JPS60246632A - Method for reduced projection and exposure for photoelectronic image and system therefor - Google Patents
Method for reduced projection and exposure for photoelectronic image and system thereforInfo
- Publication number
- JPS60246632A JPS60246632A JP59102858A JP10285884A JPS60246632A JP S60246632 A JPS60246632 A JP S60246632A JP 59102858 A JP59102858 A JP 59102858A JP 10285884 A JP10285884 A JP 10285884A JP S60246632 A JPS60246632 A JP S60246632A
- Authority
- JP
- Japan
- Prior art keywords
- reticle
- temperature
- cooling plate
- image
- adhesive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Electron Beam Exposure (AREA)
Abstract
Description
【発明の詳細な説明】
技術分野
本発明は、光電子放出物質から成る所用のノ(ターンに
光を照射し、発生した電子像を電子光学系を介して基板
上に縮小投影する方法及び装置に関する。TECHNICAL FIELD The present invention relates to a method and apparatus for irradiating light onto a predetermined turn made of a photoelectron-emitting material and reducing and projecting the generated electron image onto a substrate via an electron optical system. .
従来技術
光による露光技術は、精度等が限界に達し、電子ビーム
を用いたより高精度の技術が普及しつ\ある。しかし、
従来の電子ビーム露光は、電子ビームで所用のパターン
を描画するものであるから、時間がか\るという欠点全
もつ。Conventional exposure techniques using light have reached their limits in accuracy, and more accurate techniques using electron beams are becoming widespread. but,
Conventional electron beam exposure involves drawing a desired pattern with an electron beam, and therefore has the drawback of being time consuming.
そこで、本発明者等は、第1図に示したように、光電子
発生レチクル4全用い、これに全面的に均一な光Lt照
射し、発生した電子像をステージ2上の基根1に電子光
学系を介して縮小投影する方法、及び装置全発明し、特
許出願中である。なお、第1図についての詳細は後に詳
述するので、こ\ではこれ以上説明しない。Therefore, as shown in FIG. 1, the present inventors used the entire photoelectron generation reticle 4, irradiated the entire surface with uniform light Lt, and transferred the generated electron image to the base 1 on the stage 2. He has invented a method and apparatus for reducing projection through an optical system and is currently applying for a patent. The details of FIG. 1 will be explained later, so no further explanation will be given here.
解決すべき問題点
ところが、この方法では、レチクルに数百Wの光Lt−
真空中で照射するため、レチクル4が加熱されて、その
温度が上昇し、レチクル4の形状や寸法が変化するので
問題になる。レチクル4の温度が変化すると、結果とし
て露光パターンの寸法。Problems to be Solved However, with this method, several hundred W of light Lt-
Since the irradiation is performed in a vacuum, the reticle 4 is heated, its temperature increases, and the shape and dimensions of the reticle 4 change, which poses a problem. When the temperature of the reticle 4 changes, the dimensions of the exposed pattern change as a result.
形状1位置等が変動してしまう。例えばガラス(熱膨張
率5x to−’/℃) t−用いた100 mm (
D径cvv−t−クルに1℃の温度変化があると0.5
μ変動する。Shape 1 position etc. will fluctuate. For example, glass (coefficient of thermal expansion 5x to'/℃) using t-100 mm (
If there is a temperature change of 1℃ in D diameter cvv-t-cle, 0.5
μ varies.
レチクルパターンを基板上に縮小投影することを考える
と、この変動は縮度憂で0.1μm/℃、縮度1イ。で
0.05μm/uとなる。今後の超LSIの製造上、基
板上に投影するパターンの変動は、0.1μmが限界で
あり、好ましくは、これよりずっと小さくすることが必
要である。ところが、レチクルは周囲の状況によって異
なるが、数十℃程度の昇温か生じるため、パターン精度
を保つため大きな障害となる。Considering that the reticle pattern is projected onto a substrate in a reduced size, this variation is 0.1 μm/°C in terms of shrinkage, which is 1 in shrinkage. It becomes 0.05 μm/u. In the future production of VLSIs, the limit for variations in patterns projected onto substrates is 0.1 μm, and preferably it should be much smaller than this. However, the temperature of the reticle increases by several tens of degrees Celsius, depending on the surrounding conditions, which poses a major obstacle to maintaining pattern accuracy.
発明の目的
本発明は、上記の問題全解決するために、レチクルの温
度の変f!bt抑制して、基板上に縮小投影される光電
子像のパターン精度を高精度に保つことをその目的とす
る。OBJECTS OF THE INVENTION The present invention aims to solve all of the above problems by changing the temperature of the reticle. The purpose is to suppress bt and maintain high pattern accuracy of a photoelectron image reduced and projected onto a substrate.
問題点解決の手段
本発明においてヲ、シ、上記目的達成のため、前面に所
用の光電子放出パターン金形成したレチクルの背面を冷
却、または加熱して、レチクルの温度をそれぞれ一定の
低温、または一定の高温に保持し、レチクルの前面側よ
り均一な光照射を行ない、光電子像を発生し、電子光学
系を介して基板上に縮小投影する。レチクルの背面には
その温度1−一定の低温゛または高温に保つために1冷
却又は加熱のいずれかの手段が構じられる。Means for Solving Problems In the present invention, in order to achieve the above objects, the back surface of a reticle having a photoelectron emission pattern formed on the front surface is cooled or heated, and the temperature of the reticle is kept at a constant low temperature or a constant temperature, respectively. The reticle is maintained at a high temperature, and uniform light is irradiated from the front side of the reticle to generate a photoelectron image, which is reduced and projected onto the substrate via an electron optical system. On the back side of the reticle, either cooling or heating means is provided to maintain its temperature at a constant low or high temperature.
以下、本発明を具体的に説明するために、実施例を示し
て説明する。EXAMPLES Hereinafter, in order to specifically explain the present invention, examples will be shown and explained.
発明の実施例
先ず、本発明の光電子像縮小投影露光装置の一側施例金
第2図により詳説する。図において、1は電子線レジス
トを塗布し六半導体ウェハ(以下単に基板という)であ
り、該基板は横(x−y)位置及び回転調整機構(図示
省略)を備えたステージ2に固定されている。3はモー
タであって、ステージ2の送り駆動用である。なお、ス
テージ2の位置はレーザ干渉計による周知手段で読んで
いる。そして、ステージ2の上方には、レチクル4が配
されており、レチクル4は図のように曲率ヲつけること
によって、基板上の結像の周囲がtY、けることを防い
でいる。レチクル4の表面には、光電子放出物質から成
るパターン7が形成され、該パターンは、光電子放出物
*Wjt光電子金出さない材料J:、に形成してパター
ニングすること等によって形成している。そして、該パ
ターン7の周囲には光電子放出物質の位置合せ用マーク
を形成する。図では2ケの位置合せ用マーク5.6を示
している。φ1〜φ4は発生した光電子を引出して加速
する同心円状の電極、8は露光時間の微調整を行なうブ
ランキングコイル、9はアパーチャで所望外の方向のビ
ームをカットする作用をなし、1゜は走査用の偏光コイ
ル、11は軸対称な電磁石のレンズ、】2は反射電子検
出器、13 、14 、15は紫外線ランプ、16 、
17 、18はンヤソタである。光源13 、14の光
は順次マーク5,6をそれぞれ局所的に照射し、位置合
せ用の光電子のビーム19等を発生し、該ビーム19で
基板1上のマーク(図示せず)全走査し、位置情報を得
て、位置合せを行なう。次いで光源15の光で一様にレ
チクル4のパターン7を照射し、光電子保全発生し、前
述したような電子光学系を介して光電子像を基板】上圧
縮小投影する。通常、この光電子1↑の縮小投影は5次
々とチップ送りしながら繰返して行なわれ、1つの基板
の霧光が終ると、図示しないカセットに装填された基f
2を次々にステージにセット(2て露光全行なうつした
がって、レチクル4は光源13〜15からの光の照射を
繰返すので次第に温度が上列する。そこで、本発明にお
いては、レチクル4の背面にレチクルの温度を一定に保
つだめの手段20ヲ配置する。該手段20としては、冷
却または加熱のいずれかの手段が構しられる。冷却手段
は、強い光の照射によって昇温しようとするレチクル全
強制的に冷却して一定の低温度(例えば常温)に保持す
るものである。Embodiments of the Invention First, one embodiment of the photoelectronic image reduction projection exposure apparatus of the present invention will be explained in detail with reference to FIG. In the figure, 1 is a six semiconductor wafer (hereinafter simply referred to as a substrate) coated with an electron beam resist, and the substrate is fixed on a stage 2 equipped with a lateral (x-y) position and rotation adjustment mechanism (not shown). There is. A motor 3 is used to drive the stage 2. Note that the position of the stage 2 is read by a well-known means using a laser interferometer. A reticle 4 is arranged above the stage 2, and the reticle 4 has a curvature as shown in the figure to prevent the periphery of the image formed on the substrate from being eclipsed by tY. A pattern 7 made of a photoelectron emitting material is formed on the surface of the reticle 4, and the pattern is formed by forming and patterning a photoelectron emitting material J:, which does not produce photoelectrons. Then, around the pattern 7, alignment marks for photoelectron emitting material are formed. The figure shows two alignment marks 5.6. φ1 to φ4 are concentric electrodes that extract and accelerate generated photoelectrons, 8 is a blanking coil that finely adjusts the exposure time, 9 is an aperture that cuts off beams in undesired directions, and 1° is Polarizing coil for scanning; 11 is an axially symmetrical electromagnetic lens; 2 is a backscattered electron detector; 13, 14, 15 are ultraviolet lamps; 16,
17 and 18 are Nyasota. The light from the light sources 13 and 14 sequentially locally irradiates the marks 5 and 6, respectively, to generate a photoelectron beam 19 for positioning, and the beam 19 scans the entire mark (not shown) on the substrate 1. , obtain position information and perform alignment. Next, the pattern 7 of the reticle 4 is uniformly irradiated with light from the light source 15 to generate a photoelectronic image, and a photoelectronic image is compressed and projected onto the substrate through the electron optical system as described above. Normally, this reduction projection of the photoelectron 1↑ is repeated while feeding the chips one after another five times, and when the fog light of one substrate is finished, the substrate f loaded in a cassette (not shown) is
2 are set on the stage one after another (all exposures are performed with 2). Therefore, the reticle 4 is repeatedly irradiated with light from the light sources 13 to 15, so the temperature gradually increases. Means 20 for keeping the temperature of the reticle constant is arranged.The means 20 can be either cooling or heating means. It is forcibly cooled and kept at a constant low temperature (for example, room temperature).
一方加熱手段は、強い光の照射の繰返しKよるレチクル
温度の高温度側の安定点即ち温度上昇が飽和する点乃至
少し高い温度にレチクルを保持するように制御するもの
である。なお、このようにレチクルを一定の温度に保持
しながら、露光処理全完了した半導体ウェハは、露光し
た電子線レジストを現像し、^定のプロセスにより半導
体装置が製造される。On the other hand, the heating means is controlled so that the reticle temperature is maintained at a stable point on the high temperature side due to repeated irradiation K of strong light, that is, a point at which the temperature rise is saturated or a slightly higher temperature. Note that while the reticle is held at a constant temperature in this manner, the exposed electron beam resist of the semiconductor wafer that has been completely exposed is developed, and semiconductor devices are manufactured through the following process.
以下、本発明におけるレチクルの温度を一定に保つため
の手段20の実施例を示す。An embodiment of the means 20 for keeping the temperature of the reticle constant in the present invention will be shown below.
(実施例1)
@3図において、レチクル4の背面に冷却板22に接着
剤21で固着し、水、油等冷却液27t−流すパイプ2
4を冷却板22 K 28で溶接している。冷却液はレ
チクルの中央附近で23より供給されパイプ24を内外
側に流れて25 、26より外に出る。バイブ24はU
字やW字型など適当な形状で冷却板22の全面に処びて
おり、一様に冷却&22を冷却する。冷却板は伝熱性が
良い銅系の板を用い、レチクル4(通常ガラスで形成)
と接着剤21で接着している。接着剤はプラスチック系
の接着剤を用い、必要な場合は銀の微粉末など伝熱性の
良い金属を混入する。(Example 1) In Figure 3, a cooling plate 22 is fixed to the back of the reticle 4 with an adhesive 21, and a pipe 2 through which a cooling liquid 27t such as water or oil flows is attached.
4 are welded with a cooling plate 22 K 28. The cooling liquid is supplied from 23 near the center of the reticle, flows inside and outside through a pipe 24, and exits through 25 and 26. Vibrator 24 is U
It has an appropriate shape such as a letter or a W-shape and is placed over the entire surface of the cooling plate 22, and cools the cooling plate 22 uniformly. The cooling plate is a copper-based plate with good heat conductivity, and the reticle 4 (usually made of glass) is used.
and is bonded with adhesive 21. A plastic adhesive is used as the adhesive, and if necessary, a metal with good heat conductivity, such as fine silver powder, is mixed in.
なお、水の流し方は第2図のものに限るものではなく、
冷却が均一に行えれば任意で良い。レチクル4の材質は
膨張率が5 X 10−’/’C以下の低膨張ガラス、
石英ガラスを使用する。Note that the water flow method is not limited to the one shown in Figure 2.
Any method may be used as long as cooling can be performed uniformly. The material of the reticle 4 is low expansion glass with an expansion coefficient of 5 x 10-'/'C or less.
Use quartz glass.
(実施例2)
第牛図において、レチクル4と冷却板30〜32との間
に熱伝導性の良い弾性部材39を配して両者を加圧接触
する。弾性部材39としては例えば良熱伝導性のゴムを
用いる。弾性部材の介在でレチクル4と冷却板□□□と
は面接触し、均一に冷却される。(Embodiment 2) In the bull's eye diagram, an elastic member 39 having good thermal conductivity is arranged between the reticle 4 and the cooling plates 30 to 32 to bring them into pressure contact. As the elastic member 39, for example, rubber with good thermal conductivity is used. With the interposition of the elastic member, the reticle 4 and the cooling plate □□□ come into surface contact and are uniformly cooled.
なお弾性部材を介さないと金属の冷却板とガラスのレチ
クルとの接触面積は実際上はんのわずかであり、熱が逃
けない。なお、この実施例においても、冷却板30〜3
2には先の実施例と同じようにバイブお→ア、35→ア
、37→郭にぞれぞれ冷却水が流される。Note that unless an elastic member is used, the contact area between the metal cooling plate and the glass reticle is actually a small amount of the solder, and heat cannot escape. Note that also in this embodiment, the cooling plates 30 to 3
As in the previous embodiment, cooling water is flowed from vibrator 2 to vibrator A, 35 to a, and 37 to vibrator, respectively.
以上、実施例1,2はレチクル4の温度を冷却によって
一足温度に設定しようとするものであって、そのため、
熱抵抗を可及的に小となすとともに、レチクル温度が一
定となるよう冷却水の流量を大となす。As mentioned above, in Examples 1 and 2, the temperature of the reticle 4 is set to a certain temperature by cooling, and therefore,
Thermal resistance is made as small as possible, and the flow rate of cooling water is made large so that the reticle temperature remains constant.
(実施例3)
第5図において、レチクル4の背面に加熱手段(抵抗加
熱のヒータ等)を配置し、レチクル4の温度をセンサ4
3で測り、その結果により加熱制御装置44により給電
#&45に供給する電力を調節する。(Embodiment 3) In FIG. 5, a heating means (resistance heater, etc.) is arranged on the back surface of the reticle 4, and the temperature of the reticle 4 is measured by a sensor 4.
3, and the heating control device 44 adjusts the power supplied to the power supply #&45 based on the result.
この方式は、レチクルを積極的に速く昇温し、一定の高
温に保持しようとするものである。すなわち、レチクル
が一定の高温度に達するのを待って露光を開始しようと
すると、一定の高温度(数十℃〜100℃位)に達する
のに数10分〜数時間要してしまうが、本実施例では加
熱手段を付加して、レチクル4の昇温を促進し、上記高
温度乃至これより少し高い温度にレチクル4の温度を設
定しようというものである。この方式により、レチクル
交換後の待ち時間を大幅に短かぐできる。This method actively raises the temperature of the reticle quickly and attempts to maintain it at a constant high temperature. In other words, if you wait for the reticle to reach a certain high temperature before starting exposure, it will take several tens of minutes to several hours to reach the certain high temperature (several tens of degrees Celsius to 100 degrees Celsius). In this embodiment, a heating means is added to promote the temperature rise of the reticle 4, and the temperature of the reticle 4 is set to the above-mentioned high temperature or a slightly higher temperature. This method can significantly shorten the waiting time after changing the reticle.
本発明は広く微細加工に適用できるものであるが、半導
体装置(超LSI)の製造上きわめて有益である。その
態様は、シリコン等の半導体ウェハに位置合せマークを
形成し、電子線レジストを塗布し、該電子線レジスト上
に、実施例1〜3のいずれかのレチクル温度の一定化手
段を構じながら光電子像を縮小投影し、電子線レジスト
を露光し、半導体ウェハの露光完了後電子線レジストを
現像し、庚用のパターンを半導体ウェハ上に形成するこ
とを特徴とする。Although the present invention is widely applicable to microfabrication, it is extremely useful in manufacturing semiconductor devices (ultra LSI). In this embodiment, an alignment mark is formed on a semiconductor wafer such as silicon, an electron beam resist is applied, and the reticle temperature constant means of any one of Examples 1 to 3 is provided on the electron beam resist. The method is characterized in that a photoelectron image is reduced in size and projected, an electron beam resist is exposed, and after the exposure of the semiconductor wafer is completed, the electron beam resist is developed to form a solid pattern on the semiconductor wafer.
発明の効果
以上、本発明によれば、レチクルの温度の変動を1℃以
内に抑えることが可能となり、レチクル上の盾用パター
ンの精度を高精度罠保持することができ、電子線レジス
トを塗布した半導体ウェハの露光等、きわめて高精度が
要求される光電子像の縮小投影露光を、経時的にきわめ
て安定に行なうことが可能となる。In addition to the effects of the invention, according to the present invention, it is possible to suppress fluctuations in the temperature of the reticle to within 1°C, it is possible to maintain high accuracy of the shield pattern on the reticle, and it is possible to apply electron beam resist. It becomes possible to carry out reduction projection exposure of photoelectronic images, which requires extremely high precision, such as exposure of semiconductor wafers, in a very stable manner over time.
第1図は、光電子像の縮小投影露光方法の概念を示す図
、
第2図は、本発明の光電子像の縮小投影露光方法及び装
置を示す全体栴成図、
第3図は、本発明の第1の実施例の要部を示す図、
第4図は、本発明の第2の実施例の要部を示す図、
第5図は、本発明の第3の実施例の要部を示す図。
1・・基′&(半導体ウェハ)、2・・ステージ、3・
・モータ、4・・レチクル、7・・・(光電子放射物質
から成る)パターン、9・アパーチャ、11・・・軸対
称々電磁石のレンズ、12・・・反射電子検出器、13
゜14 、15・・紫外線ランプ、16 、17 、1
8・シャッタ、19・・・位置合せ用の光電子のビーム
、20・・・レチクルの温度を一足に保つだめの手段、
21・・・接着剤、22・・・冷却板、24・・バイ7
.30,31.32・・・冷却板、39・弾性部材。
特許出願人 富士通株式会社
代理人弁理士 玉 蟲 久 五 部 (外1名)第1図
第 2 図
0
第 3 図
第4図
第5図FIG. 1 is a diagram showing the concept of a photoelectron image reduction projection exposure method, FIG. 2 is an overall schematic diagram showing the photoelectron image reduction projection exposure method and apparatus of the present invention, and FIG. FIG. 4 is a diagram showing the main parts of the second embodiment of the present invention. FIG. 5 is a diagram showing the main parts of the third embodiment of the present invention. figure. 1. Base & (semiconductor wafer), 2. Stage, 3.
・Motor, 4. Reticle, 7. Pattern (consisting of photoelectron emitting material), 9. Aperture, 11. Lens of axially symmetrical electromagnet, 12. Backscattered electron detector, 13.
゜14, 15...Ultraviolet lamp, 16, 17, 1
8. Shutter, 19... photoelectron beam for positioning, 20... means for keeping the temperature of the reticle constant,
21...Adhesive, 22...Cooling plate, 24...Bi7
.. 30, 31. 32...Cooling plate, 39. Elastic member. Patent Applicant Fujitsu Ltd. Representative Patent Attorney Hisa Gobe Tamamushi (1 other person) Figure 1 Figure 2 Figure 0 Figure 3 Figure 4 Figure 5
Claims (2)
クルの背面を冷却、または加熱し、該レチクルの温度を
一定に保持しながら、前面側より前記光電子放出パター
ンに均一な光照射を行ない、光電予備を発生し、電子光
学系を介して該光電子骨全縮小して基板上に投影するこ
とを特徴とする光電子像縮小投影露光方法。(1) Cool or heat the back side of a reticle on which the desired photoelectron emission pattern has been formed, and while keeping the temperature of the reticle constant, uniformly irradiate the photoelectron emission pattern with light from the front side. A photoelectronic image reduction projection exposure method characterized in that a preliminary photoelectronic image is generated, the photoelectronic image is completely reduced through an electron optical system, and the photoelectronic image is projected onto a substrate.
レチクル、該レチクルの背面側に備えられ、レチクルの
温度をそれぞれ一定の温度に保持する冷却または加熱手
段、前記レチクルの前面側より前記光電子放出パターン
に均一な光を照射する手段、線光の照射により発生した
電子像を基板上に縮小投影する電子光学系、の各々全具
備すること全t!!j徴とする光電子像縮小投影露光装
置。(2) A reticle with a desired photoelectron emission pattern formed on its front side, cooling or heating means provided on the back side of the reticle to maintain the temperature of the reticle at a constant temperature, and a means for emitting photoelectrons from the front side of the reticle. A means for irradiating a pattern with uniform light, and an electron optical system for reducing and projecting an electron image generated by the irradiation of line light onto a substrate are all required! ! A photoelectronic image reduction projection exposure device having the following characteristics.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59102858A JPS60246632A (en) | 1984-05-22 | 1984-05-22 | Method for reduced projection and exposure for photoelectronic image and system therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59102858A JPS60246632A (en) | 1984-05-22 | 1984-05-22 | Method for reduced projection and exposure for photoelectronic image and system therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60246632A true JPS60246632A (en) | 1985-12-06 |
Family
ID=14338617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59102858A Pending JPS60246632A (en) | 1984-05-22 | 1984-05-22 | Method for reduced projection and exposure for photoelectronic image and system therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60246632A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6215820A (en) * | 1985-07-15 | 1987-01-24 | Nippon Telegr & Teleph Corp <Ntt> | Electron beam exposure apparatus |
-
1984
- 1984-05-22 JP JP59102858A patent/JPS60246632A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6215820A (en) * | 1985-07-15 | 1987-01-24 | Nippon Telegr & Teleph Corp <Ntt> | Electron beam exposure apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI242697B (en) | Lithographic apparatus and device manufacturing method | |
US5390228A (en) | Method of and apparatus for stabilizing shapes of objects, such as optical elements, as well as exposure apparatus using same and method of manufacturing semiconductor devices | |
JPH02209724A (en) | Method of hardening photoresist | |
US7807065B2 (en) | Processing method | |
TW200907593A (en) | Lithographic apparatus | |
JP2004363559A (en) | Optical member holder | |
TW201229686A (en) | Lithographic apparatus and removable member | |
JPH076940A (en) | Device production | |
KR100498196B1 (en) | Method of manufacturing semiconductor device and manufacturing apparatus thereof | |
JP2004311780A (en) | Exposure system | |
US7319505B2 (en) | Exposure apparatus and device fabrication method | |
JPS60246632A (en) | Method for reduced projection and exposure for photoelectronic image and system therefor | |
TW200848948A (en) | Lithographic apparatus and method | |
JP3144069B2 (en) | Projection exposure apparatus and method for manufacturing semiconductor device using the same | |
JP2000349023A (en) | Permeable mask for projective lithography system, and mask exposure system | |
JPH05190409A (en) | Method and apparatus for control of temperature of member to be irradiated | |
JP3526162B2 (en) | Substrate holding device and exposure device | |
JP2000306832A (en) | Transmission mask in projection lithography system and mask exposure system | |
JP2973737B2 (en) | Exposure method and exposure apparatus used for carrying out the method | |
JPS6133640Y2 (en) | ||
EP0282704A2 (en) | Method of treating photoresists | |
JPH11340127A (en) | Etching method | |
JP2000021725A (en) | Apparatus for manufacturing semiconductor | |
JP2004151285A (en) | Method for forming extreme uv mirror and extreme uv exposure apparatus | |
JPH04130621A (en) | X-ray mask and x-ray exposure |