JP3139023B2 - Electron beam apparatus and focus adjustment method for electron beam apparatus - Google Patents

Electron beam apparatus and focus adjustment method for electron beam apparatus

Info

Publication number
JP3139023B2
JP3139023B2 JP03009612A JP961291A JP3139023B2 JP 3139023 B2 JP3139023 B2 JP 3139023B2 JP 03009612 A JP03009612 A JP 03009612A JP 961291 A JP961291 A JP 961291A JP 3139023 B2 JP3139023 B2 JP 3139023B2
Authority
JP
Japan
Prior art keywords
electron beam
irradiated
height
light
irradiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03009612A
Other languages
Japanese (ja)
Other versions
JPH04254319A (en
Inventor
良忠 押田
玄也 松岡
照雄 岩崎
紀夫 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP03009612A priority Critical patent/JP3139023B2/en
Priority to US07/781,879 priority patent/US5209813A/en
Publication of JPH04254319A publication Critical patent/JPH04254319A/en
Application granted granted Critical
Publication of JP3139023B2 publication Critical patent/JP3139023B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体回路を露光する装
置の露光光学系に対し被露光物であるウエハを解像度高
く、正しく露光するためのウエハの高さを検出する方法
及び装置に係り、特にレジスト等透明な層の厚さの微妙
な変化に影響無く、正しく露光可能とする高さを検出す
る方法及びその装置並びに露光方法及びその装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for detecting a wafer height for correctly exposing a wafer as an object to be exposed to an exposure optical system of an apparatus for exposing a semiconductor circuit. In particular, the present invention relates to a method and apparatus for detecting a height at which exposure can be performed correctly without affecting a subtle change in the thickness of a transparent layer such as a resist, an exposure method, and an apparatus therefor.

【0002】[0002]

【従来の技術】従来技術としては、特開平01−170
022号公報、特開昭63−163833号公報等が知
られている。
2. Description of the Related Art The prior art is disclosed in
022, JP-A-63-163833 and the like are known.

【0003】[0003]

【発明が解決しようとする課題】例えば、電子線露光装
置では電子線の結像の焦点深度が深いためウェハの高さ
を数μm程度の精度で検出し、検出された高さデータを
用い、電子線レンズの焦点合せ制御を行なっている。し
かしながらLSI回路の微細化が進むと共に、この高さ
検出精度は1μm以下が要求されるようになった。しか
しながら、上記従来技術においては1μm以下の検出精
度が得られるように考慮されていなかった。
For example, in an electron beam exposure apparatus, since the depth of focus of electron beam imaging is deep, the height of the wafer is detected with an accuracy of about several μm, and the detected height data is used. The focus control of the electron beam lens is performed. However, as LSI circuits have been miniaturized, the height detection accuracy has been required to be 1 μm or less. However, in the above-mentioned prior art, no consideration has been given to obtaining a detection accuracy of 1 μm or less.

【0004】発明の目的は、上記の課題を解決すべく、
僅かなレジスト厚さの変化に対して検出誤差を最小限に
して試料の高さを1μm以下の高精度に検出できるよう
にした高さ検出方法及びその装置を提供することにあ
る。
[0004] The purpose of the invention is to solve the above problems,
It is an object of the present invention to provide a height detecting method and apparatus capable of detecting a sample height with a high accuracy of 1 μm or less by minimizing a detection error with respect to a slight change in resist thickness.

【0005】本発明の他の目的は、レジストが塗布され
た基板の高さを1μm以下の高精度に検出して非常に微
細なパターンをシャープに、また正しい位置に露光でき
るようにした露光方法及びその装置を提供することにあ
る。
Another object of the present invention is to provide an exposure method capable of detecting a height of a substrate on which a resist is applied with high precision of 1 μm or less so that a very fine pattern can be sharply exposed at a correct position. And an apparatus therefor.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、 電子線装置の焦点調整方法におい
て、表面に光学的に透明な膜を形成した基板に電子線を
照射し、この基板上の電子線を照射している領域に基板
の表面に対して光をブリュースタ角度の方向から照射
し、照射による電子線を照射している領域からの反射光
を検出器で検出し、検出した反射光の検出器上の位置の
情報を用いて光学的に透明な膜の表面の高さを検出し、
この検出した高さの情報と光学的に透明な膜の屈折率及
び厚さの情報とを用いて基板表面上の電子線を照射して
いる領域の高さ情報を求め、求めた電子線を照射してい
る領域の高さ情報に応じて基板表面上に照射している電
子線の焦点を調整するようにした。
In order to achieve the above object, according to the present invention, in a focus adjusting method for an electron beam device, a substrate having an optically transparent film formed on a surface is irradiated with an electron beam. The area of the substrate irradiated with the electron beam is irradiated with light from the direction of the Brewster angle to the surface of the substrate, and the reflected light from the area irradiated with the electron beam due to the irradiation is detected by a detector, Using the information on the position of the detected reflected light on the detector, the height of the surface of the optically transparent film is detected,
Using the information on the detected height and the information on the refractive index and the thickness of the optically transparent film, height information of an area on the substrate surface where the electron beam is irradiated is obtained, and the obtained electron beam is obtained. The focus of the electron beam irradiating on the substrate surface is adjusted according to the height information of the irradiating area.

【0007】また、上記目的を達成するために、本発明
では、電子線装置を、表面に光学的に透明な膜を形成し
た試料を載置して移動可能なテーブル手段と、このテー
ブル手段に載置した試料の表面に電子線を照射する電子
線照射手段と、試料の表面の電子線を照射する領域にブ
リュースタ角度方向から光を照射する照射手段と、この
照射手段により照射されて試料から反射した光を検出す
る検出手段と、この検出手段で検出した反射光の検出手
段上の位置の情報を用いて光学的に透明な膜の表面の高
さを検出する高さ検出手段と、この高さ検出手段で検出
した高さの情報と光学的に透明な膜の屈折率及び厚さの
情報とを用いて基板表面の電子線を照射する領域の高さ
情報を1μm以下の精度で求める高さ情報算出手段と、
電子線照射手段で基板表面に電子線を照射しているとき
に高さ情報算出手段で求めた高さ情報に基いて電子線の
焦点を調整する焦点調整手段とを備えて構成した。
In order to achieve the above object, according to the present invention, an electron beam apparatus is provided with a table means on which a sample having an optically transparent film formed on a surface is mounted and movable, and An electron beam irradiating means for irradiating the surface of the placed sample with an electron beam, an irradiating means for irradiating a region on the surface of the sample to which the electron beam is irradiated with light from a Brewster angle direction, and Detecting means for detecting light reflected from, and height detecting means for detecting the height of the surface of the optically transparent film using information on the position of the reflected light detected by the detecting means on the detecting means, Using the height information detected by the height detecting means and the information on the refractive index and thickness of the optically transparent film, the height information of the area on the substrate surface where the electron beam is irradiated can be obtained with an accuracy of 1 μm or less. Required height information calculating means;
A focus adjusting unit configured to adjust a focus of the electron beam based on the height information obtained by the height information calculating unit when the substrate surface is irradiated with the electron beam by the electron beam irradiating unit.

【0008】[0008]

【作用】例えば、半導体レーザ等の光を例えば45°の
入射角度でウエハ表面に収束入射させ、反射光をウエハ
上の照射スポットの像として位置検出センサ上に結像さ
せ、その位置検出値から高さを求めていた。このような
方法を用いるとウエハ上のレジストの厚さがウエハ上の
場所により微妙に変化すると、高さ検出値に大きな差が
発生する。図4〜図6はこの状況を示したものである。
波長が0.633μmの光を45°入射のS偏光(図
4)、およびP偏光(図5)をそれぞれレジスト厚が
0.0〜5.0μmで下地がシリコンのウエハに照射し
た場合であり、僅か2μmの厚さの変化に対し検出値は
2〜6μmも変化し、大きな誤差が発生することにな
る。また多波長(例えば0.54,0.58,0.62
μm)の光を用いても、依然として図6に示すように僅
かな厚さの変化により、大きな検出誤差変化が発生す
る。
For example, light from a semiconductor laser or the like is convergently incident on the wafer surface at an incident angle of, for example, 45 °, and reflected light is formed on a position detection sensor as an image of an irradiation spot on the wafer. I was looking for height. When such a method is used, if the thickness of the resist on the wafer slightly changes depending on the location on the wafer, a large difference occurs in the height detection value. 4 to 6 show this situation.
This is a case in which light having a wavelength of 0.633 μm is incident on 45 ° incident S-polarized light (FIG. 4) and P-polarized light (FIG. 5) on a silicon wafer with a resist thickness of 0.0 to 5.0 μm. The detected value changes by 2 to 6 μm for a change in thickness of only 2 μm, and a large error occurs. In addition, multiple wavelengths (for example, 0.54, 0.58, 0.62
Even when light of (μm) is used, a large change in detection error still occurs due to a slight change in thickness as shown in FIG.

【0009】ところでレジストのような透明な物体に光
を照射した場合、その光の入射角と偏光の状態により入
射角に対する反射率は図2の様になる。即ちP偏光で入
射角がブリュースタ角になると、レジスト表面での反射
率は0%になり、100%の光が表面を透過し、レジス
ト膜内に入射する。この結果図3(a)に示すごとく、
レジストの下にあるウエハの表面で反射した光も下から
上に向い再びレジスト表面に入射するが、レジスト面で
反射すること無く、やはり100%の光がレジストを透
過し、上方に抜ける。このことはレジストの厚さに関係
無く常にレジストの下のウエハ表面を検出していること
を示している。これを上記の条件以外の場合の図3
(b)と比較すると、本発明の作用効果が明瞭に成る。
即ち、もし上記条件を満たさないと、入射光10はレジ
スト表面で反射し、検出器に向かう20’だけでなく、
透過して、ウエハで反射した光は下からレジスト表面に
向かい、レジスト透過光は検出光20として検出器に向
かうと共に、レジスト表面で反射して再びウエハに戻
り、これを繰り返すことにより、検出光20、20’、
20’……が多重干渉し、この結果ごく僅かなレジスト
の厚さの変化により、干渉強度が大きく変化する。この
結果図4、図5に示すようにレジスト厚の僅かな変化で
検出位置に大きな違いが生じ、正確な高さ検出が不可能
と成る。図3(a)は本発明の方法により検出した場合
の光線の軌跡を表しており、レジスト内部での多重反射
は起こらない。このため、図5のグラフに示す様にレジ
スト厚とレジスト表面の高さに対する検出高さの差の関
係はリニアであり、図4〜図6に見られるような誤差の
変動は見られない。従ってレジストの厚さが判っていれ
ば正確にレジスト表面位置を検出することが出来る。
When a transparent object such as a resist is irradiated with light, the reflectance with respect to the incident angle is as shown in FIG. 2 depending on the incident angle and the polarization state of the light. That is, when the incident angle becomes the Brewster angle with the P-polarized light, the reflectance on the resist surface becomes 0%, and 100% of the light passes through the surface and enters the resist film. As a result, as shown in FIG.
The light reflected on the surface of the wafer under the resist is directed upward from below and is incident on the resist surface again. However, 100% of the light passes through the resist and escapes upward without being reflected on the resist surface. This indicates that the wafer surface under the resist is always detected regardless of the thickness of the resist. This is shown in FIG.
As compared with (b), the operation and effect of the present invention become clear.
That is, if the above conditions are not satisfied, the incident light 10 reflects off the resist surface and is not only 20 'towards the detector,
The light transmitted and reflected by the wafer travels from below to the resist surface, and the resist transmitted light travels to the detector as the detection light 20 and is reflected by the resist surface and returns to the wafer again. 20, 20 ',
20 '... Cause multiple interference. As a result, a slight change in the thickness of the resist greatly changes the interference intensity. As a result, as shown in FIGS. 4 and 5, a slight change in the resist thickness causes a large difference in the detection position, making it impossible to accurately detect the height. FIG. 3A shows the trajectory of the light beam detected by the method of the present invention, and no multiple reflection occurs inside the resist. Therefore, as shown in the graph of FIG. 5, the relationship between the thickness of the resist and the difference between the detected height and the height of the resist surface is linear, and the fluctuation of the error as shown in FIGS. 4 to 6 is not observed. Therefore, if the thickness of the resist is known, the position of the resist surface can be accurately detected.

【0010】以上説明したように、本発明はレジストの
厚さの微妙な変化に影響されること無く、正確にレジス
ト表面もしくはウエハ表面を検出する。
As described above, the present invention accurately detects the resist surface or the wafer surface without being affected by a slight change in the thickness of the resist.

【0011】なお、P偏光の入射角がブリュースタ角に
対して±2°の範囲であればレジスト表面からわずか反
射されることになるが、レジスト表面位置を検出するこ
とが可能となる。
If the incident angle of the P-polarized light is in the range of ± 2 ° with respect to the Brewster angle, the light is slightly reflected from the resist surface, but the position of the resist surface can be detected.

【0012】[0012]

【実施例】 以下本発明を図に示す本発明の原理及び
実施例に基いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on the principle of the present invention shown in the drawings and embodiments.

【0013】図1は本発明の多層物体の高さ検出の原理
を説明する図である。発光ダイオードや半導体レーザ等
の光源11を出射した光はレンズ12により被検出物体
であるウエハ3のパターン層32の上に塗布されたレジ
スト31にほぼ収束する様に照射される。この際この照
射手段1により照射される光10が入射角がブリュース
タ角θbとなり、偏光状態がP偏光(入射光の主光線と
レジスト面の法線を含む面に垂直な方向に偏光する直線
偏光)となるようにする。本実施例ではレジストの屈折
率n1 が1.65であるため、ブリュースタ角θbは5
8.8°となる。半導体露光装置の場合、被検出物の表
面はレジストが塗布されておりその屈折率はほとんど上
記の値に等しい。被検出物の表面の屈折率が異なれば、
入射角をそれに応じたブリュースタ角θbに変更すれば
良い。但しこの変更は必要とする精度に応じて判断すれ
ば良く、大概のレジストは上記ブリュースタ角θbで十
分である。
FIG. 1 shows the principle of detecting the height of a multilayer object according to the present invention.
FIG . Light emitted from a light source 11 such as a light emitting diode or a semiconductor laser is irradiated by a lens 12 so as to be substantially converged on a resist 31 applied on a pattern layer 32 of a wafer 3 which is an object to be detected. At this time, the light 10 irradiated by the irradiation means 1 has an incident angle of the Brewster angle θb and a polarization state of P-polarized light (a straight line polarized in a direction perpendicular to the plane including the principal ray of the incident light and the normal to the resist surface). (Polarized light). In this embodiment, since the refractive index n1 of the resist is 1.65, the Brewster angle θb is 5
8.8 °. In the case of a semiconductor exposure apparatus, the surface of an object to be detected is coated with a resist, and the refractive index thereof is almost equal to the above value. If the surface of the object has a different refractive index,
What is necessary is just to change the incident angle to the corresponding Brewster angle θb. However, this change may be determined according to the required accuracy, and in most resists, the above Brewster angle θb is sufficient.

【0014】レジスト表面に照射された光は上記図2を
用いた説明のごとく、ブリュースタ角θbの入射によ
り、100%透過し、表面での反射は0%である。この
結果ウエハのパターン32の表面で反射した光のみが位
置検出手段2に入射してくる。位置検出手段2は結像レ
ンズ22と光位置検出素子21とからなり、レジスト上
の光スポット(厳密にはウエハパターン上の光スポッ
ト)が光位置検出素子21上に結像し、その結像位置が
電気信号として検出される。即ち、もしウエハが上方に
変化すれば結像位置は下方に変化するため、電気信号と
して高さが求まる。図7は被検出物であるウエハの表面
がA1及びSiの場合、表面に塗布されているレジスト
の厚さの変化に伴い、正確なレジスト表面高さと検出位
置の誤差の関係を示したものである。本図より、検出さ
れる高さはほぼレジストの表面からレジスト厚に比例す
る一定値を差し引いた値と成り、図4〜図6に示すよう
に、僅かなレジスト厚の変化で検出値が大きく変動する
ことが無くなり、より正確な検出が可能と成る。なお上
記一定値を正確に求める方法は後述の本発明の原理を説
明する項で詳細に説明する。
As described with reference to FIG. 2, the light applied to the resist surface is transmitted 100% and the reflection at the surface is 0% due to the incident Brewster angle θb. As a result, only the light reflected on the surface of the pattern 32 of the wafer is incident on the position detecting means 2. The position detecting means 2 includes an image forming lens 22 and a light position detecting element 21, and a light spot on a resist (strictly, a light spot on a wafer pattern) forms an image on the light position detecting element 21. The position is detected as an electric signal. That is, if the wafer moves upward, the imaging position changes downward, and the height is obtained as an electric signal. FIG. 7 shows the relationship between the accurate resist surface height and the error in the detection position with a change in the thickness of the resist applied to the surface when the surface of the wafer to be detected is A1 or Si. is there. From this figure, the detected height is substantially a value obtained by subtracting a constant value proportional to the resist thickness from the surface of the resist, and as shown in FIGS. There is no fluctuation, and more accurate detection is possible. It should be noted that the method for accurately obtaining the above-mentioned constant value will be described later in connection with the principle of the present invention.
This will be described in detail in the following section .

【0015】図8は本発明の電子線露光装置である。電
子線源4’から放射された電子線41は縮小及び集束レ
ンズを有するレンズ系6’を通過して、ウエハ3上に結
像される。ウエハ3上には電子線用レジストが塗布され
ており、この面に種々のLSI用回路パターンを電子線
で露光していく。一つの領域の露光が終了すると、ウエ
ハ3を固定したウエハステージ71はステップ・アンド
・レピートにより駆動され、次ぎの露光領域に移動させ
る。その際、ウエハ3に露光される回路パターンはCP
U8’からの図形データに基づき、ブランカー52によ
る電子線のON/OFF制御で所望形状の図形が形成さ
れる。なお、ブランキング絞り53は電子線のブランキ
ング時(破線で示す位置)、上記電子線41のON/O
FF用のシャッターとして用いられる。
FIG. 8 shows an electron beam exposure apparatus according to the present invention. The electron beam 41 emitted from the electron beam source 4 ′ passes through a lens system 6 ′ having a reduction and focusing lens and is imaged on the wafer 3. An electron beam resist is applied on the wafer 3, and various LSI circuit patterns are exposed to the electron beam on this surface. When the exposure of one area is completed, the wafer stage 71 on which the wafer 3 is fixed is driven by step and repeat, and moves to the next exposure area. At this time, the circuit pattern exposed on the wafer 3 is CP
Based on the graphic data from U8 ', a graphic of a desired shape is formed by ON / OFF control of the electron beam by the blanker 52. When the electron beam is blanked (position indicated by a broken line), the blanking aperture 53 turns on / off the electron beam 41.
Used as an FF shutter.

【0016】電子線露光装置では、0.5μm以下の回
路パターンを電子線で直接ウエハ3上に露光する場合、
熱処理工程による、ウエハ全体の反り、或いは局部的な
凹凸による高さの変動を補正する必要がある。この反り
量は200μmにも及ぶことがある。これらの理由か
ら、その高さ検出手段が図4のレンズ系6’とウエハ3
の間に設けてある。即ち、図8に示した照射手段1か
ら、電子線直下と一致するウエハ3上の露光領域の中心
部に向けてブリュースタ角θでP偏光の光を照射し、位
置検出手段2により反射光を検知して、図3(a)の説
明のごとく、レジスト表面部の高さを検出する。この時
得られた高さ位置情報は、検出回路8を通して動的焦点
補正コイル72にフィードバックされ、上記の高さ変位
に対応して電子線の焦点を補正しながらパターンを形成
していく。
In an electron beam exposure apparatus, when a circuit pattern of 0.5 μm or less is directly exposed on the wafer 3 by an electron beam,
It is necessary to correct the height variation due to the warpage of the entire wafer or the local unevenness due to the heat treatment process. The amount of warpage may reach 200 μm. For these reasons, the height detecting means is the lens system 6 'of FIG.
It is provided between. That is, the irradiation means 1 shown in FIG. 8 irradiates P-polarized light at a Brewster angle θ toward the center of the exposure area on the wafer 3 which coincides with the position immediately below the electron beam. Is detected, and the height of the resist surface portion is detected as described in FIG. The height position information obtained at this time is fed back to the dynamic focus correction coil 72 through the detection circuit 8, and a pattern is formed while correcting the focus of the electron beam in accordance with the height displacement.

【0017】図9は本発明の原理を説明する図であり、
粒子線露光装置のうち紫外線光を用いた縮小投影露光装
置に本発明の原理を適用した例である。露光照明系4を
出射した紫外線(i線またはエキシマレーザ光)はレチ
クル5を照明し、レチクルを透過した光は縮小レンズ6
に入射する。レチクルに描画された回路パターン51は
縮小レンズによりウエハ3上に結像される。回路パター
ン51の最小線幅が0.5μm(ウエハ上換算)以下に
なると、焦点深度は±1.0μm以下に成る。このた
め、ウエハ表面に塗布されたレジストの厚さが約1μm
であることを考慮すると、レジストの表面、あるいはレ
ジストの下面、即ちウエハパターン表面を正確に捕らえ
る必要がある。しかるに縮小露光装置においては、ウエ
ハ3をウエハステージ7を駆動し、ステップアンドレピ
ートで露光していくので、ステージ移動後のウエハの高
さが変動するため、ステージ移動ごとに正確に上記のレ
ジスト表面もしくは裏面を正確に検出する必要がある。
このため本実施例では縮小レンズとウエハの間から図1
の実施例で説明した方法により、照射手段1’により露
光領域のほぼ中心に向けてブリュースタ角でP偏光の光
を照射し、位置検出手段2’により反射光を検知して、
図3で説明したように、レジストのほぼ裏面の位置を検
出する。
FIG. 9 is a diagram for explaining the principle of the present invention .
This is an example in which the principle of the present invention is applied to a reduction projection exposure apparatus using ultraviolet light among particle beam exposure apparatuses. Ultraviolet rays (i-ray or excimer laser light) emitted from the exposure illumination system 4 illuminate the reticle 5, and light transmitted through the reticle is reduced by a reduction lens 6.
Incident on. The circuit pattern 51 drawn on the reticle is imaged on the wafer 3 by the reduction lens. When the minimum line width of the circuit pattern 51 becomes 0.5 μm or less (converted on the wafer), the depth of focus becomes ± 1.0 μm or less. Therefore, the thickness of the resist applied on the wafer surface is about 1 μm.
In consideration of the above, it is necessary to accurately capture the surface of the resist or the lower surface of the resist, that is, the surface of the wafer pattern. However, in the reduction exposure apparatus, since the wafer 3 is driven by the wafer stage 7 and exposed in a step-and-repeat manner, the height of the wafer after the movement of the stage fluctuates. Alternatively, it is necessary to accurately detect the back surface.
For this reason, in the present embodiment, FIG.
According to the method described in the embodiment, the irradiation means 1 'irradiates P-polarized light at a Brewster angle toward substantially the center of the exposure area, and the position detection means 2' detects reflected light.
As described with reference to FIG. 3, the position on the substantially back surface of the resist is detected.

【0018】図9の方法で検出されるのはレジストの裏
面即ちパターン表面とレジスト表面間の位置であるが、
表面を検出する場合には、塗布されているレジストの厚
さTは予め判っているため、その値を入力端末、もしく
は入力端子81から検出回路82に入力しておけば、レ
ジスト表面の高さHが、高さ検出値H’および入力レジ
スト厚値Tから下記の式に基づき求められる。
What is detected by the method of FIG. 9 is the back surface of the resist, that is, the position between the pattern surface and the resist surface.
When detecting the surface, the thickness T of the applied resist is known in advance, and if the value is input to the detection circuit 82 from the input terminal or the input terminal 81, the height of the resist surface can be detected. H is obtained from the detected height value H ′ and the input resist thickness value T based on the following equation.

【0019】[0019]

【数1】 (Equation 1)

【0020】通常のレジストではn=1.65であるた
め、ブリュースタ角θはtan~1nよりθ=58.78
°となり、H=0.367T+H’となる。このように
して求められたレジスト表面の高さHと予め分かってい
る目標の高さH0の差△Hを制御回路83で求め、ウエ
ハステージ7を制御し、精度の高い露光を実現する。
[0020] So, under normal resist is n = 1.65, is the Brewster angle θ than tan ~ 1 n θ = 58.78
°, and H = 0.367T + H '. The difference ΔH between the height H of the resist surface thus obtained and the previously known target height H 0 is obtained by the control circuit 83, and the wafer stage 7 is controlled to realize highly accurate exposure.

【0021】[0021]

【発明の効果】本発明により、透明なレジスト表面の高
さをレジストの厚さに影響されずに精度良く検出するこ
とが可能となり、パターン描画歪の小さい荷電粒子露光
実現することにより、高精度の微細パターンの形成が
可能となった。
According to the present invention, the height of the transparent resist surface can be accurately detected without being affected by the thickness of the resist, and the charged particle exposure with a small pattern drawing distortion can be performed.
There By realizing the formation of high-precision fine pattern becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る多層物体の高さ検出の原理を説明
する高さ検出装置の略正面図である。
FIG. 1 illustrates the principle of detecting the height of a multilayer object according to the present invention.
1 is a schematic front view of a height detecting device according to an embodiment .

【図2】透過物体への入射角と反射率の関係を示す図で
ある。
FIG. 2 is a diagram showing a relationship between an incident angle on a transmission object and a reflectance.

【図3】多層物体の高さ検出の±層厚さと検出値を示す
図である。
FIG. 3 is a diagram showing ± layer thicknesses and detected values of height detection of a multilayer object.

【図4】P偏光で入射角45°で検出したときのレジス
ト厚と検出誤差の関係を示す図である。
FIG. 4 is a diagram showing a relationship between a resist thickness and a detection error when detection is performed at an incident angle of 45 ° with P-polarized light.

【図5】S偏光で入射角45°で検出したときのレジス
ト厚と検出誤差の関係を示す図である。
FIG. 5 is a diagram illustrating a relationship between a resist thickness and a detection error when detection is performed with S-polarized light at an incident angle of 45 °.

【図6】P+S偏光で入射角45°で検出したときのレ
ジスト厚さと検出誤差の関係を示す図である。
FIG. 6 is a diagram illustrating a relationship between a resist thickness and a detection error when detection is performed at an incident angle of 45 ° with P + S polarized light.

【図7】ブリュースタ角(58.78°)に近い入射角
59°でP偏光で検出したときのレジスト厚さと検出誤
差を示す図である。
FIG. 7 is a diagram illustrating a resist thickness and a detection error when detection is performed with P-polarized light at an incident angle of 59 ° close to the Brewster angle (58.78 °).

【図8】本発明に係る電子線露光装置の略正面図であ
る。
FIG. 8 is a schematic front view of an electron beam exposure apparatus according to the present invention.

【図9】本発明の原理を説明する縮小露光装置の略正面
である。
FIG. 9 is a schematic front view of a reduction exposure apparatus illustrating the principle of the present invention.
FIG .

【符号の説明】[Explanation of symbols]

1.照射手段、 2.位置検出手段、 3.被検出物体、 4.露光照明系、 4’.電子線源、 5.レチクル、 6.縮小レンズ、 6’.電子線レンズ、 7,71.ウエハステージ、 72.動的焦点補正コイル、 8,8’.制御回路、 10.照射光、 20.検出光。 1. Irradiation means; 2. position detecting means; 3. the detected object; Exposure illumination system, 4 '. 4. an electron beam source; Reticle; Reduction lens, 6 '. Electron beam lens, 7,71. 72. wafer stage, Dynamic focus correction coil, 8, 8 '. 9. control circuit; Irradiation light, 20. Detection light.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金子 紀夫 茨城県勝田市大字市毛882番地株式会社 日立製作所那珂工場内 (56)参考文献 特開 昭60−79722(JP,A) 特開 平1−107139(JP,A) 特開 昭59−188931(JP,A) 特開 昭60−136311(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/027 ────────────────────────────────────────────────── ─── Continued on the front page (72) Norio Kaneko, Inventor 882, Ma, Kata-shi, Ibaraki, Naka Plant, Hitachi, Ltd. (56) References JP-A-60-7922 (JP, A) JP-A-1 -107139 (JP, A) JP-A-59-188931 (JP, A) JP-A-60-136311 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21/027

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 表面に光学的に透明な膜を形成した基板
に電子線を照射し、該基板上の電子線を照射している領
域に前記基板の表面に対して光をブリュースタ角度の方
向から照射し、該照射による前記電子線を照射している
領域からの反射光を検出器で検出し、該検出した反射光
前記検出器上の位置の情報を用いて前記光学的に透明
な膜の表面の高さを検出し、該検出した高さの情報と前
記光学的に透明な膜の屈折率及び厚さの情報とを用いて
前記基板表面上の前記電子線を照射している領域の高さ
情報を求め、該求めた電子線を照射している領域の高さ
情報に応じて前記基板表面上に照射している前記電子線
の焦点を調整することを特徴とする電子線装置の焦点調
整方法。
An electron beam is irradiated on a substrate having an optically transparent film formed on a surface thereof , and light is irradiated to a region of the substrate irradiated with the electron beam with respect to the surface of the substrate at a Brewster angle. One
Irradiated from direction, the irradiation with detected by the detector light reflected from the area that is irradiated with the electron beam, the optically transparent with information on the position on the detector of the detected reflected light Detecting the height of the surface of the film, irradiating the electron beam on the substrate surface using the information of the detected height and the information of the refractive index and thickness of the optically transparent film. Determining the height information of the region where the electron beam is irradiated, and adjusting the focus of the electron beam irradiating on the substrate surface according to the obtained height information of the region irradiating the electron beam. Focusing method for line device
【請求項2】 前記照射する光がP偏光光であり、該P
偏光光を前記電子線を照射している領域にブリュースタ
角度の方向から照射して該照射による前記基板表面から
の反射光を検出することにより、前記電子線を照射して
いる領域の高さ情報を1μm以下の精度で求めることを
特徴とする請求項1記載の電子線装置の焦点調整方法。
2. The method according to claim 1, wherein the irradiation light is P-polarized light.
Brewster irradiates polarized light to the area irradiated with the electron beam.
The height information of an area irradiated with the electron beam is obtained with an accuracy of 1 μm or less by irradiating from an angle direction and detecting reflected light from the substrate surface due to the irradiation. 2. The focus adjusting method for an electron beam device according to claim 1.
【請求項3】 前記光学的に透明な膜がレジストである
ことを特徴とする請求項1記載の電子線装置の焦点調整
方法。
3. The focus adjusting method for an electron beam apparatus according to claim 1, wherein said optically transparent film is a resist.
【請求項4】 前記電子線を照射している領域からの反
射光を、結像して検出することを特徴とする請求項1乃
の何れかに記載の電子線装置の焦点調整方法。
4. The electron beam apparatus according to claim 1乃<br/> optimum 3, characterized in that the reflected light from the area that is irradiated with the electron beam, and detecting the imaging Focus adjustment method.
【請求項5】 前記電子線装置が、電子線露光装置であ
ることを特徴とする請求項1乃至の何れかに記載の電
子線装置の焦点調整方法。
Wherein said electron beam apparatus, the focus adjusting method of the electron beam apparatus according to any one of claims 1 to 3, characterized in that an electron beam exposure apparatus.
【請求項6】 表面に光学的に透明な膜を形成した試料
を載置して移動可能なテーブル手段と、該テーブル手段
に載置した試料の表面に電子線を照射する電子線照射手
段と、前記試料の表面の前記電子線を照射する領域に
リュースタ角度方向から光を照射する照射手段と、該照
射手段により照射されて前記試料から反射した光を検出
する検出手段と、該検出手段で検出した前記反射光の
検出手段上の位置の情報を用いて前記光学的に透明な膜
の表面の高さを検出する高さ検出手段と、該高さ検出手
段で検出した高さの情報と前記光学的に透明な膜の屈折
率及び厚さの情報とを用いて前記基板表面の前記電子線
を照射する領域の高さ情報を1μm以下の精度で求める
高さ情報算出手段と、前記電子線照射手段で前記基板表
面に電子線を照射しているときに前記高さ情報算出手段
で求めた高さ情報に基いて前記電子線の焦点を調整する
焦点調整手段とを備えたことを特徴とする電子線装置。
6. A table means on which a sample having an optically transparent film formed on the surface is mounted and movable, and an electron beam irradiating means for irradiating an electron beam on the surface of the sample mounted on the table means. , Bed in a region of irradiating the electron beam on the surface of the sample
Irradiating means for irradiating a light from Ryusuta angular direction, detecting means for detecting light reflected from the sample is irradiated by said irradiation means, said reflected light of said detected by the detecting means
Height detecting means for detecting the height of the surface of the optically transparent film using information on the position on the detecting means, and information of the height detected by the height detecting means and the optically transparent Height information calculating means for obtaining height information of an area of the substrate surface to be irradiated with the electron beam with an accuracy of 1 μm or less using information of a refractive index and a thickness of a film; An electron beam apparatus comprising: a focus adjusting unit that adjusts a focus of the electron beam based on the height information obtained by the height information calculating unit when the surface is irradiated with the electron beam.
【請求項7】 前記照射手段が、 前記基板の電子線を
照射する領域にブリュースタ角度方向からP偏光光を照
射することを特徴とする請求項記載の電子線装置。
7. The irradiating means emits an electron beam on the substrate.
7. The electron beam apparatus according to claim 6, wherein a region to be irradiated is irradiated with P-polarized light from a Brewster angle direction .
【請求項8】 前記電子線装置が、電子線露光装置であ
ることを特徴とする請求項6または7に記載の電子線装
置。
Wherein said electron beam apparatus, an electron beam apparatus according to claim 6 or 7, characterized in that an electron beam exposure apparatus.
JP03009612A 1990-10-24 1991-01-30 Electron beam apparatus and focus adjustment method for electron beam apparatus Expired - Fee Related JP3139023B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP03009612A JP3139023B2 (en) 1991-01-30 1991-01-30 Electron beam apparatus and focus adjustment method for electron beam apparatus
US07/781,879 US5209813A (en) 1990-10-24 1991-10-24 Lithographic apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03009612A JP3139023B2 (en) 1991-01-30 1991-01-30 Electron beam apparatus and focus adjustment method for electron beam apparatus

Publications (2)

Publication Number Publication Date
JPH04254319A JPH04254319A (en) 1992-09-09
JP3139023B2 true JP3139023B2 (en) 2001-02-26

Family

ID=11725121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03009612A Expired - Fee Related JP3139023B2 (en) 1990-10-24 1991-01-30 Electron beam apparatus and focus adjustment method for electron beam apparatus

Country Status (1)

Country Link
JP (1) JP3139023B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3088957A2 (en) 2015-04-30 2016-11-02 Canon Kabushiki Kaisha Detection apparatus, measurement apparatus, lithography apparatus, and method of manufacturing article
TWI725827B (en) * 2020-04-24 2021-04-21 力晶積成電子製造股份有限公司 Image sensing module

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030051624A (en) * 2000-11-22 2003-06-25 가부시키가이샤 니콘 Aligner, aligning method and method for fabricating device
JP4543069B2 (en) * 2007-09-26 2010-09-15 日立ビアメカニクス株式会社 Maskless exposure system
JP2019032378A (en) * 2017-08-04 2019-02-28 株式会社オーク製作所 Substrate position detection device, exposure apparatus and method for detecting substrate position

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3088957A2 (en) 2015-04-30 2016-11-02 Canon Kabushiki Kaisha Detection apparatus, measurement apparatus, lithography apparatus, and method of manufacturing article
US9869936B2 (en) 2015-04-30 2018-01-16 Canon Kabushiki Kaisha Detection apparatus, measurement apparatus, lithography apparatus, and method of manufacturing article
TWI725827B (en) * 2020-04-24 2021-04-21 力晶積成電子製造股份有限公司 Image sensing module
US11563047B2 (en) 2020-04-24 2023-01-24 Powerchip Semiconductor Manufacturing Corporation Image sensing module

Also Published As

Publication number Publication date
JPH04254319A (en) 1992-09-09

Similar Documents

Publication Publication Date Title
US6479201B2 (en) Optical exposure apparatus of scanning exposure system and its exposing method
JP2893778B2 (en) Exposure equipment
TWI408492B (en) Cilibration method of sensor, exposing method, exposing device, manufactureing mehtod of device and reflective mask
JPH0821531B2 (en) Projection optical device
JPH08272070A (en) Method and apparatus for monitoring of lithographic exposure
JP4574211B2 (en) Light source device and exposure apparatus having the light source device
JP3262039B2 (en) Exposure apparatus and device manufacturing method using the same
US5798838A (en) Projection exposure apparatus having function of detecting intensity distribution of spatial image, and method of detecting the same
JPS58119642A (en) Automatic electron beam focusing device
US20010023918A1 (en) Alignment apparatus, alignment method, exposure apparatus and exposure method
JP3139023B2 (en) Electron beam apparatus and focus adjustment method for electron beam apparatus
JP3428705B2 (en) Position detecting device and method of manufacturing semiconductor device using the same
US6384898B1 (en) Projection exposure apparatus
US8119312B2 (en) Manufacturing method for a semiconductor device
US6304319B1 (en) Exposure apparatus, method of producing the same, and method of producing devices
JP3368017B2 (en) Position detecting device and method of manufacturing semiconductor device using the same
EP1043761A1 (en) Projection exposure apparatus and exposure method
JP3531227B2 (en) Exposure method and exposure apparatus
JP2001077004A (en) Aligner and electron beam aligner
JP2815010B2 (en) Projection optical device and imaging characteristic adjustment method
JP3265031B2 (en) Surface shape detection method and projection exposure apparatus
JPH104055A (en) Automatic focusing device and manufacture of device using it
JP2771136B2 (en) Projection exposure equipment
JP3630189B2 (en) Alignment method, exposure method, and exposure apparatus
JP2829666B2 (en) Exposure equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees