JP4543069B2 - Maskless exposure system - Google Patents

Maskless exposure system Download PDF

Info

Publication number
JP4543069B2
JP4543069B2 JP2007249885A JP2007249885A JP4543069B2 JP 4543069 B2 JP4543069 B2 JP 4543069B2 JP 2007249885 A JP2007249885 A JP 2007249885A JP 2007249885 A JP2007249885 A JP 2007249885A JP 4543069 B2 JP4543069 B2 JP 4543069B2
Authority
JP
Japan
Prior art keywords
projection lens
exposure
substrate
wedge glass
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007249885A
Other languages
Japanese (ja)
Other versions
JP2009080324A (en
Inventor
良忠 押田
和夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Via Mechanics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Via Mechanics Ltd filed Critical Hitachi Via Mechanics Ltd
Priority to JP2007249885A priority Critical patent/JP4543069B2/en
Priority to TW097128953A priority patent/TWI443473B/en
Priority to KR1020080078837A priority patent/KR101516607B1/en
Priority to CN2008101449489A priority patent/CN101398631B/en
Priority to DE102008038443.7A priority patent/DE102008038443B4/en
Publication of JP2009080324A publication Critical patent/JP2009080324A/en
Application granted granted Critical
Publication of JP4543069B2 publication Critical patent/JP4543069B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明はマスクを用いずに露光基板にパターンを露光するマスクレス露光装置に関する。   The present invention relates to a maskless exposure apparatus that exposes a pattern on an exposure substrate without using a mask.

プリント基板に配線パターン等を形成するため、従来はパターンを予めマスクに形成しておき、マスク露光機を用いてこのマスクパターンを投影露光したり、密着或いはプロキシミティ露光により露光基板にパターンを露光していた。近年マスクを用いることなく直接露光基板に露光する技術が開発され、産業的な活用が始まっている(特許文献1)。そして、このようなマスクレス露光装置により、例えば、パターン幅が20μmのプリント基板を製作することができた。
特開2004−39871号公報
Conventionally, in order to form a wiring pattern on a printed circuit board, the pattern is formed in advance on a mask, and the mask pattern is projected and exposed using a mask exposure machine, or the pattern is exposed on the exposed board by contact or proximity exposure. Was. In recent years, a technique for directly exposing an exposure substrate without using a mask has been developed, and industrial utilization has begun (Patent Document 1). With such a maskless exposure apparatus, for example, a printed board having a pattern width of 20 μm could be manufactured.
JP 2004-39871 A

電子部品等の実装密度をさらに向上させるため、パターン幅を10μm以下まで細くすることが望まれている。しかし、10μm以下のパターンを露光させる場合、焦点深度の幅が狭いため、露光基板に反りや厚さむらがあるとパターンの幅を均一にすることが困難になる。   In order to further improve the mounting density of electronic components and the like, it is desired to reduce the pattern width to 10 μm or less. However, when a pattern of 10 μm or less is exposed, since the depth of focus is narrow, it is difficult to make the pattern width uniform if the exposure substrate is warped or uneven in thickness.

本発明の目的は、前記課題を解決し、ワークに反りや厚さむらがある場合でも、ワークの表面に均一な幅のパターンを露光することができるマスクレス露光装置を提供するにある。   An object of the present invention is to provide a maskless exposure apparatus capable of solving the above-described problems and exposing a pattern having a uniform width on the surface of a workpiece even when the workpiece has warpage or thickness unevenness.

上記の課題を解決するために、本発明は、露光照明光を出力する露光光源と、2次元空間変調器と、第1の投影レンズと、マイクロレンズアレーと、第2の投影レンズと、露光基板を保持し前記第2の投影レンズの光軸に直交する方向に移動するステージと、板厚方向の一方の面が板厚方向の他方の面に対して角度θの傾斜面である第1と第2の2つの楔ガラスと、前記楔ガラスの少なくとも一方を移動させる移動手段と、を有し、前記第1の楔ガラスの前記他方の面を前記第2の投影レンズの光軸に対して垂直に配置すると共に、前記第2の楔ガラスの前記一方の面を前記第1の楔ガラスの当該一方の面との距離が予め定める値になるように組み合わせて、前記第2の投影レンズの入射側または出射側に配置したマスクレス露光装置において、前記第2の投影レンズの前記露光走査する方向の手前側に位置し、前記露光走査方向と直交する方向に並べられた複数の基板表面の高さ検出手段と、前記複数の高さ検出手段によって検出された複数の高さ情報から、前記検出した基板上の位置が当該基板の露光走査により前記第2の投影レンズの光軸に至るまでの間に前記第2の投影レンズの焦点位置を演算し、前記基板上の位置が前記第2の投影レンズの光軸に至るときに前記第2の投影レンズの焦点が前記位置の基板の表面に一致するように前記移動手段を制御する制御回路と、を備え、前記制御回路は前記高さ検出手段によって検出された検出結果を保存すると共に、前記第2の投影レンズの焦点深度を超える可能性の高い位置を露光後に警告表示し、あるいは前記第2の投影レンズの焦点深度を超える可能性の高い位置を露光後に保存することを特徴とする。 In order to solve the above problems, the present invention provides an exposure light source that outputs exposure illumination light, a two-dimensional spatial modulator, a first projection lens, a microlens array, a second projection lens, and an exposure. A stage that holds the substrate and moves in a direction perpendicular to the optical axis of the second projection lens, and a first surface in the plate thickness direction is an inclined surface having an angle θ with respect to the other surface in the plate thickness direction. And the second two wedge glasses, and a moving means for moving at least one of the wedge glasses, and the other surface of the first wedge glass with respect to the optical axis of the second projection lens And the second projection lens is combined in such a way that the distance between the one surface of the second wedge glass and the one surface of the first wedge glass becomes a predetermined value. In a maskless exposure apparatus placed on the incident or exit side A plurality of substrate surface height detectors arranged on the front side of the second projection lens in the exposure scanning direction and arranged in a direction orthogonal to the exposure scanning direction; and the plurality of height detectors The focal position of the second projection lens is determined from the plurality of height information detected by the time until the detected position on the substrate reaches the optical axis of the second projection lens by exposure scanning of the substrate. A control circuit that calculates and controls the moving means so that the focal point of the second projection lens coincides with the surface of the substrate at the position when the position on the substrate reaches the optical axis of the second projection lens. And the control circuit stores a detection result detected by the height detection means, and displays a warning after exposure at a position likely to exceed the focal depth of the second projection lens, or the Second projection lens A position that is likely to exceed the focal depth of the image is stored after exposure .

ワークに反りや厚さむらがあっても、ワークの表面に均一な幅のパターンを露光することができる。   Even if the workpiece has warpage or uneven thickness, a pattern having a uniform width can be exposed on the surface of the workpiece.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

図1は本発明に係る第1のマスクレス露光装置の構成図である。   FIG. 1 is a block diagram of a first maskless exposure apparatus according to the present invention.

7つの光軸からなる露光照明系11〜17はほぼ同じ構造である。なお、図面の煩雑さを避けるため、同図では7本の光軸系の内表示しやすい部分にのみ番号や信号線(点線)が表示されているが、総ての光軸に同じように番号や信号線がある。以下、露光照明系11〜17のうちの露光照明系17について説明する。   The exposure illumination systems 11 to 17 having seven optical axes have substantially the same structure. In order to avoid the complexity of the drawing, numbers and signal lines (dotted lines) are displayed only in the portions of the seven optical axis systems that are easy to display in the figure, but the same applies to all the optical axes. There are numbers and signal lines. Hereinafter, the exposure illumination system 17 among the exposure illumination systems 11 to 17 will be described.

露光照明系17から出射した露光照明光は折り返しミラー27により上方にある2次元空間変調器37に照射される。ここでは、2次元空間変調器としてディジタルミラーデバイス(以下、「DMD」という。)37を用いている。   The exposure illumination light emitted from the exposure illumination system 17 is applied to the upper two-dimensional spatial modulator 37 by the folding mirror 27. Here, a digital mirror device (hereinafter referred to as “DMD”) 37 is used as a two-dimensional spatial modulator.

DMD37にはxy面内に多数の可動マイクロミラーがマトリックス状に配置されている。制御装置9から各マイクロミラーにON/OFF信号が送られると、ONの信号を受けたマイクロミラーは一定角度傾き、入射した露光照明光を反射させて第1の投影レンズ47に入射させる。また、OFFの状態のマイクロミラーで反射された露光照明光は第1の投影レンズ47には入射せず、露光には寄与しない。投影レンズ47を透過した露光照明光はマイクロレンズアレー57に入射する。DMD37のマイクロミラーの拡大像(又は縮小像)が形成されるマイクロレンズアレー57の位置にはそれぞれマイクロレンズが配置されている。   In the DMD 37, a large number of movable micromirrors are arranged in a matrix in the xy plane. When an ON / OFF signal is sent from the control device 9 to each micromirror, the micromirror that receives the ON signal tilts at a certain angle, reflects the incident exposure illumination light, and makes it incident on the first projection lens 47. Further, the exposure illumination light reflected by the micromirror in the OFF state does not enter the first projection lens 47 and does not contribute to the exposure. The exposure illumination light transmitted through the projection lens 47 enters the microlens array 57. Microlenses are arranged at the positions of the microlens array 57 where enlarged images (or reduced images) of the micromirrors of the DMD 37 are formed.

マイクロレンズアレー57に配置された各マイクロレンズは焦点距離がfの凸レンズであり、各マイクロレンズにほぼ垂直に入射する露光照明光(ON状態のマイクロミラーから来た露光照明光)は各マイクロレンズからおおよそfの位置に微小なスポットを形成する。 Each microlens disposed on the microlens array 57 is a convex lens of focal length f M, the exposure illumination light substantially vertically incident on each microlens (exposure illumination light coming from the micro-mirror in the ON state) the micro roughly forming a minute spot on the position of f M from the lens.

なお、このスポット形成位置にほぼスポット径と同じ開口径を有するピンホールアレーを配置しても良い。ピンホールアレーを配置することにより、余分(不要)な光を遮光することができる。   Note that a pinhole array having an opening diameter substantially equal to the spot diameter may be disposed at the spot forming position. By arranging the pinhole array, extra (unnecessary) light can be shielded.

マイクロレンズの下方fの位置に生じたスポットパターンは第2の投影レンズ67に入射し、第2の投影レンズ67を出射した露光照明光は楔ガラス717と楔ガラス727とからなる楔ガラスユニットGU7を透過して、露光基板8上に倍率Mのスポットパターン配列像を形成する。 Spot pattern produced at a position below f M of the microlens is incident on the second projection lens 67, the exposure illumination light emitted from the second projection lens 67 is wedge glass unit consisting of the wedge glass 717 and the wedge glass 727 Metropolitan A spot pattern array image with a magnification M is formed on the exposure substrate 8 through the GU 7.

次に、楔ガラスユニットGU7について説明する。   Next, the wedge glass unit GU7 will be described.

図2は楔ガラスユニットGU7の要部斜視図であり、図3は図2のK矢視図である。   FIG. 2 is a perspective view of the main part of the wedge glass unit GU7, and FIG. 3 is a view taken in the direction of arrow K in FIG.

楔ガラス717は、板厚方向の一方の面717bが板厚方向の他方の面717aに対して角度θの傾斜面である。また、楔ガラス727は、板厚方向の一方の面727bが板厚方向の他方の面727aに対して角度θの傾斜面である。そして、面717aは第2の投影レンズ67の光軸に対して垂直に配置されている。一方、楔ガラス727は面727bが面717bに対して距離(間隔)δになるように組み合わせて配置されている。なお、この実施形態においては、楔ガラス727と楔ガラス717のxy方向の大きさはそれぞれ同じであり、図3に示すように、両者がz方向から見て、ぴったり重なるとき(以下、この場合の両者の位置を「楔ガラスの基準位置」という。)の面717aから面727aまでの距離はtである。以下、距離tを楔ガラスの「トータル厚さ」という。基準位置におけるトータル厚さtは4〜7mmに設定される。また、距離δは0.01〜0.3mmの間の一定値である。なお、距離δの最小値を0.01mmよりも小さくしても良いが、後述する移動機構の製作の容易さを考慮すると、距離δの最小値を0.05mm程度とするのが実用的である。また、距離δの最大値を0.3mmとするのは、距離δが0.3mmを超えると収差が大きくなるためである。   In the wedge glass 717, one surface 717b in the plate thickness direction is an inclined surface having an angle θ with respect to the other surface 717a in the plate thickness direction. Further, the wedge glass 727 is an inclined surface in which one surface 727b in the plate thickness direction is at an angle θ with respect to the other surface 727a in the plate thickness direction. The surface 717 a is disposed perpendicular to the optical axis of the second projection lens 67. On the other hand, the wedge glass 727 is arranged in combination so that the surface 727b is a distance (interval) δ with respect to the surface 717b. In this embodiment, the sizes of the wedge glass 727 and the wedge glass 717 are the same in the xy directions, and when they are exactly overlapped as seen from the z direction as shown in FIG. The distance from the surface 717a to the surface 727a of “wedge glass reference position” is t. Hereinafter, the distance t is referred to as “total thickness” of the wedge glass. The total thickness t at the reference position is set to 4 to 7 mm. The distance δ is a constant value between 0.01 and 0.3 mm. The minimum value of the distance δ may be smaller than 0.01 mm, but considering the ease of manufacturing the moving mechanism described later, it is practical to set the minimum value of the distance δ to about 0.05 mm. is there. The reason why the maximum value of the distance δ is 0.3 mm is that the aberration becomes large when the distance δ exceeds 0.3 mm.

図示を省略する移動機構は、楔ガラス727(または楔ガラス717のいずれか一方)を面727bに沿って(厳密に云えば、斜面の法線に直交し斜面に平行なベクトルの方向に沿って)楔ガラス727を移動させる。この移動機構は制御回路9により制御される。   The moving mechanism (not shown) moves the wedge glass 727 (or one of the wedge glasses 717) along the surface 727b (strictly speaking, along the direction of the vector perpendicular to the normal of the slope and parallel to the slope). ) The wedge glass 727 is moved. This moving mechanism is controlled by the control circuit 9.

いま、楔ガラス727を前記斜面に沿ってy方向に十Δy移動させると、投影レンズ2の光軸に平行な方向のガラスのトータル厚さ変化Δtは下記の式1で与えられる。   Now, if the wedge glass 727 is moved by Δy along the inclined surface in the y direction, the total thickness change Δt of the glass in the direction parallel to the optical axis of the projection lens 2 is given by the following equation (1).

Δt=−Δy・tanθ ・・・(式1)
ここで、楔ガラス717、727の屈折率をnとする。すると、トータル厚さがΔt変化することにより、第2の投影レンズ727の焦点位置の変化量Δzは下記の式2で表される(なお、上方がプラスである)。
Δt = −Δy · tan θ (Formula 1)
Here, the refractive index of the wedge glasses 717 and 727 is n. Then, when the total thickness changes by Δt, the amount of change Δz of the focal position of the second projection lens 727 is expressed by the following formula 2 (note that the upper part is positive).

Δz=−Δt・(n−1)/n
=Δy・tanθ ・(n−1)/n ・・・・(式2)
すなわち、楔ガラスユニットGU7は焦点合わせ装置である。
Δz = −Δt · (n−1) / n
= Δy · tan θ (n-1) / n (Expression 2)
That is, the wedge glass unit GU7 is a focusing device.

そこで、露光基板8上のレジスト面或いはレジストが載っている面の高さh(x、y)が予め測定されている場合は、以下のようにしてスポットの像をレジスト面上に位置決めすることができる。すなわち、高さh(x、y)のデータを制御回路9に入れておくと共に、楔ガラス717,727を基準位置に配置し、第2の投影レンズ67の結像面が露光基板8の設計上の表面高さに一致するようにしておく。そして、制御回路9に記憶されているデータに基づいて投影レンズが露光する領域の平均高さhを求め、式2におけるΔzがhの高さになる(Δz=h)ように楔ガラス72をΔy移動させて、露光する。このようにすると、精度に優れる露光を行うことができる。 Therefore, when the height h (x, y) of the resist surface on the exposure substrate 8 or the surface on which the resist is placed is measured in advance, the spot image is positioned on the resist surface as follows. Can do. That is, the data of the height h (x, y) is stored in the control circuit 9, the wedge glasses 717 and 727 are arranged at the reference position, and the image plane of the second projection lens 67 is the design of the exposure substrate 8. Make sure it matches the top surface height. Then, an average height h m of a region where the projection lens is exposed on the basis of the data stored in the control circuit 9, Delta] z in Equation 2 is the height of h m (Delta] z = h m) As wedge The glass 72 is moved by Δy and exposed. In this way, exposure with excellent accuracy can be performed.

ところで、従来のマスクレス露光装置では露光基板の表面が平坦であると仮定し、第2の投影レンズ61〜67の結像面が仮定した露光基板の表面に一致するようにして第2の投影レンズ61〜67をz方向に位置決めしていた。   By the way, in the conventional maskless exposure apparatus, it is assumed that the surface of the exposure substrate is flat, and the second projection lens 61 to 67 is formed so that the imaging plane of the second projection lenses 61 to 67 coincides with the assumed surface of the exposure substrate. The lenses 61 to 67 were positioned in the z direction.

しかし、例えば多層プリント基板の場合、場所により板厚が異なっているだけでなく、基板の積層化に伴う基板面の反りやうねり等のため、露光面が平坦である場合はほとんどない。このため、例えば、パターンの幅を均一にすることが困難であった。   However, in the case of a multilayer printed circuit board, for example, not only the plate thickness differs depending on the location, but also there is almost no case where the exposure surface is flat due to warpage or undulation of the substrate surface accompanying the lamination of the substrates. For this reason, for example, it has been difficult to make the width of the pattern uniform.

次に、露光基板の表面に凹凸がある場合や、反りがある場合でも精度に優れる露光を行うことができるマスクレス露光装置について説明する。   Next, a maskless exposure apparatus that can perform exposure with excellent accuracy even when the surface of the exposure substrate is uneven or warps will be described.

なお、楔ガラスユニットGU7は第2の投影レンズ67の入口側(すなわち、マイクロレンズアレー57と第2の投影レンズ67との間)に配置してもよい。   The wedge glass unit GU7 may be disposed on the entrance side of the second projection lens 67 (that is, between the microlens array 57 and the second projection lens 67).

図4は本発明に係るマスクレス露光装置の構成図であり、図1と同じものは同一の符号を付して重複する説明を省略する。また、図5は高さ検出器の構成図である。   FIG. 4 is a block diagram of a maskless exposure apparatus according to the present invention. The same components as those in FIG. FIG. 5 is a block diagram of the height detector.

ステージ80の上方に配置された第2の投影レンズ群(第2の投影レンズ61〜67)のy方向の一方の側(図示の場合は手前側)には、多数の高さ検出器600がx方向に並べて配置されたマルチ高さ検出器600Uが設けられている。個々の高さ検出器600は露光基板8のレジスト表面あるいはレジストの下の露光基板そのものの表面高さを検出する。   A number of height detectors 600 are provided on one side in the y direction (the front side in the figure) of the second projection lens group (second projection lenses 61 to 67) disposed above the stage 80. A multi-height detector 600U arranged side by side in the x direction is provided. Each height detector 600 detects the surface height of the resist surface of the exposure substrate 8 or the exposure substrate itself under the resist.

次に、高さ検出器600の構造について説明する。   Next, the structure of the height detector 600 will be described.

図5に示すように、高さ検出器600は、発光体601と、レンズ602と、レンズ603と、ポジションセンサ604とから構成されている。発光体601は、発光ダイオード(LED)またはレジストを感光させない赤色光を出力する半導体レーザ(LD)である。レンズ602は発光体601から出射した光を露光基板8の表面に集光する。レンズ603は基板表面で反射された光を集光し、ポジションセンサ604上に基板の反射部として結像させる。   As shown in FIG. 5, the height detector 600 includes a light emitter 601, a lens 602, a lens 603, and a position sensor 604. The light emitter 601 is a light emitting diode (LED) or a semiconductor laser (LD) that outputs red light that does not expose a resist. The lens 602 collects the light emitted from the light emitter 601 on the surface of the exposure substrate 8. The lens 603 collects the light reflected by the substrate surface and forms an image on the position sensor 604 as a reflection part of the substrate.

以上の構成であるから、露光基板8の高さが加工プログラムに設定した高さ(露光基板8の複数箇所の高さを実測して得た平均高さあるいは設計上の高さ。以下、「設定高さ」という。)と異なる場合、設定高さからのずれの大きさに応じてポジションセンサ上の結像位置が変化する。そこで、この変化量を読み取ることにより実際の露光基板8の高さを検出することができる。   With the above configuration, the height of the exposure substrate 8 is the height set in the processing program (the average height or the design height obtained by actually measuring the heights of a plurality of locations on the exposure substrate 8. If it is different from the “set height”, the imaging position on the position sensor changes according to the amount of deviation from the set height. Therefore, the actual height of the exposure substrate 8 can be detected by reading the amount of change.

次に、この実施形態の動作を説明する。   Next, the operation of this embodiment will be described.

図4における手前側から奧側に向けて、露光基板8を搭載したステージ80を感光材料の感度に応じた一定な速度vでy方向に移動させる。各高さ検出器600は一定時間毎に、露光基板8の表面高さを検出する。検出された表面高さは露光基板8の位置情報(測定した箇所のxy座標値)と共に制御回路9の記憶部に記憶される。高さが検出された箇所は速度vで定まる時間が経過すると露光位置87(DMD37と相似の矩形である。)に到達する。制御回路9は、露光位置87に到達した露光基板8の表面高さを記憶部から呼び出し、この情報に基づいて楔ガラス727をy方向に移動させ、第2の投影レンズ67の結像面を露光基板8の表面に一致させる。   The stage 80 on which the exposure substrate 8 is mounted is moved in the y direction at a constant speed v corresponding to the sensitivity of the photosensitive material from the near side to the heel side in FIG. Each height detector 600 detects the surface height of the exposure substrate 8 at regular time intervals. The detected surface height is stored in the storage unit of the control circuit 9 together with the position information of the exposure substrate 8 (the xy coordinate value of the measured location). The position where the height is detected reaches the exposure position 87 (a rectangle similar to the DMD 37) when the time determined by the speed v elapses. The control circuit 9 calls the surface height of the exposure substrate 8 that has reached the exposure position 87 from the storage unit, moves the wedge glass 727 in the y direction based on this information, and moves the image plane of the second projection lens 67 to the second projection lens 67. It is made to correspond to the surface of the exposure substrate 8.

図6は、露光基板8の断面図であり、露光基板8をx方向に断面した場合の表面近傍を模式的に示す図である。   FIG. 6 is a cross-sectional view of the exposure substrate 8, schematically showing the vicinity of the surface when the exposure substrate 8 is cross-sectioned in the x direction.

同図において、露光基板8の表面は実線で示してある。また、面700(Σex0)は設定高さである。同図に示すように、露光位置87内の高さは場所によりそれぞれ異なる。ここでは、検出器600が各露光位置の両端に配置されているので、各露光位置の両端の高さの平均値に、点線で示す第2の投影レンズの結像面を位置決めする。なお、検出器600の配置間隔を狭くすることにより、実際の露光基板8の表面と投影レンズの結像面との差のばらつきを小さくすることができる。   In the figure, the surface of the exposure substrate 8 is indicated by a solid line. Further, the surface 700 (Σex0) is a set height. As shown in the figure, the height in the exposure position 87 varies depending on the location. Here, since the detectors 600 are arranged at both ends of each exposure position, the imaging plane of the second projection lens indicated by the dotted line is positioned at the average value of the heights at both ends of each exposure position. Note that by narrowing the arrangement interval of the detectors 600, variation in the difference between the actual surface of the exposure substrate 8 and the imaging surface of the projection lens can be reduced.

また、ここではx方向の断面について説明したが、y方向にも同様なことが言える。したがって、例えば、露光位置87のy方向の長さがy1、x方向の長さがx1であるとすると、第2の投影レンズの結像面の高さを、領域y1×x1内で測定した高さの平均値に合わせるようにするのが実際的である。なお、他の露光位置81〜86についても同様である。   Further, although the cross section in the x direction has been described here, the same applies to the y direction. Therefore, for example, assuming that the exposure position 87 has a length in the y direction of y1 and a length in the x direction of x1, the height of the imaging plane of the second projection lens is measured in the region y1 × x1. It is practical to match the average height. The same applies to the other exposure positions 81 to 86.

以上説明したように、この実施形態では、露光時に露光基板の表面高さの計測と結像面の高さ方向の位置調整とを並行して行うので、露光基板の全面にわたり結像面をほぼ露光基板の表面に合わせることができる。この結果、パターン幅は均一になる。   As described above, in this embodiment, the measurement of the surface height of the exposure substrate and the position adjustment in the height direction of the imaging surface are performed in parallel during the exposure, so that the imaging surface is substantially covered over the entire surface of the exposure substrate. It can be matched to the surface of the exposure substrate. As a result, the pattern width becomes uniform.

次に、検出器600による露光基板表面の高さ検出精度をさらに向上させる方法について説明する。   Next, a method for further improving the height detection accuracy of the exposed substrate surface by the detector 600 will be described.

図5で説明した発光体607から出力される測定光をP偏光とし、主光線B11の入射角を露光基板8の表面に配置された感光層の屈折率で決まるブリュースター角θとして入射させる。このようにすると、図7に示すように、総ての入射光は感光層81を通過して(すなわち、感光層表面では反射されない)、下地の基板面に到達する。また、下地の基板面で反射して上方に戻る光は、ほとんどP偏光のまま感光層の表面で反射されることなくそのまま上方に戻り、検出光D11として感光層から出射してポジションセンサ604に入射する。すなわち、検出時にノイズとなる感光層表面で反射する図の点線で示したノイズ光D11nは0になる。しかも、ポジションセンサ604に入射する入射光はほとんど減衰しない。したがって、精度に優れる検出(測定)を行うことができる。 The measurement light output from the light emitter 607 described in FIG 5 is P-polarized light, is incident as a Brewster angle theta B determined by the refractive index of the incident angle of the principal ray B11 disposed on the surface of the exposed substrate 8 photosensitive layer . In this way, as shown in FIG. 7, all incident light passes through the photosensitive layer 81 (that is, is not reflected on the surface of the photosensitive layer) and reaches the underlying substrate surface. Further, the light that is reflected by the underlying substrate surface and returns upward remains almost P-polarized light and is not reflected by the surface of the photosensitive layer, and returns to the upper position as it is, and is emitted from the photosensitive layer as detection light D11 to the position sensor 604. Incident. That is, the noise light D11n indicated by the dotted line in the figure reflected on the surface of the photosensitive layer that becomes noise during detection becomes zero. Moreover, the incident light incident on the position sensor 604 is hardly attenuated. Therefore, detection (measurement) with excellent accuracy can be performed.

また、検出器600Uで測定した結果を制御回路9に保存するので、例えば、第2の投影光学系の焦点深度を超えるような反りがある場合でも、反りがある位置を容易に特定することができる。したがって、このような基板上の位置を予め表示したり、露光後にこの部分が不良になる危険性が高いことを警告表示したり、データとして保存しておくことが可能である。   Moreover, since the result measured by the detector 600U is stored in the control circuit 9, for example, even when there is a warp exceeding the focal depth of the second projection optical system, it is possible to easily identify the position where the warp is present. it can. Therefore, it is possible to display such a position on the substrate in advance, to display a warning that there is a high risk that this part will be defective after exposure, or to store it as data.

本発明の実施例1に係るマスクレス露光装置の構成図である。It is a block diagram of the maskless exposure apparatus which concerns on Example 1 of this invention. 本発明に係る楔ガラスユニットの要部斜視図である。It is a principal part perspective view of the wedge glass unit which concerns on this invention. 図2のK矢視図である。FIG. 3 is a view taken in the direction of arrow K in FIG. 2. 本発明の実施例2に係るマスクレス露光装置の構成図である。It is a block diagram of the maskless exposure apparatus which concerns on Example 2 of this invention. 高さ検出器の構成図である。It is a block diagram of a height detector. 露光基板の断面図である。It is sectional drawing of an exposure board | substrate. 本発明に係る計測光の説明図である。It is explanatory drawing of the measurement light which concerns on this invention.

符号の説明Explanation of symbols

8 露光基板
67 第2の投影レンズ
717 第1の楔ガラス
727 第2の楔ガラス
717u 第1の楔ガラスの面
727u 第2の楔ガラスの面
θ 楔ガラス717、727の傾斜面の角度
δ 面717uと面727uとの距離
8 Exposure substrate 67 Second projection lens 717 First wedge glass 727 Second wedge glass 717u First wedge glass surface 727u Second wedge glass surface θ Angle of inclined surfaces of wedge glasses 717 and 727 δ surface Distance between 717u and surface 727u

Claims (2)

露光照明光を出力する露光光源と、2次元空間変調器と、第1の投影レンズと、マイクロレンズアレーと、第2の投影レンズと、露光基板を保持し前記第2の投影レンズの光軸に直交する方向に移動するステージと、板厚方向の一方の面が板厚方向の他方の面に対して角度θの傾斜面である第1と第2の2つの楔ガラスと、前記楔ガラスの少なくとも一方を移動させる移動手段と、を有し、前記第1の楔ガラスの前記他方の面を前記第2の投影レンズの光軸に対して垂直に配置すると共に、前記第2の楔ガラスの前記一方の面を前記第1の楔ガラスの当該一方の面との距離が予め定める値になるように組み合わせて、前記第2の投影レンズの入射側または出射側に配置したマスクレス露光装置において、
前記第2の投影レンズの前記露光走査する方向の手前側に位置し、前記露光走査方向と直交する方向に並べられた複数の基板表面の高さ検出手段と、
前記複数の高さ検出手段によって検出された複数の高さ情報から、前記検出した基板上の位置が当該基板の露光走査により前記第2の投影レンズの光軸に至るまでの間に前記第2の投影レンズの焦点位置を演算し、前記基板上の位置が前記第2の投影レンズの光軸に至るときに前記第2の投影レンズの焦点が前記位置の基板の表面に一致するように前記移動手段を制御する制御回路と、
を備え
前記制御回路は前記高さ検出手段によって検出された検出結果を保存すると共に、前記第2の投影レンズの焦点深度を超える可能性の高い位置を露光後に警告表示することを特徴とするマスクレス露光装置。
An exposure light source that outputs exposure illumination light, a two-dimensional spatial modulator, a first projection lens, a microlens array, a second projection lens, and an optical axis of the second projection lens holding an exposure substrate A stage that moves in a direction orthogonal to the first, second wedge glass in which one surface in the thickness direction is inclined with respect to the other surface in the thickness direction, and the wedge glass Moving means for moving at least one of the first wedge glass, the other surface of the first wedge glass being arranged perpendicular to the optical axis of the second projection lens, and the second wedge glass A maskless exposure apparatus in which the one surface of the second projection lens is combined so that the distance from the one surface of the first wedge glass becomes a predetermined value and is arranged on the incident side or the emission side of the second projection lens In
A plurality of substrate surface height detection means arranged on the front side of the second scanning lens in the exposure scanning direction and arranged in a direction perpendicular to the exposure scanning direction;
From the plurality of height information detected by the plurality of height detection means, the second position during which the detected position on the substrate reaches the optical axis of the second projection lens by exposure scanning of the substrate. The focal position of the projection lens is calculated, and when the position on the substrate reaches the optical axis of the second projection lens, the focal point of the second projection lens coincides with the surface of the substrate at the position. A control circuit for controlling the moving means;
Equipped with a,
The control circuit stores a detection result detected by the height detection unit and displays a warning after exposure at a position likely to exceed the focal depth of the second projection lens. apparatus.
露光照明光を出力する露光光源と、2次元空間変調器と、第1の投影レンズと、マイクロレンズアレーと、第2の投影レンズと、露光基板を保持し前記第2の投影レンズの光軸に直交する方向に移動するステージと、板厚方向の一方の面が板厚方向の他方の面に対して角度θの傾斜面である第1と第2の2つの楔ガラスと、前記楔ガラスの少なくとも一方を移動させる移動手段と、を有し、前記第1の楔ガラスの前記他方の面を前記第2の投影レンズの光軸に対して垂直に配置すると共に、前記第2の楔ガラスの前記一方の面を前記第1の楔ガラスの当該一方の面との距離が予め定める値になるように組み合わせて、前記第2の投影レンズの入射側または出射側に配置したマスクレス露光装置において、
前記第2の投影レンズの前記露光走査する方向の手前側に位置し、前記露光走査方向と直交する方向に並べられた複数の基板表面の高さ検出手段と、
前記複数の高さ検出手段によって検出された複数の高さ情報から、前記検出した基板上の位置が当該基板の露光走査により前記第2の投影レンズの光軸に至るまでの間に前記第2の投影レンズの焦点位置を演算し、前記基板上の位置が前記第2の投影レンズの光軸に至るときに前記第2の投影レンズの焦点が前記位置の基板の表面に一致するように前記移動手段を制御する制御回路と、
を備え、
前記制御回路は前記高さ検出手段によって検出された検出結果を保存すると共に、前記第2の投影レンズの焦点深度を超える可能性の高い位置を露光後に保存することを特徴とするマスクレス露光装置。
An exposure light source that outputs exposure illumination light, a two-dimensional spatial modulator, a first projection lens, a microlens array, a second projection lens, and an optical axis of the second projection lens holding an exposure substrate A stage that moves in a direction orthogonal to the first, second wedge glass in which one surface in the thickness direction is inclined with respect to the other surface in the thickness direction, and the wedge glass Moving means for moving at least one of the first wedge glass, the other surface of the first wedge glass being arranged perpendicular to the optical axis of the second projection lens, and the second wedge glass A maskless exposure apparatus in which the one surface of the second projection lens is combined so that the distance from the one surface of the first wedge glass becomes a predetermined value and is arranged on the incident side or the emission side of the second projection lens In
A plurality of substrate surface height detection means arranged on the front side of the second scanning lens in the exposure scanning direction and arranged in a direction perpendicular to the exposure scanning direction;
From the plurality of height information detected by the plurality of height detection means, the second position during which the detected position on the substrate reaches the optical axis of the second projection lens by exposure scanning of the substrate. The focal position of the projection lens is calculated, and when the position on the substrate reaches the optical axis of the second projection lens, the focal point of the second projection lens coincides with the surface of the substrate at the position. A control circuit for controlling the moving means;
With
Together with the control circuit stores the result of detection by said height detecting means, the second possible features and to luma Sukuresu exposure to saving the likely position beyond the depth of focus of the projection lens after exposure apparatus.
JP2007249885A 2007-09-26 2007-09-26 Maskless exposure system Active JP4543069B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007249885A JP4543069B2 (en) 2007-09-26 2007-09-26 Maskless exposure system
TW097128953A TWI443473B (en) 2007-09-26 2008-07-31 No mask exposure device
KR1020080078837A KR101516607B1 (en) 2007-09-26 2008-08-12 Maskless exposure apparatus
CN2008101449489A CN101398631B (en) 2007-09-26 2008-08-13 Maskless exposure device
DE102008038443.7A DE102008038443B4 (en) 2007-09-26 2008-08-20 Maskless exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007249885A JP4543069B2 (en) 2007-09-26 2007-09-26 Maskless exposure system

Publications (2)

Publication Number Publication Date
JP2009080324A JP2009080324A (en) 2009-04-16
JP4543069B2 true JP4543069B2 (en) 2010-09-15

Family

ID=40384579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007249885A Active JP4543069B2 (en) 2007-09-26 2007-09-26 Maskless exposure system

Country Status (5)

Country Link
JP (1) JP4543069B2 (en)
KR (1) KR101516607B1 (en)
CN (1) CN101398631B (en)
DE (1) DE102008038443B4 (en)
TW (1) TWI443473B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5354803B2 (en) * 2010-06-28 2013-11-27 株式会社ブイ・テクノロジー Exposure equipment
CN105549337A (en) * 2016-02-03 2016-05-04 京东方科技集团股份有限公司 Photolithography device and photolithography method and fabrication method of display substrate
CN109075185B (en) * 2016-07-13 2023-07-18 应用材料公司 Micro LED array as illumination source
JP2019045836A (en) * 2017-09-01 2019-03-22 株式会社アドテックエンジニアリング Direct drawing exposure device
KR20190054815A (en) 2017-11-14 2019-05-22 삼성전자주식회사 Maskless exposure method, maskless exposure apparatus and method of manufacturing a semiconductor device using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004163798A (en) * 2002-11-15 2004-06-10 Fuji Photo Film Co Ltd Exposure apparatus
JP2005266779A (en) * 2004-02-18 2005-09-29 Fuji Photo Film Co Ltd Exposure apparatus and method
JP2006030791A (en) * 2004-07-20 2006-02-02 Fuji Photo Film Co Ltd Optical apparatus
JP2007025005A (en) * 2005-07-12 2007-02-01 Fujifilm Holdings Corp Method for manufacturing structure in cell, structure in cell, and display device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5209813A (en) 1990-10-24 1993-05-11 Hitachi, Ltd. Lithographic apparatus and method
JP3139023B2 (en) * 1991-01-30 2001-02-26 株式会社日立製作所 Electron beam apparatus and focus adjustment method for electron beam apparatus
JP4546019B2 (en) 2002-07-03 2010-09-15 株式会社日立製作所 Exposure equipment
JP4244156B2 (en) 2003-05-07 2009-03-25 富士フイルム株式会社 Projection exposure equipment
US7061591B2 (en) * 2003-05-30 2006-06-13 Asml Holding N.V. Maskless lithography systems and methods utilizing spatial light modulator arrays
US7197828B2 (en) 2005-05-31 2007-04-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method utilizing FPD chuck Z position measurement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004163798A (en) * 2002-11-15 2004-06-10 Fuji Photo Film Co Ltd Exposure apparatus
JP2005266779A (en) * 2004-02-18 2005-09-29 Fuji Photo Film Co Ltd Exposure apparatus and method
JP2006030791A (en) * 2004-07-20 2006-02-02 Fuji Photo Film Co Ltd Optical apparatus
JP2007025005A (en) * 2005-07-12 2007-02-01 Fujifilm Holdings Corp Method for manufacturing structure in cell, structure in cell, and display device

Also Published As

Publication number Publication date
CN101398631A (en) 2009-04-01
TW200915016A (en) 2009-04-01
CN101398631B (en) 2012-09-26
TWI443473B (en) 2014-07-01
KR101516607B1 (en) 2015-04-30
DE102008038443B4 (en) 2023-07-27
DE102008038443A1 (en) 2009-04-02
JP2009080324A (en) 2009-04-16
KR20090031977A (en) 2009-03-31

Similar Documents

Publication Publication Date Title
KR101269298B1 (en) Surface position detection apparatus, exposure apparatus, and exposure method
JP4315455B2 (en) Exposure apparatus and device manufacturing method
US7528966B2 (en) Position detection apparatus and exposure apparatus
JP3634068B2 (en) Exposure method and apparatus
JP5577625B2 (en) Surface position detection apparatus, exposure apparatus, surface position detection method, and device manufacturing method
JP2010066256A (en) Plane position detection apparatus, exposure system, method for detecting plane position, and method for manufacturing device
JP4676205B2 (en) Exposure apparatus and exposure method
JP4543069B2 (en) Maskless exposure system
JP2000081320A (en) Face position detector and fabrication of device employing it
US7382469B2 (en) Exposure apparatus for manufacturing semiconductor device, method of exposing a layer of photoresist, and method of detecting vibrations and measuring relative position of substrate during an exposure process
WO2020095453A1 (en) Layering/molding device
JP5137879B2 (en) Exposure apparatus and device manufacturing method
JP2011066087A (en) Exposure device, and exposure method
JP2003142379A (en) Method of exposing pattern and device thereof, and method of manufacturing electronic device and the electronic device
JP2008300839A (en) Detection device, movable body apparatus, pattern formation apparatus and pattern formation method, exposure apparatus and exposure method, and device manufacturing method
TWM550415U (en) Image projection apparatus and system
JP2008058477A (en) Drawing device
JP2006310683A (en) Method for adjustment
JP2008042036A (en) Exposure apparatus, and device manufacturing method
US20100110400A1 (en) Scanning exposure apparatus, control method therefor, and device manufacturing method
JP2008242066A (en) Positional information management device, drawing system and positional information management method
JPH09246356A (en) Surface position setting method
JPH04348019A (en) Focus position detecting device
JP2009218588A (en) Lithographic apparatus and method
JP4583827B2 (en) Image forming apparatus and image forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100628

R150 Certificate of patent or registration of utility model

Ref document number: 4543069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250