7 μm are added as sintering aids, respectively, an organic binder, a dispersant, water Were added to prepare a slurry.
[0045]
On the other hand, in the analysis by the microtrack method, the average diameter shown in Table 1 and the ratio within ± 30% of the average diameter are the values shown in Table 1 (described as distribution in Table 1). And prepared by sieving.
[0046]
Next, the acrylic balls were mixed with the above-mentioned slurry so as to protrude from the surface of the slurry, and the mixture was poured into a gypsum mold having a thickness of 60 mmφ × 20 mm to vibrate, thereby enhancing the fillability of the acrylic balls. At this time, the amount of balls was adjusted in advance so that the acrylic balls protruded from the surface of the slurry dried body. Then, after placing a ceramic plate on the top of the plaster mold and caulking it to the pressure shown in Table 1 by screwing, it was dehydrated and dried, and then heated to 500 ° C. to burn off the acrylic sphere. did.
[0047]
The molded body was taken out from the mold, and alumina and mullite were fired at 1650 ° C. and 1600 ° C. in the air, respectively, and silicon nitride was fired at 1750 ° C. in a nitrogen atmosphere for 5 hours.
[0048]
As a result of measuring the density of the skeleton part of the obtained sintered body by the Archimedes method, the relative density was 98% or more in all cases. In addition, the dimensional density of the sample was measured to determine the porosity of the structure. Further, the average diameter of pores in one field of view and the communication hole diameter between adjacent pores, that is, the average value of the diameter of the neck portion were measured from SEM photographs of the cross section or fracture surface of the structure. Further, the three-point bending strength was measured based on JIS R1601.
[0049]
Further, the sample was processed to a thickness of 50 mmφ × 10 mm and placed in a cylindrical housing, and the pressure loss when the air was passed from one surface side at a flow rate of 10 m / s and permeated through the structure was transferred to a pressure difference meter. Measured. The results are shown in Table 1.
[0050]
( Reference Example 2)
Sample No. of Reference Example 1 12 as in Reference Example 1 except that 1% by weight of TiO 2 is added and baking is performed at 1500 ° C. for 5 hours in a hydrogen atmosphere and then annealed at 1200 ° C. for 10 hours in the atmosphere. A porous ceramic structure was prepared and evaluated in the same manner (Sample No. 12). The results are shown in Table 1.
[0051]
(Comparative example)
Sample No. of Reference Example 1 After forming a film of the slurry on the foam surface by immersing urethane foam (pore diameter: 0.6 mm) in the skeleton 3 forming slurry, pulling up and drying, this was fired at 1500 ° C. to urethane The foam was burned off to produce a porous ceramic structure, which was evaluated in the same manner as in Reference Example 1 (Sample No. 13). The results are shown in Table 1.
[0052]
[Table 1]
Figure 0004514274
[0053]
As is apparent from the results in Table 1, a spherical body having an average diameter of less than 0.01 mm was used, and the sample No. In No. 1, the strength of the skeleton itself decreased, the bending strength of the structure decreased, and the pressure loss increased. Sample No. which does not pressurize the mold. In No. 7, the pressure loss increased. In addition, a spherical body having an average diameter larger than 10 mm was used, and the structure No. In No. 6, the bending strength of the structure decreased. In addition, a sample No. No. in which the ratio within ± 30% with respect to the average diameter of the spherical body is smaller than 90%, that is, the sample No. In No. 9, the communication between the pores deteriorated, the pressure loss was high, and a ball having a partially large diameter was present, resulting in a decrease in bending strength. Furthermore, sample no. For No. 13, the strength decreased.
[0054]
On the other hand, specimen No. In 2-5, 8, and 10-12, all had excellent characteristics with a bending strength of 20 MPa or more and a pressure loss of 2 kPa or less.
[0055]
( Reference Example 3)
Sample No. of Reference Example 1 3 is immersed in a slurry containing alumina powder having an average particle diameter of 0.7 μm, and the slurry is filled in the pores of the structure, followed by drying by freeze-drying treatment at 1500 ° C. in the atmosphere. After firing, sample no. A sample was prepared by filling the pores 3 with porous ceramics.
[0056]
When the porosity and average pore diameter of the obtained structural body were measured by a fracture surface SEM, the relative density of the filled porous body was 32%, and the average pore diameter was 0.022 mm by mercury porosimetry. Moreover, as a result of measuring the bending strength and the pressure loss at a flow rate of 10 m / s as in Reference Example 1, the bending strength was 31 MPa and the pressure loss was 1.58 MPa.
[0057]
(Example 1 )
The slurry in which starch is added to the slurry for porous ceramics of Reference Example 3 at a ratio of 85% by weight is granulated by spray drying and sieved, and the average diameter is 1.0 mm and the diameter is in the range of 0.7 to 1.3 mm. The ratio was 92%.
[0058]
This granule was referred to No. 1 of Reference Example 1. The structure was produced in the same manner as in Reference Example 1 except that it was used instead of the acrylic ball 3 and the caulking pressure of the mold was set to 0.1 MPa. As a result, the porosity of the skeleton part, that is, the volume ratio of the porous ceramics was 81. %, The average pore diameter was 0.8 mm, the communication pore diameter was 0.23 mm, the relative density of the porous ceramics was 78%, and the average pore diameter was 0.08 mm. Moreover, as a result of measuring the bending strength and the pressure loss at a flow rate of 10 m / s as in Reference Example 1, the bending strength was 30 MPa and the pressure loss was 1.35 MPa.
[0059]
( Reference Example 4 )
A slurry for porous ceramics containing an organic solvent was prepared in the same manner as in Reference Example 3 with respect to the raw material powder having the composition shown in Table 2 (the balance being silicon nitride and an oxygen content of 0.9 to 1.1% by weight). Sample No. 1 of Reference Example 1 was added to this. 11 porous ceramic structures were dipped to fill the pores of the structure with the slurry, freeze-dried, and fired at 1800 ° C. for 5 hours in a nitrogen atmosphere.
[0060]
Further, this sample was evaluated in the same manner as in Reference Example 1, and the average value of the minor axis and the major axis of the crystal and the aspect ratio of the porous ceramic were determined by Luzex image processing analysis using the SEM photograph of the sample fracture surface. The content ratio of three or more particles was measured. The results are shown in Table 2.
[0061]
[Table 2]
Figure 0004514274
[0062]
( Reference Example 5 )
With respect to an alumina raw material comprising 30% by weight of alumina having an aspect ratio of 3 and an average major axis of powder of 10 μm and the balance being 0.7 μm in average particle size, 1% by weight of TiO 2 as a sintering aid and Mg OH) and 0.5 wt% 2 in terms of MgO amount, the SiO 2 with respect to the raw material powder added in a proportion of 0.3 wt%, the slurry containing the organic solvent was prepared which in reference example 1 Sample No. The porous ceramic structure 3 was dipped to fill the pores of the structure with the slurry, freeze-dried, and fired at 1400 ° C. for 5 hours in the atmosphere. The obtained sample was evaluated in the same manner as in Reference Example 1, and the average value of the minor axis and the major axis of the crystal and the aspect ratio of the porous ceramic were determined by Luzex image processing analysis using the SEM photograph of the sample fracture surface. The content ratio of three or more particles was measured. The results are shown in Table 3.
[0063]
( Reference Example 6 )
The raw material powder composition (balance alumina) shown in Table 3, the slurry containing the organic solvent to prepare, this sample No. of Reference Example 1 The porous ceramic structure No. 3 was immersed and the slurry was filled in the pores of the structure, then freeze-dried, and fired in the atmosphere for 5 hours under the conditions shown in Table 3. The obtained sample was evaluated in the same manner as in Reference Example 1, and the average value of the minor axis and the major axis of the crystal and the aspect ratio of the porous ceramic were determined by Luzex image processing analysis using the SEM photograph of the sample fracture surface. The content ratio of three or more particles was measured. Further, from the intensity ratio of the XRD measurement, a crystal phase of 97% or more is shown in Table 3 as a main crystal phase. The results are shown in Table 3.
[0064]
[Table 3]
Figure 0004514274
[0065]
As is apparent from the results of Tables 2 and 3, it was found that both had high bending strength and high fluid permeability.
[0066]
【The invention's effect】
As described above in detail, according to the method for producing a porous ceramic structure of the present invention, it is possible to provide a porous ceramic structure capable of enhancing the entrance and exit characteristics of a substance such as isotropically high strength and fluid permeability. .
[0067]
[Brief description of the drawings]
FIG. 1 is a schematic diagram of the structure of a porous ceramic structure obtained by the method for producing a porous ceramic structure of the present invention.
FIG. 2 is a view showing an example of a spherical body diameter distribution in the method for producing a porous ceramic structure of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Porous ceramic structure 2 Skeletal part 3 Pore 4 Porous ceramic 5 Communication hole

Claims (2)

骨格部を形成するセラミック原料および有機質成分を含有するスラリーまたはゾルを作製する工程と、前記スラリーまたはゾル内に平均径0.01〜10mmで、かつ該平均径に対して±30%以内である割合が90%以上であり、多孔質セラミックスを形成するセラミック原料と有機質成分とを含有する顆粒からなる球状体を添加する工程と、該球状体を添加した前記スラリーまたはゾルを成形型内に流し込んだ後、前記球状体同士が面接触するように前記球状体を変形させて成形体を作製する工程と、該成形体を加熱して前記有機質成分を焼失させた後、前記骨格部が緻密化する温度で焼成する工程とを具備することを特徴とする多孔質セラミック構造体の製造方法。A step of producing a slurry or sol containing a ceramic raw material and an organic component forming the skeleton, and an average diameter of 0.01 to 10 mm in the slurry or sol and within ± 30% of the average diameter ratio Ri der 90%, and adding the name Ru spheroids from granules containing a ceramic raw material and organic component to form a porous ceramic, mold in the slurry or sol was added spherical body after flushing, after the spherical bodies is that the the step you form a compact by deforming the spherical bodies, to burn out the organic components by heating the green body to surface contact, the skeleton And a step of firing at a temperature at which the material is densified . 前記顆粒が澱粉を含有し、該澱粉は加熱により焼失することを特徴とする請求項記載の多孔質セラミック構造体の製造方法。The granules containing starch, starch manufacturing method according to claim 1 the porous ceramic structure, wherein the burned off by heating.
JP2000054005A 2000-02-29 2000-02-29 Method for producing porous ceramic structure Expired - Fee Related JP4514274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000054005A JP4514274B2 (en) 2000-02-29 2000-02-29 Method for producing porous ceramic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000054005A JP4514274B2 (en) 2000-02-29 2000-02-29 Method for producing porous ceramic structure

Publications (2)

Publication Number Publication Date
JP2001240480A JP2001240480A (en) 2001-09-04
JP4514274B2 true JP4514274B2 (en) 2010-07-28

Family

ID=18575316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000054005A Expired - Fee Related JP4514274B2 (en) 2000-02-29 2000-02-29 Method for producing porous ceramic structure

Country Status (1)

Country Link
JP (1) JP4514274B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101918620B1 (en) * 2017-06-02 2018-11-15 안동대학교 산학협력단 Recovery method of high purity MMA and alumina from crude marble

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004080916A1 (en) * 2003-03-10 2004-09-23 Ngk Insulators, Ltd. Inorganic porous body and method for producing same
JP4805676B2 (en) 2003-07-25 2011-11-02 日本碍子株式会社 Ceramic porous body and method for evaluating permeation performance thereof
JP4304276B2 (en) * 2004-03-31 2009-07-29 独立行政法人産業技術総合研究所 Efficient heat insulation method and apparatus for high pressure apparatus
JP4095584B2 (en) 2004-06-15 2008-06-04 本田技研工業株式会社 Ceramic molded body and metal matrix composite member
US9272333B2 (en) 2004-10-15 2016-03-01 Taisei Kogyo Co., Ltd. Method of making a porous sintered body, a compound for making the porous sintered body, and the porous sintered body
JP2007051033A (en) * 2005-08-18 2007-03-01 Noritake Co Ltd Porous ceramic support
JP4961189B2 (en) * 2006-10-20 2012-06-27 株式会社ニッカトー Vacuum chuck member comprising porous alumina sintered body and method for producing the same
JP2011521877A (en) * 2008-05-30 2011-07-28 コーニング インコーポレイテッド Low back pressure porous honeycomb and manufacturing method thereof
DE102008048614A1 (en) * 2008-09-23 2010-04-01 H.C. Starck Gmbh Valve metal and valve metal oxide agglomerate powder and process for their preparation
JP5199151B2 (en) * 2009-03-05 2013-05-15 三井金属鉱業株式会社 Ceramic fired body and manufacturing method thereof
BR112014006516B8 (en) * 2011-09-20 2022-07-05 Evonik Roehm Gmbh REFRACTORY CERAMIC MATERIAL, ITS USE AND ITS PRODUCTION PROCESS
WO2013146594A1 (en) * 2012-03-29 2013-10-03 株式会社クボタ Ceramic filter
TW201522275A (en) * 2013-08-23 2015-06-16 Toyo Tanso Co Porous ceramic and method for producing same
JP2015044698A (en) * 2013-08-27 2015-03-12 栃木県 Eucryptite porous body, and method for manufacturing the same
CN116751073B (en) * 2023-08-23 2023-10-24 天津南极星隔热材料有限公司 Preparation method of lightweight heat-insulating aluminum borate porous ceramic with multistage pore structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197375A (en) * 1988-02-01 1989-08-09 Ngk Spark Plug Co Ltd Porous body and production of porous body
JPH04104974A (en) * 1990-08-24 1992-04-07 Sk Kaken Co Ltd Porous material having open-cell structure and method for forming the same
JPH05117053A (en) * 1991-10-25 1993-05-14 Mitsubishi Heavy Ind Ltd Micronization of pore in porous material
JP2000053475A (en) * 1998-07-30 2000-02-22 Shokan Ri Open-cell formed concrete and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197375A (en) * 1988-02-01 1989-08-09 Ngk Spark Plug Co Ltd Porous body and production of porous body
JPH04104974A (en) * 1990-08-24 1992-04-07 Sk Kaken Co Ltd Porous material having open-cell structure and method for forming the same
JPH05117053A (en) * 1991-10-25 1993-05-14 Mitsubishi Heavy Ind Ltd Micronization of pore in porous material
JP2000053475A (en) * 1998-07-30 2000-02-22 Shokan Ri Open-cell formed concrete and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101918620B1 (en) * 2017-06-02 2018-11-15 안동대학교 산학협력단 Recovery method of high purity MMA and alumina from crude marble

Also Published As

Publication number Publication date
JP2001240480A (en) 2001-09-04

Similar Documents

Publication Publication Date Title
JP4514274B2 (en) Method for producing porous ceramic structure
US6565797B2 (en) Method for production of silicon nitride filter
US6210612B1 (en) Method for the manufacture of porous ceramic articles
CN101687713B (en) High porosity ceramic honeycomb article containing rare earth oxide and method of manufacturing same
JP4176278B2 (en) Ceramic porous body and method for producing the same
CN105906370B (en) A kind of preparation method for the three-dimensional network porous ceramics that bore diameter gradient distribution is presented
JPH09157060A (en) Inorganic sintered porous body and filter
EP2326605A1 (en) Method for making porous mullite-containing composites
WO2006035645A1 (en) Method for manufacturing porous article, porous article and honeycomb structure
WO2011063378A3 (en) Refractory porous ceramics
CN115521158B (en) Preparation method of high-air-permeability ceramic fiber filter tube
CA2312247C (en) Ceramic membrane
EP1197253B1 (en) Method for producing a silicon nitride filter
JP5082067B2 (en) Method for producing high-strength macroporous porous ceramic and porous body thereof
JPH01500426A (en) Manufacturing method of porous silicon nitride mold for die casting
CN115893980B (en) Process for preparing porous support ceramic by using nodulizer micropowder
Izuhara et al. Highly porous cordierite ceramics fabricated by in situ solidification
JP2001206785A (en) Method of producing silicon carbide porous body
Lin et al. Cyclic infiltration of porous zirconia preforms with a liquid solution of mullite precursor
JP3881476B2 (en) Fluid permeable member and manufacturing method thereof
JPH11292653A (en) Ceramic porous body and its production
JP2005255439A (en) Nano, micro and macro multiplex structured porous body and method of manufacturing the same
CN112535907B (en) High-density ceramic fiber filter material and preparation method thereof
Yang et al. Effects of pore morphology on the fabrication and mechanical properties of porous Si3N4 ceramics
JP2004262730A (en) Method for manufacturing silicon carbide-silicon nitride combined porous body

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20010213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091105

LAPS Cancellation because of no payment of annual fees