JPS60251108A - Device for preparing silicon nitride powder - Google Patents

Device for preparing silicon nitride powder

Info

Publication number
JPS60251108A
JPS60251108A JP10747984A JP10747984A JPS60251108A JP S60251108 A JPS60251108 A JP S60251108A JP 10747984 A JP10747984 A JP 10747984A JP 10747984 A JP10747984 A JP 10747984A JP S60251108 A JPS60251108 A JP S60251108A
Authority
JP
Japan
Prior art keywords
reaction
powder
reaction vessel
silicon nitride
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10747984A
Other languages
Japanese (ja)
Other versions
JPS6356168B2 (en
Inventor
Masaaki Mori
正章 森
Akira Sano
章 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP10747984A priority Critical patent/JPS60251108A/en
Publication of JPS60251108A publication Critical patent/JPS60251108A/en
Publication of JPS6356168B2 publication Critical patent/JPS6356168B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain Si3N4 powder with satisfactorily sintered condition and high content of fine alpha-phase by allowing a specified mixture of starting materials to react in a reaction vessel in a fluidized condition using a nonoxidizing gas contg. hot N2. CONSTITUTION:Powder mixture of starting materials consisting of 1pt.wt. powdery SiO2, 0.4-4pts.wt. carbon black, and 0.05-1pt.wt. Si3N4 is granulated to particles having 0.2-30mm. minor axis. The granulated particles are fed from a starting material hopper 14 to a reaction chamber 1a in a reaction vessel 1 made of carbon. On one hand, gaseous N2 is fed through a pipe 29 to a passage 3 between the vessel 1 and a quartz glass tube 2, heated in the midway of the passage 3 and in the preheating zone 31 at the bottom of the reaction chamber 1a at 1,300-1,550 deg.C by an induction heating coil 4, and ejected into the chamber 1a to cause fluidization of the granulated particles and reduction and nitridation reaction. Then, unreacted gaseous N2 and produced gaseous CO, etc. are discharged from a gas discharging port 13, and the reaction product is drawn by pulling a valve 20 toward downward. Thereafter, remaining C is removed by burning in the air at 700 deg.C. By this method, Si3N4 having 0.2-1.4mu particle size having low content of unreacted product or by-product is obtd.

Description

【発明の詳細な説明】 本発明は窒化ケイ素粉末の製造装置に関する。[Detailed description of the invention] The present invention relates to an apparatus for producing silicon nitride powder.

例えば窒化ケイ素−酸化イツトリウムも−くは酸化マグ
ネシウム(S〆内・−Y2O・もしくはSi 3 N4
−Mo O)焼結体は機械的強度が^く、耐熱性もすぐ
れているため高温ガスタービン部材等に適用されるよう
になってきている。
For example, silicon nitride - yttrium oxide or magnesium oxide (within S -Y2O or Si 3 N4
-Mo O) Sintered bodies have high mechanical strength and excellent heat resistance, so they are being applied to high-temperature gas turbine components and the like.

窒化ゲイ素糸焼結体の機械的特性は出発原料の性質によ
って大きく影響され、窒化ケイ素についてはできるだけ
α相含有率の高いことが望まれる。
The mechanical properties of the sintered silicon nitride yarn are greatly influenced by the properties of the starting materials, and it is desired that the α-phase content of silicon nitride be as high as possible.

従来、窒化ケイ素系粉末の製造は種々の方法で行われて
いるが、最近ではα相否有率の高い窒化ケイ素粉末が得
られる方法どしてシリカ粉末とカーボン粉末に窒化ケイ
素粉末、炭化ケイ素粉末及び酸窒化ケイ素系粉末のうち
少なくとも一種を添加して混合原料粉末を調整し、これ
を窒素含有非酸化性雰囲気中で加熱処理し、還元・窒化
反応を行う方法が採用されている。
Conventionally, silicon nitride-based powders have been manufactured using various methods, but recently, a method to obtain silicon nitride powder with a high α phase rejection rate is to use silica powder, carbon powder, silicon nitride powder, and silicon carbide. A method has been adopted in which a mixed raw material powder is prepared by adding at least one of a powder and a silicon oxynitride-based powder, and the mixed raw material powder is heat-treated in a nitrogen-containing non-oxidizing atmosphere to perform a reduction/nitriding reaction.

しかし、従来方法では下記のような種々の欠点がある。However, conventional methods have various drawbacks as described below.

(1)窒化ケイ素は混合原料粉末中の窒化ケイ素等の添
加粉末を核として、その表面に成長していくので、良好
な焼結性を有するに細な窒化ケイ素粉末を得るためには
、添加粉末の添加量を多くしなければならない。このよ
うに添加量を多くすると、生成する窒化ケイ素粉末の粒
径が均一化して、成形時の成形密度が小さくなる。
(1) Silicon nitride grows on the surface using the added powder such as silicon nitride in the mixed raw material powder as a core, so in order to obtain fine silicon nitride powder with good sinterability, it is necessary to add The amount of powder added must be increased. When the amount added is increased in this way, the particle size of the silicon nitride powder produced becomes uniform, and the compacting density during compacting becomes low.

(2)SiO2とCからSi3’N4が生成する反応は
、3i0+とCとの固−同反応が律速段階であるので、
シリカ粉末とカーボン粉末の接触が良好である必要があ
る。しかし、出発原料はいずれも微細な粉末で、その混
合原料粉末のカサ比重は非常に小さく<o、i3〜0.
20)、シリカ粒子とカーボン粒子との良好な接触状態
が得にくい。また、充填量も少ないので、生産効率が悪
い。
(2) In the reaction that generates Si3'N4 from SiO2 and C, the solid-solid reaction between 3i0+ and C is the rate-determining step.
Good contact between silica powder and carbon powder is required. However, all of the starting materials are fine powders, and the bulk specific gravity of the mixed raw material powder is extremely small<o, i3~0.
20) It is difficult to obtain a good contact state between silica particles and carbon particles. Furthermore, since the amount of filling is small, production efficiency is poor.

(3)混合原料粉末を容器に充填して還元・窒化反応を
させる際、混合原料粉末はカサ比重が小さいにもかかわ
らず出発原料が微細なため、粉体床中での間隙が非常に
狭い状態になっている。このため、反応により生成する
COガスが粉体床中から外へ拡散しにくく、かつ窒化反
応に必要なN2ガスが粉体床中に浸透しにくい。この場
合、粉体床が厚いIq−一体床内部ではN2m度が低く
、COm度ド上幣くなるため、SiCやSi2ON2が
副生例へ1つ、あるいは未反応SiO2が残留して、−
8i 3 N4の生成が良好でない。したがって、粉体
床の厚さは約15111111程度に制限される。
(3) When filling mixed raw material powder into a container and performing a reduction/nitriding reaction, the starting raw material is fine even though the bulk specific gravity of mixed raw material powder is small, so the gaps in the powder bed are very narrow. is in a state. Therefore, the CO gas generated by the reaction is difficult to diffuse out of the powder bed, and the N2 gas necessary for the nitriding reaction is difficult to penetrate into the powder bed. In this case, inside the Iq-integrated bed where the powder bed is thick, the N2m degree is low and the COm degree is high, so one SiC or Si2ON2 is produced as a by-product, or unreacted SiO2 remains, and -
8i 3 N4 production is not good. Therefore, the thickness of the powder bed is limited to about 1,511,111 mm.

また、粉体床内部では反応速度が遅いため、Si3N4
生成を完了させるのに多くの時間がかかり、生産効率が
悪い。
In addition, since the reaction rate inside the powder bed is slow, Si3N4
It takes a lot of time to complete the generation and the production efficiency is low.

本発明は上記欠点を解消するためになされたものであり
、混合原料粉末を造粒してイの造粒粒子を流動層状態で
反応、させることにJ、り生産効率を向上し得るととも
に良好な焼結性を有する微細なα相含有率の高い窒化ケ
イ素粉末を製造することのできる装置を提供することを
目的とするものである。
The present invention has been made to solve the above-mentioned drawbacks, and by granulating mixed raw material powder and reacting the granulated particles in a fluidized bed state, it is possible to improve production efficiency and improve production efficiency. The object of the present invention is to provide an apparatus capable of producing fine silicon nitride powder having a high α phase content and having good sinterability.

この目的を達成するための本発明の要旨とづるところは
カーボン製の反応容器の上部に原料供給用の開放部分を
設けるとともに、反応容器の肉厚部分に反応室を設け、
反応容器の外周を石英ガラス製のチューブで包囲し、反
応容器とチューブとの間に空間を形成して環状の通路を
つくり、その通路を反応容器下部の多孔に連絡し、チュ
ーブの外側でかつ反応室の対応位置に誘導加熱用のコイ
ルを配置し、そのコイルにより反応容器を発熱させて反
応室を加熱すると同時に窒素含有非酸化性のガスを通路
の途中で加熱し、さらにそのガスが予熱領域で加熱され
てから反応容器の下部の多孔を通って反応容器内の反応
室に供給される構造にしたことを特徴とする窒化ケイ素
粉末の製造装置にある。
The gist of the present invention to achieve this purpose is to provide an open part for supplying raw materials at the top of a reaction vessel made of carbon, and provide a reaction chamber in the thick part of the reaction vessel.
The outer periphery of the reaction vessel is surrounded by a quartz glass tube, a space is formed between the reaction vessel and the tube to create an annular passage, the passage is connected to the porous hole at the bottom of the reaction vessel, and a An induction heating coil is placed at a corresponding position in the reaction chamber, and the coil generates heat in the reaction chamber to heat the reaction chamber. At the same time, a nitrogen-containing non-oxidizing gas is heated in the middle of the passage, and the gas is preheated. An apparatus for producing silicon nitride powder is characterized in that the silicon nitride powder is heated in a region and then supplied to a reaction chamber in the reaction container through a porous hole in the lower part of the reaction container.

以下、図面を参照して、この発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図において、カーボン製の反応容器1は上部が開放
されてい(、下部が多孔を有し、外周が石英ガラス製の
チューブ2により包囲されている。反応室1aが反応容
器1の下方の肉厚部分に形成されている。反応容器1ど
デユープ2との間に環状の空間が形成されていて、窒素
含有非酸化性ガス(以下、単に窒素ガスという)を供給
するための通路3を構成している。この通路3は反応容
器1の底部の多孔を介して反応容器1内の反応室1aに
連絡している。
In FIG. 1, a reaction vessel 1 made of carbon has an open upper part (a lower part has porous holes and an outer periphery is surrounded by a tube 2 made of quartz glass).A reaction chamber 1a is located below the reaction vessel 1. An annular space is formed between the reaction vessel 1 and the duplex 2, and a passage 3 for supplying nitrogen-containing non-oxidizing gas (hereinafter simply referred to as nitrogen gas) is formed in the thick part. This passage 3 communicates with the reaction chamber 1a inside the reaction container 1 via a porous hole in the bottom of the reaction container 1.

誘導加熱用の」イル4は反応容器1を発熱させることに
より反応容器1内の反応室1aとその外側の通路3の途
中を同時に加熱するだめのものである。反応容器1の肉
厚部分か最も高温になる。コイル4に接続した高周波発
振機5を制御盤6によりコントロールして、コイル4に
よる加熱温度を調節づる。
The induction heating coil 4 is used to simultaneously heat the reaction chamber 1a in the reaction container 1 and the middle of the passage 3 outside the reaction chamber 1 by generating heat in the reaction container 1. The thickest part of the reaction vessel 1 becomes the hottest. A high frequency oscillator 5 connected to the coil 4 is controlled by a control panel 6 to adjust the heating temperature by the coil 4.

窒素ガスは流量計8.9を通ってパイプ29から通路3
の上部に流入する。また、窒素ガスの一部は流量計10
1,11.12を通ってそれぞれ反応容器1の上方にあ
る原料ホッパー14、反応容器1の下方15およびパイ
プ16の中に流入するようになっている。
Nitrogen gas passes through the flow meter 8.9 from the pipe 29 to the passage 3.
flows into the upper part of the Also, a part of the nitrogen gas is transferred to the flowmeter 10.
1, 11, and 12 into a raw material hopper 14 above the reaction vessel 1, a lower part 15 of the reaction vessel 1, and a pipe 16, respectively.

原料ホッパー14は排気口13に連絡していて、原料が
反応容器1の上部の廃棄口13から反応室1魯内に供給
されるようになっている。
The raw material hopper 14 is connected to the exhaust port 13, so that the raw material is supplied into the reaction chamber 1 from the waste port 13 at the upper part of the reaction vessel 1.

反応容器1の下方にはパルプ20が設けてあり、必要に
応じてそれを開弁することにより反応生成物を取出し口
15から取り出せるようにむっでいる。
A pulp 20 is provided below the reaction vessel 1, and the reaction product can be taken out from the outlet 15 by opening the valve as necessary.

パイプ21は一端が排気[113に接続され、他端が雰
囲気分析装置く図示せず)に接続されている。
One end of the pipe 21 is connected to an exhaust gas 113, and the other end is connected to an atmosphere analyzer (not shown).

パイプ22は一端が集塵ケース23に接続され、他端が
集塵機(図示1!ず)に接続されている。
One end of the pipe 22 is connected to the dust collection case 23, and the other end is connected to a dust collector (not shown).

チ1−72の1下端にはそれぞれ水冷ジ11タット25
.26が設けられている。符号25a、26aは冷却本
人[1を示し、25b126bは水冷水出口を示す。反
応容器1の下方部分には、複数のフィン30を交互に設
け、予熱領域31が構成しである。
At the lower end of 1-72, there is a water cooling diode 11 tat 25, respectively.
.. 26 are provided. Reference numerals 25a and 26a indicate the cooling unit [1], and 25b126b indicates a water cooling water outlet. In the lower part of the reaction vessel 1, a plurality of fins 30 are provided alternately to form a preheating region 31.

反応容器1の反応室1aの底には目皿などの多孔部材3
2が設けである。
A porous member 3 such as a perforated plate is provided at the bottom of the reaction chamber 1a of the reaction container 1.
2 is a provision.

また、チューブ2の下方には複数の断熱プレート33と
区画プレート33が設置プである。
Further, a plurality of heat insulating plates 33 and partition plates 33 are installed below the tube 2.

符号35は窒素ガスの出口である。Reference numeral 35 is a nitrogen gas outlet.

このような製造装置の作用を説明するに先立ち、まず、
原料ホッパー14に入れる原料について説明する。
Before explaining the operation of such manufacturing equipment, first,
The raw materials to be put into the raw material hopper 14 will be explained.

出発原料として用いる三成分の粉末の混合割合はその成
分粉末の種類にJ:って異本−るが、例えばシリカ−カ
ーボン窒化ケイ素(SiO2−C−8i 3 N4 )
混合系の場合、SiO2:C:Si 3 N4 =1 
:0.4〜4;0゜005・〜1.0の重慢割含にする
のが望ましい。なぜ′ならば、SiO2の1に対してC
が0.4未満では5i02が未反応として残留し、かつ
Si 2 ON2の多量生成がみられる反面、α相Si
 3 N4の生成量が少なくなる。
The mixing ratio of the three component powders used as starting materials varies depending on the type of the component powders, but for example, silica-carbon silicon nitride (SiO2-C-8i 3 N4)
In the case of a mixed system, SiO2:C:Si3N4 =1
:0.4~4;0°005·~1.0 is preferable. If ', then C for 1 of SiO2
is less than 0.4, 5i02 remains unreacted and a large amount of Si 2 ON2 is produced.
3 The amount of N4 produced decreases.

また、Cが4を超えると、β相Si 3 N4の生成が
みられ、結果的にα相Si 3 N4の純度が悪化する
ほか、とくに収率低下がみられるためである。一方51
02の1に対してSi 3 N4が0.005未満では
α相Si 3 N4の収率効果が少なく、逆に1を超え
ると、好ましい粉末特性を有する粉末が得られない。
Moreover, if C exceeds 4, the formation of β-phase Si 3 N4 is observed, and as a result, the purity of α-phase Si 3 N4 deteriorates, and in particular, a decrease in yield is observed. On the other hand 51
If Si 3 N4 is less than 0.005 with respect to 1 of 02, the yield effect of α-phase Si 3 N4 will be small, and if it exceeds 1, a powder with preferable powder characteristics will not be obtained.

出発原料を混合して混合粉末原料を調製吃る方法として
は、例えば湿式又は乾式のボiルミル法が挙げられる。
Examples of the method for preparing a mixed powder raw material by mixing starting materials include a wet or dry boil mill method.

混合原料粉末の造粒は水、アルコール二ツゼ1ヘン等を
用いた湿式法で行い、乾燥、造粒してもよいし、ボ1テ
ビニルアルコール、フェノールレジン、小麦粉等の有機
バインダー又はエチルシリケート、コロイダルシリカ等
の無機バインダーを使用して乾燥、造粒してもよい。ま
た、造粒法としては、湿式又は乾式の押出し法、回転法
、加圧圧縮法、流動層造粒法2、遠心流動法、撹拌造粒
法、スプレードライ髪ノー法等あるいはこれらの組合せ
法をあげることができる。混合原料粉末を造粒ツクこと
により、SiO2とCとの接触状態がユ′くなり、Si
 3 N4生成反応の律速段階で4[る5iOzとCと
の固を固反応が起こりやすくなる。造粒粒子内部ではS
iO2とCの反応により発生したSiOガスとCoガス
が粒子に亀裂を生じさせる。この亀裂を通じてCoガス
が外部へ拡散し、N2ガスが内部l\浸透するため、反
応が起こりやすくイfす、その結果Si 3 N4の生
産効率が向上する。
The mixed raw material powder may be granulated by a wet method using water, alcohol, etc., followed by drying and granulation, or may be granulated by a wet method using water, alcohol, etc., or by drying and granulating. Drying and granulation may be performed using an inorganic binder such as silicate or colloidal silica. In addition, granulation methods include wet or dry extrusion methods, rotation methods, pressure compression methods, fluidized bed granulation methods 2, centrifugal flow methods, agitation granulation methods, spray dry hair no methods, etc., or combinations thereof. can be given. By granulating the mixed raw material powder, the contact state between SiO2 and C is improved, and Si
3 In the rate-determining step of the N4 production reaction, a solid reaction between 4[5iOz and C becomes more likely to occur. Inside the granulated particles, S
SiO gas and Co gas generated by the reaction of iO2 and C cause cracks in the particles. Co gas diffuses to the outside through these cracks, and N2 gas permeates inside, making it easier for reactions to occur, thereby improving Si 3 N 4 production efficiency.

造粒粒子の短径を0.2〜30n+n+の範囲としたの
は、0.2mm未満ひあると、造粒粒子がガス流により
飛散しやすくなって、安定した流動層状態が得られず、
3Q+++mを超えると、造粒粒子内部からのCoガス
の拡散や内部へのN2ガスの浸透が困難になって、反応
が良好に進まないからである。
The reason why the breadth of the granulated particles is in the range of 0.2 to 30n+n+ is because if it is less than 0.2 mm, the granulated particles will be easily scattered by the gas flow and a stable fluidized bed state will not be obtained.
This is because if it exceeds 3Q+++m, it becomes difficult for Co gas to diffuse from inside the granulated particles and for N2 gas to penetrate into the inside, and the reaction does not proceed well.

また、このような造粒粒子を流動層状態で反応させるこ
とにより、反応系の温度を均一にし、Coガスの拡散及
びN2ガスの浸透を良好にし、造粒粒子の処理量を増加
することができるため、生産効率を更に向、トさせるこ
とができる。
In addition, by reacting such granulated particles in a fluidized bed state, the temperature of the reaction system is made uniform, the diffusion of Co gas and the penetration of N2 gas are improved, and the throughput of granulated particles can be increased. As a result, production efficiency can be further improved.

なお、本発明における窒素含有非酸化性ガスとしては、
N2 、NH3、N2−ト12、N2−不活性ガス等が
あげられる。
Note that the nitrogen-containing non-oxidizing gas in the present invention includes:
Examples include N2, NH3, N2-to-12, N2-inert gas, and the like.

反応室1aにお(プる窒索含有非酸化性零lが生産し難
く、1550℃を超えるとSiCの生成がみられるから
である。
This is because it is difficult to produce nitrogen-containing non-oxidizing material in the reaction chamber 1a, and if the temperature exceeds 1550°C, the formation of SiC is observed.

次に、第1図〜2図に示した製造装置を用いて窒化ケイ
素粉末を製造する方法について簡単に説明する。
Next, a method for manufacturing silicon nitride powder using the manufacturing apparatus shown in FIGS. 1 and 2 will be briefly described.

まず、シリカ粉末1重量部とカーボンブラック0.5小
事部に窒化ケイ素粉末0.1重間部を添加し、混合原料
粉末を調整し、この混合原料粉末を短径3IIIIRに
造粒した。次いで、この造粉粒子を図示した製造装置の
原料ホッパー14から反応容器1の反応室1a内に町給
した。使方、パイプ29から通路3内に榊31で加熱し
てから反応室1往に高温の窒rガスを噴出させ、反応室
1a内の造粒粒子を流動層状態にして還元・窒化反応を
行った。
First, 0.1 part by weight of silicon nitride powder was added to 1 part by weight of silica powder and 0.5 parts by weight of carbon black to prepare a mixed raw material powder, and this mixed raw material powder was granulated to a width of 3IIIR. Next, the powdered particles were fed into the reaction chamber 1a of the reaction vessel 1 from the raw material hopper 14 of the illustrated manufacturing apparatus. How to use: After heating with sakaki 31 from pipe 29 into passage 3, high-temperature nitrogen gas is ejected into reaction chamber 1, and the granulated particles in reaction chamber 1a are brought into a fluidized bed state to perform a reduction/nitriding reaction. went.

この際、反応室内の温度は約1450℃であった。未反
応の窒素ガス、生成したCoガス等の廃カスはガス排気
口13から排出された3゜反応生成物はバルブ20を下
方に抜いて開弁状態にして、取出口15から順次取り出
した。
At this time, the temperature inside the reaction chamber was about 1450°C. Waste residues such as unreacted nitrogen gas and generated Co gas were discharged from the gas exhaust port 13, and the 3° reaction products were taken out from the outlet 15 by pulling the valve 20 downward to open it.

この後、反応生成物を700℃の空気中で加熱処理し、
残留カーボンを燃焼除去して窒化ケイ素粉末の製品を得
た。
After this, the reaction product was heat-treated in air at 700°C,
The residual carbon was removed by combustion to obtain a silicon nitride powder product.

このようにすれば、反応時間を短縮できるとともに、処
理量を増加することができ、生産効率を向上することが
できる。
In this way, the reaction time can be shortened, the throughput can be increased, and production efficiency can be improved.

また、反応が均一に進行づるので、均質1範囲0.2〜
1.4am 、平均粒径0.7μ…であった。すなわち
、微細で粒径範囲が広いため、成形密度が大きく、良好
な焼結性を有するSi3N4粉末が得られた。また、S
ICは検出されなかった。
In addition, since the reaction proceeds uniformly, the homogeneous range is 0.2~
The average particle size was 1.4 am and 0.7 μm. That is, since the powder was fine and had a wide particle size range, Si3N4 powder had a high compaction density and good sinterability. Also, S
No IC was detected.

、Iまた1肥の製造装置は加熱室1aで窒素ガスを加熱
する方式であり、熱源を炉内に設けなくでもよいので、
簡単な構造にてきる。
, I and 1 fertilizer production equipment heats nitrogen gas in the heating chamber 1a, and there is no need to provide a heat source in the furnace.
It has a simple structure.

また反応容器1からの排気ガスの熱を窒素含有非酸化性
ガスの余熱に利用することもできる。
Furthermore, the heat of the exhaust gas from the reaction vessel 1 can also be used as residual heat for the nitrogen-containing non-oxidizing gas.

本発明によれば、以上のように、生産効率を向上し得る
とともに良好な焼結性を有する微細な0層含有率の高い
窒化ケイ素粉末を製造できるのである。
According to the present invention, as described above, it is possible to improve production efficiency and produce a fine silicon nitride powder having a high content of zero layers and having good sinterability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用したベンチスケール流動層方式の
システムを示す説明図、第2図は窒化ケイ素粉末の製造
装置を示す垂直断面図である。 1・・・・・反応容器 2・・・・・チューブ 3・・・・・通路 4・・・・・]イル 特許出願人 工業技術院長 川1)裕部第1図
FIG. 1 is an explanatory diagram showing a bench scale fluidized bed system to which the present invention is applied, and FIG. 2 is a vertical sectional view showing a silicon nitride powder manufacturing apparatus. 1...Reaction vessel 2...Tube 3...Passage 4...] Iru Patent applicant Director of the Agency of Industrial Science and Technology Kawa 1) Yube Figure 1

Claims (1)

【特許請求の範囲】[Claims] カーボン製の反応容器の上部に原料供給用の開放部分を
設けるとともに、反応容器の肉厚部分に反応室を設け、
反応容器の外周を石英ガラス製のチューブで包囲し、反
応容器とチューブとの間に空間を形成して環状の通路を
つくり、その通路を反応容器下部の多孔に連絡し、チュ
ーブの外側でかつ反応室の対応位置に誘導加熱用のコイ
ルを配置し、そのコイルにより反応容器を発熱させて反
応室を加熱すると同詩に窒素含有非酸化性のガスを通路
の途中で加熱し、さらにそのガスが予熱領域で加熱され
てから反応容器の下部の多孔を通って反応容器内の反応
室に供給される構造にしたことを特徴とする窒化ケイ素
粉末の製造装置。
An open part for supplying raw materials is provided at the top of the carbon reaction vessel, and a reaction chamber is provided in the thick part of the reaction vessel.
The outer periphery of the reaction vessel is surrounded by a quartz glass tube, a space is formed between the reaction vessel and the tube to create an annular passage, the passage is connected to the porous hole at the bottom of the reaction vessel, and a An induction heating coil is placed at a corresponding position in the reaction chamber, and the coil generates heat in the reaction vessel to heat the reaction chamber. 1. An apparatus for producing silicon nitride powder, characterized in that the silicon nitride powder is heated in a preheating region and then supplied to a reaction chamber in the reaction container through porous holes in the lower part of the reaction container.
JP10747984A 1984-05-29 1984-05-29 Device for preparing silicon nitride powder Granted JPS60251108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10747984A JPS60251108A (en) 1984-05-29 1984-05-29 Device for preparing silicon nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10747984A JPS60251108A (en) 1984-05-29 1984-05-29 Device for preparing silicon nitride powder

Publications (2)

Publication Number Publication Date
JPS60251108A true JPS60251108A (en) 1985-12-11
JPS6356168B2 JPS6356168B2 (en) 1988-11-07

Family

ID=14460252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10747984A Granted JPS60251108A (en) 1984-05-29 1984-05-29 Device for preparing silicon nitride powder

Country Status (1)

Country Link
JP (1) JPS60251108A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63297205A (en) * 1987-05-29 1988-12-05 Ibiden Co Ltd Production of nitride
US4818511A (en) * 1986-03-08 1989-04-04 Nihon Cement Co., Ltd. Process and apparatus for producing non-oxide compounds
US5662875A (en) * 1992-02-18 1997-09-02 Elf Atochem S. A. Continuous process for the preparation of silicon nitride by carbonitriding and silicon nitride thereby obtained
CN102829613A (en) * 2012-09-19 2012-12-19 邱富仁 Line-frequency induction type dynamic drying machine with four quartz tubes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889941A (en) * 1981-11-25 1983-05-28 Toshiba Ceramics Co Ltd Reaction device
JPS5891012A (en) * 1981-11-25 1983-05-30 Toshiba Ceramics Co Ltd Method and apparatus for manufacturing silicon nitride powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889941A (en) * 1981-11-25 1983-05-28 Toshiba Ceramics Co Ltd Reaction device
JPS5891012A (en) * 1981-11-25 1983-05-30 Toshiba Ceramics Co Ltd Method and apparatus for manufacturing silicon nitride powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4818511A (en) * 1986-03-08 1989-04-04 Nihon Cement Co., Ltd. Process and apparatus for producing non-oxide compounds
JPS63297205A (en) * 1987-05-29 1988-12-05 Ibiden Co Ltd Production of nitride
US5662875A (en) * 1992-02-18 1997-09-02 Elf Atochem S. A. Continuous process for the preparation of silicon nitride by carbonitriding and silicon nitride thereby obtained
CN102829613A (en) * 2012-09-19 2012-12-19 邱富仁 Line-frequency induction type dynamic drying machine with four quartz tubes

Also Published As

Publication number Publication date
JPS6356168B2 (en) 1988-11-07

Similar Documents

Publication Publication Date Title
Durham et al. Carbothermal synthesis of silicon nitride: effect of reaction conditions
CN107651965A (en) A kind of silicon nitride ceramic material and preparation method thereof
CN106744967B (en) A kind of preparation method of silicon carbide powder
JPS5850929B2 (en) Method for manufacturing silicon carbide powder
JPS5891005A (en) Production of silicon nitride powder
JPS63103807A (en) Continuous manufacture of high purity, superfine aluminum nitride by carbon-nitration of alumina
JPS60251108A (en) Device for preparing silicon nitride powder
US5164138A (en) Material comprising silicon and process for its manufacture
Sheldon et al. The Nitridation of High Purity, Laser‐Synthesized Silicon Powder to Form Reaction Bonded Silicon Nitride
JPS5891012A (en) Method and apparatus for manufacturing silicon nitride powder
JPS6016387B2 (en) Method for manufacturing heat-resistant materials
JP2757324B2 (en) Continuous production method of aluminum nitride by carbonitriding alumina
JPS6197110A (en) Manufacture of silicon nitride having high alpha-phase content
JPS5891011A (en) Manufacture of silicon nitride powder with high alpha-phase content
JPS605550B2 (en) Manufacturing method of silicon carbide sintered body
JPS616109A (en) Manufacture of sic
JPS63147811A (en) Production of fine sic powder
JP3906354B2 (en) Method for producing high surface area silicon carbide ceramic porous body
JPS5823328B2 (en) Hakushiyoku Shirikafun Matsuno Seizouhou
JPS6048446B2 (en) Method for manufacturing silicon nitride powder
JPS5950617B2 (en) Method for producing silicon nitride-silicon carbide composition
JPS6197109A (en) Manufacture of vanadium nitride
JPS6411561B2 (en)
JPS6146403B2 (en)
JPS59169912A (en) Production of silicon nitride powder

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term