JPS60247970A - Bi-directional semiconductor device - Google Patents

Bi-directional semiconductor device

Info

Publication number
JPS60247970A
JPS60247970A JP10262484A JP10262484A JPS60247970A JP S60247970 A JPS60247970 A JP S60247970A JP 10262484 A JP10262484 A JP 10262484A JP 10262484 A JP10262484 A JP 10262484A JP S60247970 A JPS60247970 A JP S60247970A
Authority
JP
Japan
Prior art keywords
surface layer
layer
main
region
main current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10262484A
Other languages
Japanese (ja)
Other versions
JPH0691247B2 (en
Inventor
Shigenori Yakushiji
薬師寺 茂則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59102624A priority Critical patent/JPH0691247B2/en
Publication of JPS60247970A publication Critical patent/JPS60247970A/en
Publication of JPH0691247B2 publication Critical patent/JPH0691247B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/747Bidirectional devices, e.g. triacs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)

Abstract

PURPOSE:To improve ignition characteristics by forming one or more of regions, in which electrons are injected initially to each mode of a TRIAC, and arranging the regions where nearest to the main current conduction regions of each mode. CONSTITUTION:A first intermediate layer 5 adjacent to each of a first surface layer 2, a second surface layer 16 and a third surface layer 4 in a semiconductor base body having five layer structure is formed. A first main electrode 1, a third electrode 15 and a gate electrode 3 are shaped brought into contact with the first intermediate layer 5. The base body is provided with a fourth surface layer 8, a second intermediate layer 7 and a second main electrode, and the fourth surface layer 8 is formed in structure in which at least one part thereof is overlapped on each of the first, second and third surface layers 2, 16, 4 on viewing from a plane. The second surface layer 16 is disposed while surrounding the third surface layer 4, and opening sections 17, 18 are shaped to each of the second and third surface layers so that regions in which carriers are injected initially are brought near to main current conduction regions.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は双方向性半導体装置のうち導電形が交互に異な
る5層構造を持つ交流用スイッチング半導体装置(以下
、トライアックと略称する)に関するもので、特に点弧
特性の改善されたゲート構造に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an alternating current switching semiconductor device (hereinafter abbreviated as TRIAC) having a five-layer structure with alternating conductivity types among bidirectional semiconductor devices. In particular, it relates to a gate structure with improved ignition characteristics.

[発明の技術的背景とその問題点] トライアックは正又は負のゲート信号により交流電流を
双方向とも制御できる半導体スイッチング素子である。
[Technical background of the invention and its problems] A triac is a semiconductor switching element that can control alternating current in both directions by a positive or negative gate signal.

 第4図は従来のトライアックの平面図で、同図の折れ
線分X−Xの断面図を第3図に示す。 その断面はn’
−p−n−p−n の5層構造からなる。 1は第1主
電極T、(T、と略称、以下同じ)であり、2はT1と
接続するnエミッタNE+、9は第2主電極T2.8は
T2と接続するnエミッタNε2.3はゲート電極G、
4はGと接続するnエミッタN EC1である。 5,
6.7はそれぞれpベースP8、nベースNaおよびp
エミッタPEである。 このトライアックの点弧モード
はT、−T2間のバイアス方向く正負2方向)と、T、
−G間のバイアス方向(2方向)の組合せで4通りの型
が存在する。 すなわち工Φモード(T、に対しT2に
正のバイアスを印加し同時にT、に対しGに正のバイア
スを印加する場合)、工θモード(T、に対しT2正、
G負)、■Φモード(T、に対しT2負、G正)、Id
leモード(T、に対しT2負、G負)の4つのモード
が存在する。 ■モードは電ff1T2をアノード、電
極下、をカソードとするPEN5P日NE+の四層構造
のサイリスタ部分がターンオンする場合であり、■モー
ドは電極T、をアノード、電極T2をカソードとするP
日N5PENE2の四層構造のサイリスタ部分がターン
オンする場合である。
FIG. 4 is a plan view of a conventional triac, and FIG. 3 is a sectional view taken along a line segment XX in the same figure. Its cross section is n'
It consists of a five-layer structure of -p-n-p-n. 1 is the first main electrode T, (abbreviated as T, hereinafter the same), 2 is the n emitter NE+ connected to T1, 9 is the second main electrode T2.8 is the n emitter Nε2.3 connected to T2 gate electrode G,
4 is an n emitter NEC1 connected to G. 5,
6.7 are respectively p base P8, n base Na and p
It is an emitter PE. The firing mode of this triac is the bias direction between T and -T2 (positive and negative directions), and T,
There are four types of combinations of bias directions (two directions) between -G. In other words, the working Φ mode (when applying a positive bias to T2 with respect to T, and at the same time applying a positive bias to G with respect to T), the working θ mode (when applying a positive bias to T2 with respect to T,
G negative), ■Φ mode (T2 negative, G positive for T), Id
There are four modes: le mode (T2 negative and G negative for T). ■mode is when the thyristor part of the four-layer structure of PEN5PNE+ is turned on, with the electrode ff1T2 as the anode and the lower electrode as the cathode;
This is the case when the thyristor portion of the four-layer structure of N5PENE2 is turned on.

第5図(a )および(b )は各モードにおいて初期
の電子注入が発生する領域を説明するための平面図であ
るが図面を見やずくするためNε2の記載は省略されで
いる。 第5図(a)の場合、ゲートGにT1に対し正
電圧を印加すると同図中の矢印の向きに(イ)から(ロ
)にゲート電流が流れる。 このゲート電流路は2のN
5.ずなわち1−1電極に接するnエミッタ側に片寄っ
ていて、Nε1と4のNEGにはさまれたpベースPs
領域に電位降下が生じている。
FIGS. 5(a) and 5(b) are plan views for explaining the region where initial electron injection occurs in each mode, but the description of Nε2 is omitted to make the drawings difficult to read. In the case of FIG. 5(a), when a positive voltage is applied to the gate G with respect to T1, the gate current flows from (a) to (b) in the direction of the arrow in the figure. This gate current path is 2N
5. In other words, the p base Ps is biased toward the n emitter side in contact with the 1-1 electrode, and is sandwiched between NEG of Nε1 and 4.
There is a potential drop in the area.

これによって同図のに示される領域が最初に順バイアス
され、電子の初期注入を行なう部分Cある。 この初期
注入領域のは■Φモード、■Φモードにおいて寄与する
。 すなわち工■モードにおいてはこれによりPEN8
NE、のサイリスタ構造部がターンオンし、10で示す
主電流通電領域■が形成される(斜線で示す領域)。 
■Φモードの場合はこの電子の注入によってP8NBP
ENE2のサイリスタ構造部がターンオンし、11で示
す主電流通電領域■が形成される。 ■Φモードの場合
には初期注入領域のと主電流通電領域■とが近接しター
ンオン過程も通常のサイリスタと同様であるため容易に
ターンオンがおこなわれる。
As a result, the region shown in the figure is first forward biased, and there is a portion C where electrons are initially injected. This initial implantation region contributes to ■Φ mode and ■Φ mode. In other words, in the engineering mode, PEN8
The thyristor structure section NE is turned on, and a main current carrying region (2) indicated by 10 is formed (the region indicated by diagonal lines).
■In the case of Φ mode, P8NBP is created by the injection of electrons.
The thyristor structure of ENE2 is turned on, and a main current carrying region (2) indicated by 11 is formed. (2) In the case of Φ mode, the initial injection region and the main current carrying region (2) are close to each other, and the turn-on process is similar to that of a normal thyristor, so turn-on is easily performed.

■Φモードの場合にはこの領域のが主電流通電領域■か
ら隔たっているため点弧領域が移転するのに時間を要し
、その過程も複雑なため点弧特性が悪くなる。
(2) In the case of the Φ mode, since this region is separated from the main current carrying region (2), it takes time for the ignition region to move, and the process is complicated, resulting in poor ignition characteristics.

第5図(b )に示すゲート電極3に角型)[を印加し
た場合を考えると同図に示す矢印の方向に(0)からく
イ)にゲー1へ電流が流れる。 この電流により生じた
電位分布が同図■に示す領域に最初の電子注入領域を生
じさせる。 この初期注入領域■はI<E)モードと■
Oモードにおいて寄与する。 この領域■は■○モード
にとっては主電流通電領域■に近い領域のため比較的容
易にP8NBPENE2のサイリスタ構造部をターンオ
ンさせることができる。 また■○モードの場合には初
期注入領域が主電流通電領域1よりかなり隔たっている
が、N日Ps接合が逆バイアスされその点弧過程が■モ
ードに比べて■モードは単純なためほとんど影響を受け
ていない。
If we consider the case where a rectangular ) is applied to the gate electrode 3 shown in FIG. 5(b), a current flows to the gate 1 in the direction of the arrow shown in the figure (0) to ku). The potential distribution generated by this current generates the first electron injection region in the region shown in (3) in the same figure. This initial injection region ■ is the I<E) mode and ■
Contributes in O mode. Since this region (2) is close to the main current carrying region (2) for the (2) mode, the thyristor structure of P8NBPENE2 can be turned on relatively easily. In addition, in the case of the ■○ mode, the initial injection region is quite far away from the main current carrying region 1, but since the N-Ps junction is reverse biased and the ignition process is simpler in the ■ mode than in the ■ mode, it has little effect. I haven't received it.

トライアックは交流スイッチング素子として用いられ−
Cいるが、その場合に使われる点弧上−ドは先に述べた
点弧モードのうち■■モードをのぞく 3モードのうち
の2つを組合せ−Cいる。 ■■モードを使用しない理
由は前述のように点弧特性が悪く、点弧に必要なゲート
電流が他の3つのモードに比へ非常に人ぎいためで・あ
る。 −との点弧の様子を述べると、第5図においてゲ
ート電極Gから主電極T1に流れるゲート電流によって
順バイアスされたNETからPBに電子が注入される(
第5図(a)の領域の)。
TRIAC is used as an AC switching element.
However, in that case, the ignition mode used is a combination of two of the three ignition modes except for the above-mentioned ignition modes. The reason why the ■■ mode is not used is that, as mentioned above, the ignition characteristics are poor and the gate current required for ignition is much higher than in the other three modes. - To explain how the ignition occurs, electrons are injected from NET to PB, which is forward biased by the gate current flowing from the gate electrode G to the main electrode T1 (
(in the region of FIG. 5(a)).

第3図においてこの電子が6のnベースN[]に蓄積さ
れN8の電位を下げる結果2日よりNBへボールの注入
が起きる。 このホールはNBを通り7のpエミッタP
、から9のT2電極へと流れるがこのときPE内で電位
降下を生じ、これがN E2からの電子の注入を促進し
最終的に主電流通電領域■が形成される。 このような
過程で■Φモードは点弧にいたるのであるがゲート0部
分のnエミッタNEGとP8とのパターン配置及びNE
TとNE2との部分的型なりがこの点弧特性の優劣を左
右づる。 このうらグー1〜のNEGのパターン配置に
よってグー1へ電流路を制限してNETからの電子注入
が効率よく起きるようにツることが■Φモードの特性改
善に寄与すると考えられる。 従来のグー1−パターン
においてはゲートGから1゛1電極へのゲート電流路は
1系統であり、点弧し一部によっては初期の電子の注入
が起きる場所と最終的に導通する主電流通電領域とが隔
っている場合がある。 ■■モードはまさにこの状態に
なっており、点弧特性が悪くなる一因と考えられる。
In FIG. 3, these electrons are accumulated in the n base N[] of 6 and as a result of lowering the potential of N8, balls are injected into NB from the 2nd day. This hole passes through NB and the p emitter P of 7
, to the T2 electrode of 9. At this time, a potential drop occurs within PE, which promotes the injection of electrons from NE2, and finally the main current carrying region (2) is formed. In this process, the ■Φ mode reaches ignition, but the pattern arrangement of the n emitter NEG and P8 in the gate 0 part and the NE
The partial shape of T and NE2 determines the quality of this ignition characteristic. It is considered that the pattern arrangement of the NEGs in the back groups 1 to 1 limits the current path to the groups 1 so that electron injection from the NET occurs efficiently, which contributes to improving the characteristics of the ■Φ mode. In the conventional Goo 1-pattern, there is only one gate current path from the gate G to the 1-1 electrode, and the main current conduction is ignited and eventually conducts with the place where the initial electron injection occurs depending on the part. The area may be separated. ■■ mode is exactly in this state, which is considered to be one of the reasons why the ignition characteristics deteriorate.

以上のごとく初期の電子の注入を起こ4領域が点弧モー
ドによっては非常に不適当な位置にあることが、従来の
1ヘライアツクの欠点であり問題点である。
As described above, the drawback and problem of the conventional one-helix fire is that the initial electron injection occurs and the four regions are located at very inappropriate positions depending on the ignition mode.

[発明の目的] 本発明は、4つの点弧モードを持つ1〜ライアツクのう
ら従来はその点弧特性が他の3つのモードに比べ非常に
悪かった■Φモードを改善づるとともに4つのモードす
べてを自由に使用でさるようにすることを目的とする。
[Purpose of the invention] The present invention improves the Φ mode, which has four ignition modes, 1 to 2, and the Φ mode, whose ignition characteristics were conventionally very bad compared to the other three modes. The purpose is to make it freely available for use.

[発明の概要1 本発明は1へライアツクの各モードに対し、初期の電子
注入の起さる領域を1箇所又は2箇所以上とし、この初
期注入領域を各モードの主電流通電領域に最も近い位置
に配置することにより問題点を解決しようとづるもので
ある。
[Summary of the Invention 1 The present invention sets the region where initial electron injection occurs at one or more locations for each mode of the 1. This is an attempt to solve the problem by placing the

すなわち本発明は(イ)導電形が交互に異なるn−p 
−n−p−nの5層構造を持つ半導体基体と、(ロ)該
基体の一方の表面側にあるn形のNEG(第1表面層)
、NET(第2表面層)およびNEG(第3表面層)と
、(ハ)NE5、N E3およびNEGのぞれぞれに隣
接する第1中間層であってその一部が表面に露出し”C
上記の3つのnエミッタを互に分離するp形のベース層
Psと、(ニ)NET、NE3およびNC6どそれらに
隣接するPBの表面露出面の各々とに接触して設けられ
る第1主電極王1、第3電極T−3J3よびゲート電極
Gと、(ホ)該基体の他の表面側にあるn形のNE2(
第4表面層)と、(へ)NE2に隣接しその一部が表面
に露出するp形の第2中間層のPEと、(ト)N[2と
PEの露出面とに接触して設けられる第2主電8i丁、
とを具備し、かつNE2が平面からみてNET、Nap
およびN EGの各層に少なくとも一部分において重な
る構造のトライアックであって、 (a)NzxがN EGをとり囲んC′配装され、(b
)NE3とN EGとの各々には、初期の電子注入が起
きる領域を主電流通電領域にできるだけ近づけるように
1又は複数の開1」部を設けることを特徴とづ−るトラ
イアックである。
That is, the present invention provides (a) n-p conductivity types that are alternately different;
- a semiconductor substrate having a five-layer structure of n-p-n; (b) an n-type NEG (first surface layer) on one surface side of the substrate;
, NET (second surface layer) and NEG (third surface layer), and (c) a first intermediate layer adjacent to each of NE5, NE3 and NEG, a part of which is exposed on the surface. "C.
A first main electrode provided in contact with a p-type base layer Ps that separates the three n-emitters from each other, and each of the exposed surfaces of the PB adjacent to (d)NET, NE3, and NC6. King 1, third electrode T-3J3, gate electrode G, and (e) n-type NE2 on the other surface side of the substrate.
(f) PE of a p-type second intermediate layer adjacent to NE2 and a part of which is exposed on the surface; and (g) N[2 provided in contact with the exposed surface of PE. The second main power station 8i-cho,
and NE2 is NET, Nap when viewed from the plane.
and a triac having a structure that overlaps each layer of NEG at least in part, (a) Nzx is arranged surrounding NEG, and (b)
) This triac is characterized in that each of NE3 and NEG is provided with one or more open portions so that the region where initial electron injection occurs is as close as possible to the main current carrying region.

初期の電子注入が起ぎる領域とは、N1−3の開口部に
あるT3電極とPsとの接触部分に対向するPBNEG
接合領域又はNEGの間口部にあるゲート電極GとP8
との接触部分に対向づるPDNE3接合領域をいう。 
また主電流通電領域はT1゜T2両電極に挾まれたPE
 NB Pa NE、の四層でサイリスタ構造を形成す
る第1主電流通電領域と、T、、T、両電極に挾まれた
PI4NB PE NE2の四層でサイリスク構造を形
成する第2主電流通電領域である。 更に付言すれば第
1主電流通電領域とは表面からみてT1電極、NET層
、P8層、Ne層、11層およびT2電極の6つが重な
る幾何学的領域をいう。 実際最終的に主電流の通電す
る領域は、電極および各層の端効果により上記幾何学的
領域とは完全には一致しない。
The region where initial electron injection occurs is the PBNEG that faces the contact area between the T3 electrode and Ps in the opening of N1-3.
Gate electrode G and P8 in the junction region or the frontage of NEG
This refers to the PDNE3 junction region facing the contact area with.
In addition, the main current carrying area is the PE sandwiched between the T1 and T2 electrodes.
A first main current carrying region forms a thyristor structure with four layers of NB Pa NE, and a second main current carrying region forms a thyristor structure with four layers of PI4NB PE NE2 sandwiched between T, T, and both electrodes. It is. In addition, the first main current carrying region is a geometric region in which six electrodes, the T1 electrode, the NET layer, the P8 layer, the Ne layer, the 11th layer, and the T2 electrode, overlap when viewed from the surface. In fact, the area where the main current finally flows does not completely match the above-mentioned geometric area due to the end effects of the electrodes and each layer.

上記発明の実施態様としてNF2及び’NEGに設けら
れる開口部の位置をより具体化したものは次の通りであ
る。 すなわら半導体基体の表面において、Nrlの第
1主電流通電領域工と表面に露出するPHの第2主電流
通電領域■とにはさまれる細長い領域を2等分する等分
画線に関し、開口部の位置は、(a)開口部が1個のと
きは等分画線上にあって第1および第2主電流通電領域
のいずれにも近い領域に配置し、(b)開口部が複数個
のときは、そのうちの少なくとも2個は等分画線に関し
互に反対側にあって1個は第1主電流通電領域に近い領
域に他の1個は第2主電流通電領域に近い領域に配置す
る。 各モードにおける点弧特性のバランス及び生産性
を配慮したときの好ましい実施態様として開口部の位置
は、開口部が1個の場合は、等分画線上にあってこの直
線によって対称に等分されかつ第1.第2主電流通電領
域のいずれにも近い領域に、また開口部が複数個のとき
はそのうちの少なくとも2個は等分画線に対称な位置で
あって第1および第2主電流通電領域のいずれかに近い
領域に配置される。
As an embodiment of the above invention, the positions of the openings provided in NF2 and 'NEG are more specific as follows. In other words, on the surface of the semiconductor substrate, regarding the dividing line that divides into two equal parts the elongated region sandwiched between the first main current carrying region of Nrl and the second main current carrying region of PH exposed on the surface, The position of the opening is (a) when there is one opening, it is located on the equally dividing line and close to both the first and second main current energizing areas, and (b) when there is multiple opening , at least two of them are on opposite sides of the equally dividing line, one in the area close to the first main current energized area and the other one in the area close to the second main current energized area. Place it in In a preferred embodiment when considering the balance of ignition characteristics in each mode and productivity, if there is only one opening, the position of the opening is on the equal division line and is symmetrically divided into equal parts by this straight line. And 1st. In an area close to any of the second main current carrying areas, or if there are multiple openings, at least two of them are located symmetrically to the equal dividing line and between the first and second main current carrying areas. placed in an area close to either.

[発明の実施例] 第1図(a )および(b)は特許請求の範囲第3項に
記載される本発明によるトライアックの実施例の第1主
面側からみた平面図である。 図面をみやすくするため
、同図(a)はN E2層8、また同図(b)は第1主
電極1、第3電極15およびゲート電極3の記載を省略
しである。 同図(b)に示すようにN、2(第4表面
層)8はNt+(第1表面層)2の一部とNF2(第2
表面層)16とN、6(第3表面層)4に平面からみて
重なっている。 またN E3はN ECをとり囲んで
配置され、NF2は1つの開口部18およびNECは2
つの開口部17を持っている。 第2図(a)および(
b)は本発明のトライアックの初期の電子注入領域を説
明するための平面図である。 同図(a ”)で斜線で
示す領域10は第1主電流通電領域(エモードで動作)
、領域11は第2主電流通電領域(■モードで動作)を
示す。 直線Y−Yは領域10と領域11とにはさまれ
る細長い部分を三等分する等分画線である。 同図(a
 )は第1主電極(T、)1に対しゲート電極(G)3
に正電圧を印加した場合で、2つのゲート開口部17の
それぞれから流出したゲート電流は同図に示す如くN 
EG 4およびNE316によって制限されるゲート電
流路を流れ、N E3の開口部18に接づる第3電極1
5に集められる。 この電流によりゲート電流路の各部
はゲート開口部17から18に沿って降下する電位分布
が生じ、これと接するNE3P8接合の各部を順バイア
スする。 そのうち最も大きく順バイアスされる領域は
、開口部17に対向するN E3 P s接合部分であ
る。 したがって同図に示す領域◎において最初の電子
の注入が起きる。 また等分画線Y−Yに関し対称に配
置された他の開口部に対向するN E3P 日接合領域
◎−においても同様の電子注入が起きる。 工Φモード
を点弧させるためには主電流通電領域■に近い領域◎の
注入電子により、また■Φモードを点弧させるためには
主電流通電領域■に近い領域◎′の注入電子を利用する
。 第2図(b)は第1主電極(T、>1に対しゲート
電極(G)3に負電圧を印加した場合で、ゲート電流は
同図に示す矢印の如<Nt316の開口部18と接する
第3電極15の部分から2方向に分流してN EG 4
の2つの開1]部17にそれぞれ流入づる。 このゲー
ト電流によりN EG 4とNE316に囲まれたゲー
ト電流路のPs領領域は開口部18より開口部17に向
かう電位降下が生じ、これと接するPBNEG接合の各
部を順バイアスする。 その中でも特にバイアスの強い
領域は開口部18に対向するPBNEG部分である。 
したがって同図に示す領域■から最初の電子の注入が起
きる。 この場合注入領域は等分直線Y−Y上にあって
2つの主電流通電領域のいずれにも近い位置にある。 
このため■○モードど■○モードはこの領域0の注入電
子により対称的に点弧がはじまる。
[Embodiment of the Invention] FIGS. 1(a) and 1(b) are plan views of an embodiment of a triac according to the present invention described in claim 3, viewed from the first principal surface side. In order to make the drawings easier to read, the NE2 layer 8 is omitted in FIG. As shown in Figure (b), N2 (fourth surface layer) 8 is a part of Nt+ (first surface layer) 2 and NF2 (second surface layer).
Surface layer) 16 and N, 6 (third surface layer) overlap with 4 when viewed from the plane. Also, N E3 is arranged surrounding N EC, NF2 has one opening 18 and NEC has two openings.
It has two openings 17. Figure 2 (a) and (
b) is a plan view for explaining the initial electron injection region of the triac of the present invention. The shaded area 10 in the same figure (a'') is the first main current energization area (operated in emode mode).
, region 11 indicates the second main current energization region (operating in ■mode). The straight line Y-Y is an equally dividing line that divides the elongated portion sandwiched between the regions 10 and 11 into three equal parts. The same figure (a
) is the gate electrode (G)3 for the first main electrode (T, )1.
When a positive voltage is applied to , the gate current flowing out from each of the two gate openings 17 is N as shown in the figure
The third electrode 1 flows through a gate current path limited by EG4 and NE316 and is in contact with the opening 18 of NE3.
It is collected in 5. This current causes a potential distribution in each part of the gate current path to drop along the gate openings 17 to 18, forward biasing each part of the NE3P8 junction in contact with this. The region that is most forward biased is the N E3 P s junction portion facing the opening 17 . Therefore, the first injection of electrons occurs in the region ◎ shown in the figure. Similar electron injection also occurs in the NE3P junction region ◎- which faces other openings arranged symmetrically with respect to the dividing line Y-Y. To ignite the Φ mode, use the injected electrons in the region ◎ close to the main current carrying region ■, and to ignite the ■Φ mode, use the injected electrons in the region ◎′ close to the main current carrying region ■. do. FIG. 2(b) shows the case where a negative voltage is applied to the gate electrode (G) 3 for the first main electrode (T, The flow is divided into two directions from the part of the third electrode 15 in contact with N EG 4
The water flows into the two openings 1] section 17, respectively. This gate current causes a potential drop in the Ps region of the gate current path surrounded by N EG 4 and NE 316 from the opening 18 toward the opening 17, and forward biases each part of the PBNEG junction in contact with this. Among them, the region where the bias is particularly strong is the PBNEG portion facing the opening 18.
Therefore, the first injection of electrons occurs from the region (3) shown in the figure. In this case, the injection region is located on the equally dividing straight line Y-Y and close to both of the two main current carrying regions.
Therefore, the ■○ mode and ■○ mode start ignition symmetrically due to the injected electrons in this region 0.

上記の実施例より明らかなように初期の電子注入の起き
る領域は、ゲート電位が■モードの場合には電位の高い
NFGの開口部(ゲート電流の流出端)に対向するPB
NE3接合部であり、ゲート電位が○モードの場合には
電位の高いN E3の開口部〈ゲート電流の流出端)に
対向(るP日NEG接合部である。 NE316はNl
:12の一部であるが、Pa5の領域19により分離さ
せた理由は主とし′C主電流通電領域■に近接するNE
316の部分と主電流通電領域工に近接するNE3部分
とが各々P領域とシャン]〜される効果を同レベルにし
て製造上の簡便性を増すことにある。 N E3はP8
によりNETと分離されているが、第1主電極1と第3
電極15とはPaの領域19を介して接続され近似的に
同電位にあると考えられる。
As is clear from the above example, when the gate potential is in the ■ mode, the region where the initial electron injection occurs is the PB opposite to the opening of the NFG (the outflow end of the gate current), which has a high potential.
It is an NE3 junction, and when the gate potential is in the ○ mode, it is a P day NEG junction that faces the opening of NE3 (outflow end of gate current), which has a high potential.
:12, but the reason for separating it by region 19 of Pa5 is mainly because NE close to the main current carrying region
The purpose is to increase the simplicity of manufacturing by making the effect of the area 316 and the area NE3 close to the main current carrying area the same as that of the area P, respectively. N E3 is P8
NET, but the first main electrode 1 and the third
It is connected to the electrode 15 through a region 19 of Pa, and is considered to be at approximately the same potential.

本実施例ではNE3とNEGの二重パターンを等分点線
Y−,Yに関し対称に形成したが、本発明はこれに限定
されない。 主電流通電領域■および■の形状が異なり
上記等分直線をきめることができない場合には、例えば
N ECに2つの開口部を設けその1つは領域工に他の
1つは領域■にそれぞれ最も近い位置に配置する(グー
1〜正の■モードで機能する)。 NE3には1つの開
口部を設(プ、領域工および■のいずれにも近い位置に
配置する。
In this embodiment, the double pattern of NE3 and NEG is formed symmetrically with respect to the equally dividing dotted lines Y- and Y, but the present invention is not limited to this. If the shapes of the main current carrying areas ■ and ■ are different and the above-mentioned equally dividing line cannot be determined, for example, two openings may be provided in the NEC, one in the area and the other in the area. Place it in the closest position (functions in Goo 1 to Positive ■ mode). One opening is provided in NE3 (placed at a position close to all of the openings, area work, and ■).

この場合2系統のゲート電流路が形成されるが、点弧電
流のバランスはN E3の開口部よりN50.の開口部
にいたるゲート電流路の抵抗が互に等しくなるようにし
く例えば該電流路の幅を調整しC)、かつN’ EGの
開口部にあるグー1へ電極からこれに対向するNE3ま
ぐのP日の拡がり抵抗が互に等しくなるように(例えば
この部分を等しい形状とする)すればよい。
In this case, two gate current paths are formed, but the balance of the ignition current is from the opening of NE3 to the opening of N50. For example, adjust the width of the current paths so that the resistances of the gate current paths leading to the openings of It is only necessary to make the spreading resistances of the P days of the two parts equal to each other (for example, make these parts have the same shape).

[発明の効果1 本発明によりトライアックの初期の電子注入領域をNE
CとNE3の開口部の位置により意図的に変えることが
可能となる。 従来のトライアックは、■Φモードお【
プる初期電子注入領域と主電流通電領域■とが距たって
あり点弧特性を悪くしていたが、本発明により上記円領
域を近接して設(Jることが可能となり点弧特性も改善
された。 従来のトライアックでは3つのt−ドしか使
用されなかったものが4つの七−ドすべてを使用できる
ようになった。
[Effect of the invention 1 The present invention allows the initial electron injection region of the triac to be
It is possible to intentionally change the positions of the openings of C and NE3. Conventional triacs operate in ■Φ mode and [
The initial electron injection region and the main current carrying region were far apart, which worsened the ignition characteristics, but the present invention makes it possible to place the above circular regions close to each other, improving the ignition characteristics. Previous triacs used only three t-does, but now all four t-does can be used.

またグー(・のN領域のパターンを対称的に配置し、グ
ー1〜電流路も対称に設定することでゲートパターンの
非対称性による注入領域の発生の非対称性が解消される
。 このことは結果的に点弧特性におけるゲート電流の
モード別のアンバランスを低減し、トライアックを使用
する電気回路の設計自由度を増加する。
In addition, by symmetrically arranging the pattern of the N region of Goo (・) and setting the current path from Goo 1 symmetrically, the asymmetry in the generation of the injection region due to the asymmetry of the gate pattern is eliminated. This reduces the mode-specific imbalance of gate current in the ignition characteristics and increases the degree of freedom in designing electrical circuits using triacs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a )および(b )は本発明による1〜ライ
アツクの平面部分図、第2図(a)および(b)は本発
明によるトライアックの初期の電子注入領域を説明づる
ための平面図、第3および第4図は従来のトライアック
のそれぞれ断面図および平面図、第5図(a)および(
b)は従来のトライアックの初期の電子注入領域を説明
するための平面図である。 1・・・第1主電極(T1)、 2・・・第1表面層(
NE、)、 3・・・ゲート電極(G)、 4・・・第
3表面層(N EG )、 5・・・第1中間層(P8
)、7・・・第2中間層(P[)、 8・・・第4表面
層(N E、)、 9・・・第2主電極(]−3)、 
10・・・第1主電流通電領域(I>、 11・・・第
2主電流通電領域(III)、 15・・・第3電tf
i(T、)、16・・・第2表面層(N [3)、 1
7.18・・・開口部、 Y−Y・・・等分点線。
FIGS. 1(a) and (b) are partial plan views of the TRIAC according to the present invention, and FIGS. 2(a) and (b) are plan views for explaining the initial electron injection region of the TRIAC according to the present invention. , 3 and 4 are a sectional view and a plan view, respectively, of a conventional triac, and FIGS. 5(a) and (
b) is a plan view for explaining the initial electron injection region of a conventional triac. 1... First main electrode (T1), 2... First surface layer (
NE, ), 3... Gate electrode (G), 4... Third surface layer (NEG), 5... First intermediate layer (P8
), 7... Second intermediate layer (P[), 8... Fourth surface layer (NE,), 9... Second main electrode (]-3),
10... First main current carrying area (I>, 11... Second main current carrying area (III), 15... Third electric current tf
i(T,), 16... second surface layer (N [3), 1
7.18... Opening, Y-Y... Equally dividing dotted line.

Claims (1)

【特許請求の範囲】 1 導電形が交互に異なる5層構造を持つ半導体基体と
、該基体の第1主面側の第1導電形の第1表面層、第2
表面層および第3表面層と、上記第1、第2および第3
表面層のそれぞれに隣接する第1中間層であってその一
部が第1主面に露出して上記3つの表面層を互に分離す
る第2導電形の第1中間層と、第1、第2および第3表
面層と各表面層に隣接する第1中間層露出面の各々とに
接触して設けられる第1主電極、第3N極およびゲート
電極と、該基体の第2主面側の第1導電形の第4表面層
と、第4表面層に隣接しその一部が第2主面に露出する
第2導電形の第2中間層と、第4表面層と第2中間層露
出面とに接触して設けられる第2主電極とを具備し、か
つ第4表面層が平面からみて第1、第2および第3表面
層の各々に少なくとも一部分において重なる構造の双方
向性半導体装置であって、(a ) 第2表面層が第3
表面層をとり囲んで配置され、 (b) 第2表面層と第3表面層の各々には、初期のキ
ャリア注入が起きる領域を主電流通電領域にできるだけ
近づけるように1又は複数の開口部を設けることを特徴
とづる双方向性半導体装置。 2 開口部の位置が、第1表面層の第1主電流通電領域
と第7中間層露出面の第2主電流通電領域とにはさまれ
る領域をほぼ2等分づる等分直線に関し、 (a> 開口部が1個のときは、等分画線上にあって上
記第1および第2主電流通電領域のいずれにも近いfr
4viに、 (b ’) 開口部が複数個のときは、イのうちの少な
くとも2個は該直線に関し互に反対側にあって上記第1
および第2主電流通電領域のいずれかに近い領域に配置
されている特許請求の範囲第1項記載の双方向性半導体
装置。 3 開口部の位置が等分画線に対し対称に配置されてい
る特許請求の範囲第2項記載の双方向性半導体装置。
[Claims] 1. A semiconductor substrate having a five-layer structure with alternating conductivity types, a first surface layer of the first conductivity type on the first main surface side of the substrate, and a second surface layer of the first conductivity type on the first main surface side of the substrate.
a surface layer and a third surface layer; the first, second and third surface layers;
a first intermediate layer of a second conductivity type adjacent to each of the surface layers, a portion of which is exposed on the first main surface to separate the three surface layers from each other; A first main electrode, a third N-pole, and a gate electrode provided in contact with the second and third surface layers and the exposed surface of the first intermediate layer adjacent to each surface layer, and a second main surface side of the base body. a fourth surface layer of a first conductivity type; a second intermediate layer of a second conductivity type adjacent to the fourth surface layer and partially exposed on the second main surface; a fourth surface layer and a second intermediate layer; a second main electrode provided in contact with the exposed surface, and a bidirectional semiconductor having a structure in which the fourth surface layer overlaps at least a portion of each of the first, second, and third surface layers when viewed from above. A device comprising: (a) a second surface layer comprising a third surface layer;
(b) each of the second surface layer and the third surface layer has one or more openings so as to bring the region where initial carrier injection occurs as close as possible to the main current carrying region; A bidirectional semiconductor device characterized by: 2. With respect to an equally dividing straight line that approximately bisects the area where the opening is sandwiched between the first main current carrying area of the first surface layer and the second main current carrying area of the exposed surface of the seventh intermediate layer, ( a> When there is one opening, fr located on the equal division line and close to both the first and second main current energizing regions.
4vi, (b') When there are a plurality of openings, at least two of the openings a are on opposite sides of the straight line and are located on the first side.
2. The bidirectional semiconductor device according to claim 1, wherein the bidirectional semiconductor device is disposed in a region close to either of the main current carrying region and the second main current carrying region. 3. The bidirectional semiconductor device according to claim 2, wherein the openings are arranged symmetrically with respect to the dividing line.
JP59102624A 1984-05-23 1984-05-23 Bidirectional semiconductor device Expired - Lifetime JPH0691247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59102624A JPH0691247B2 (en) 1984-05-23 1984-05-23 Bidirectional semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59102624A JPH0691247B2 (en) 1984-05-23 1984-05-23 Bidirectional semiconductor device

Publications (2)

Publication Number Publication Date
JPS60247970A true JPS60247970A (en) 1985-12-07
JPH0691247B2 JPH0691247B2 (en) 1994-11-14

Family

ID=14332392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59102624A Expired - Lifetime JPH0691247B2 (en) 1984-05-23 1984-05-23 Bidirectional semiconductor device

Country Status (1)

Country Link
JP (1) JPH0691247B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812893A (en) * 1985-07-30 1989-03-14 Sgs-Thomson Microelectronics S.A. Triac desensitized with respect to re-striking risks on switching across a reactive load
JPH0214574A (en) * 1988-07-01 1990-01-18 Sanken Electric Co Ltd Bi-directional thyristor
JPH0379077A (en) * 1989-08-22 1991-04-04 Sanken Electric Co Ltd Bidirectional thyristor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5405029B2 (en) * 2008-02-26 2014-02-05 株式会社三社電機製作所 TRIAC

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5593263A (en) * 1979-01-10 1980-07-15 Hitachi Ltd Bidirectional semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5593263A (en) * 1979-01-10 1980-07-15 Hitachi Ltd Bidirectional semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812893A (en) * 1985-07-30 1989-03-14 Sgs-Thomson Microelectronics S.A. Triac desensitized with respect to re-striking risks on switching across a reactive load
JPH0214574A (en) * 1988-07-01 1990-01-18 Sanken Electric Co Ltd Bi-directional thyristor
JPH0379077A (en) * 1989-08-22 1991-04-04 Sanken Electric Co Ltd Bidirectional thyristor

Also Published As

Publication number Publication date
JPH0691247B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
EP0616369B1 (en) MIS-type semiconductor device
JPS60247970A (en) Bi-directional semiconductor device
JP2864629B2 (en) Conductivity modulation type MOSFET
JPS62232167A (en) Semiconductor device
JP2510972B2 (en) Bidirectional thyristor
US3967308A (en) Semiconductor controlled rectifier
JPH0563202A (en) Semiconductor device
JP2501316B2 (en) Semiconductor device
JPS58188161A (en) Triac
JPH065842A (en) Semiconductor device
JPH0620127B2 (en) GTO thyristor
JPS6031266Y2 (en) Gate turn-off thyristor
JPH04335579A (en) Static induction semiconductor device
JPH025307B2 (en)
JPH0646657B2 (en) GTO thyristor
JP2524553Y2 (en) Power semiconductor device
JPH07120789B2 (en) Bidirectional thyristor
JP2010245377A (en) Thyristor
JPS599968A (en) Gate turn-off thyristor
JPH0766392A (en) Field effect transistor
US4327367A (en) Thyristor with even turn-on line potential and method with 1-micron to 5-mil wide alignment region band
JPH09148559A (en) Bilateral two-terminal thyristor
JPH06350103A (en) Semiconductor device
JPH0685437B2 (en) Bidirectional 2-terminal thyristor
JP3278498B2 (en) Insulated gate power semiconductor device