JP2019032378A - Substrate position detection device, exposure apparatus and method for detecting substrate position - Google Patents

Substrate position detection device, exposure apparatus and method for detecting substrate position Download PDF

Info

Publication number
JP2019032378A
JP2019032378A JP2017151984A JP2017151984A JP2019032378A JP 2019032378 A JP2019032378 A JP 2019032378A JP 2017151984 A JP2017151984 A JP 2017151984A JP 2017151984 A JP2017151984 A JP 2017151984A JP 2019032378 A JP2019032378 A JP 2019032378A
Authority
JP
Japan
Prior art keywords
light
substrate
polarized component
polarizing element
polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017151984A
Other languages
Japanese (ja)
Inventor
耕平 山部
Kohei Yamabe
耕平 山部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orc Manufacturing Co Ltd
Original Assignee
Orc Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orc Manufacturing Co Ltd filed Critical Orc Manufacturing Co Ltd
Priority to JP2017151984A priority Critical patent/JP2019032378A/en
Publication of JP2019032378A publication Critical patent/JP2019032378A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

To perform focus control on a substrate with high accuracy in an exposure apparatus.SOLUTION: An exposure apparatus 10 for projecting pattern light onto a substrate W is provided with a substrate position detection device 20 including a projection part 22 and a detection part 24. The detection part 24 includes a polarizing element 26, a light-receiving part 27 and an imaging optical system 28, in which a polarizing element control part 29 controls polarization of the polarizing element 26. Upon controlling a focus, reflected light of s-polarized light and reflected light of p-polarized light are successively made to enter the light-receiving part 27 by switching polarized light. An image computation part 52 obtains a difference between an image data showing the light intensity distribution of the s-polarized light and an image data showing the light intensity distribution of the p-polarized light, and detects a substrate position from a pixel position where a peak appears.SELECTED DRAWING: Figure 1

Description

本発明は、露光装置に関し、特に、基板位置検出に関する。   The present invention relates to an exposure apparatus, and more particularly to substrate position detection.

投影露光装置(ステッパーなど)、マスクレス露光装置などでは、光源から放射される光を照明光学系、投影光学系によって基板表面上に結像させ、パターンを形成する。これらの露光装置では、露光前に焦点検出、焦点調整が行われ、露光面を投影光学系の結像面に一致させる。三角測距原理を利用する焦点検出方式では、基板表面に対して光を斜め方向から照射し、ラインセンサなどの受光部が反射光を受光すると、その受光位置から基板位置を検出し、基準位置との差(ずれ)に基づいて基板高さ調整などを行い、焦点調整する。   In a projection exposure apparatus (such as a stepper) and a maskless exposure apparatus, light emitted from a light source is imaged on a substrate surface by an illumination optical system and a projection optical system to form a pattern. In these exposure apparatuses, focus detection and focus adjustment are performed before exposure, and the exposure surface is made to coincide with the imaging surface of the projection optical system. In the focus detection method using the triangulation principle, the substrate surface is irradiated with light from an oblique direction, and when the light receiving unit such as a line sensor receives the reflected light, the substrate position is detected from the light receiving position, and the reference position The substrate height is adjusted based on the difference (displacement) from and the focus is adjusted.

フォトリソグラフィで用いられる基板は、シリコンウェハなどの基材上に透過性のフォトレジスト層を形成している。そのため、焦点検出用の光を基板に対して斜め方向から入射させると、フォトレジスト表面の反射光だけでなく、フォトレジストを透過して基材で反射した光も、受光部に入射する。この光はノイズ成分となり、計測誤差が生じる。   A substrate used in photolithography forms a transparent photoresist layer on a base material such as a silicon wafer. Therefore, when the focus detection light is incident on the substrate from an oblique direction, not only the reflected light from the photoresist surface but also the light transmitted through the photoresist and reflected by the base material enters the light receiving unit. This light becomes a noise component, resulting in a measurement error.

これを解消するため、ビームスプリッタを利用する基板位置検出が知られている(特許文献1参照)。そこでは、s偏光とp偏光両方を含む光を基板に向けて斜め方向から照射し、反射光をビームスプリッタによってs偏光とp偏光とに分離する。そして、別々のポジションセンサにs偏光、p偏光を入射させる。ポジションセンサそれぞれの受光位置(光量ピークの画素位置)に基づき、レジスト表面の位置が検出される。   In order to solve this problem, substrate position detection using a beam splitter is known (see Patent Document 1). In this case, light including both s-polarized light and p-polarized light is irradiated toward the substrate from an oblique direction, and the reflected light is separated into s-polarized light and p-polarized light by a beam splitter. Then, s-polarized light and p-polarized light are incident on separate position sensors. The position of the resist surface is detected based on the light receiving position (pixel position of the light intensity peak) of each position sensor.

特開平5−182896号公報JP-A-5-182896

アドバンスドパッケージ基板(FO−PLPなど)などでは、半導体チップがモールドされて再配線層が形成された基材上にフォトレジスト層が形成されている。このような基板では、基材表面の凹凸が大きく、また、粗面化処理を行っている。そのため、基板位置検出用の光を投光すると、基材表面で乱反射し、複数のピークをもつ複雑、不規則な光強度分布特性をもつ反射光が受光部に入射する。   In an advanced package substrate (FO-PLP or the like), a photoresist layer is formed on a base material on which a redistribution layer is formed by molding a semiconductor chip. Such a substrate has large irregularities on the surface of the base material and is subjected to a roughening treatment. For this reason, when the light for detecting the substrate position is projected, the reflected light is diffusely reflected on the surface of the base material and has a complex and irregular light intensity distribution characteristic having a plurality of peaks.

そのため、ビームスプリッタによってp偏光、s偏光に分離しても、基材からの反射光成分を除去し、フォトレジストの反射光を抽出することが難しい。また、p偏光、s偏光の光を別々のフォトセンサに入射させる構成であるため、光学系の位置決め誤差などに起因して、フォトセンサ同士の各画素の対応位置関係にずれが生じ、基板位置検出に誤差が生じる恐れがある。   For this reason, it is difficult to remove the reflected light component from the base material and extract the reflected light of the photoresist even if it is separated into p-polarized light and s-polarized light by the beam splitter. In addition, since the p-polarized light and the s-polarized light are incident on separate photosensors, a shift occurs in the corresponding positional relationship between the pixels of the photosensors due to an optical system positioning error or the like. An error may occur in detection.

したがって、基板の種類に関わらず、基板位置を精度よく検出することが求められる。   Therefore, it is required to accurately detect the substrate position regardless of the type of the substrate.

本発明の基板位置検出装置は、マスクレス露光装置、投影露光装置(ステッパーなど)に適用可能であり、フォトレジスト層を表面に形成した基板に斜め方向から光を投光する投光部と、光の反射方向に配置され、光の反射光のs偏光成分の選択およびp偏光成分の選択が可能な偏光素子と、偏光素子の選択によって偏光素子を通過するs偏光成分とp偏光成分とを受光する受光部とを備える。   The substrate position detection apparatus of the present invention is applicable to a maskless exposure apparatus and a projection exposure apparatus (such as a stepper), and a light projecting unit that projects light from an oblique direction onto a substrate having a photoresist layer formed on the surface thereof, A polarizing element that is arranged in the light reflection direction and can select an s-polarized component and a p-polarized component of reflected light, and an s-polarized component and a p-polarized component that pass through the polarizing element by selecting the polarizing element. A light receiving portion for receiving light.

偏光素子が偏光成分を選択することによって、s偏光成分とp偏光成分とが同一の受光部に順番に入射する。そして、偏光素子の偏光切替に応じて受光部に入射するs偏光成分とp偏光成分とに基づいて、基板位置が検出される。例えば、受光部に入射するs偏光成分の光強度分布と、受光部に入射するp偏光成分の光強度分布との差に基づいて、基板位置を演算する画像演算部を設けることが可能である。   When the polarization element selects the polarization component, the s-polarization component and the p-polarization component are sequentially incident on the same light receiving unit. Then, the substrate position is detected based on the s-polarized component and the p-polarized component incident on the light receiving unit according to the polarization switching of the polarizing element. For example, it is possible to provide an image calculation unit that calculates the substrate position based on the difference between the light intensity distribution of the s-polarized component incident on the light receiving unit and the light intensity distribution of the p-polarized component incident on the light receiving unit. .

偏光素子は、s偏光、p偏光を選択的に透過させることが可能な素子あって、液晶偏光変調器など電気的な偏光切り替えを可能とする偏光素子によって構成することが可能である。例えば、s偏光透過(p偏光遮断)、p偏光透過(s偏光遮断)という偏光切り替えを行う偏光素子制御部を設けることが可能である。一方、複数の偏光フィルタを光路上に切り替えて機械的に偏光切り替えすることもできる。偏光素子は、例えば、反射光を受光部の受光面に結像させる結像光学系と、受光部との間に設けられる。投光部は、例えばレーザ光源によって構成することができる。   The polarizing element is an element that can selectively transmit s-polarized light and p-polarized light, and can be configured by a polarizing element that enables electrical polarization switching, such as a liquid crystal polarization modulator. For example, it is possible to provide a polarizing element control unit that performs polarization switching such as s-polarized light transmission (p-polarized light blocking) and p-polarized light transmission (s-polarized light blocking). On the other hand, a plurality of polarization filters can be switched on the optical path to switch the polarization mechanically. The polarizing element is provided, for example, between an imaging optical system that forms an image of reflected light on the light receiving surface of the light receiving unit and the light receiving unit. The light projecting unit can be configured by, for example, a laser light source.

フォトレジストの屈折率、そのフォトレジストに対するs偏光成分とp偏光成分の反射率の差を考慮すると、基板に対する光の入射角度αは、50°<α<80°を満たすようにすればよい。より好ましくは、フォトレジスト表面でのブリュースター角度をBとしたとき、基板に対する光の入射角度αは、B<α<80°を満たすようにするのがよい。例えば、入射角度αを、s偏光成分とp偏光成分の反射率の差が最大あるいは最大付近となる65°<α<80°にすればよい。   In consideration of the refractive index of the photoresist and the difference between the reflectance of the s-polarized component and the p-polarized component with respect to the photoresist, the incident angle α of the light with respect to the substrate may satisfy 50 ° <α <80 °. More preferably, when the Brewster angle on the photoresist surface is B, the incident angle α of light with respect to the substrate should satisfy B <α <80 °. For example, the incident angle α may be set to 65 ° <α <80 ° at which the difference in reflectance between the s-polarized component and the p-polarized component is at or near the maximum.

本発明の他の態様における基板位置検出方法は、フォトレジスト層を表面に形成した基板に斜め方向から光を投光し、光の反射光を偏光素子に入射させてs偏光成分およびp偏光成分を選択し、偏光素子の選択によって偏光素子を順次通過したs偏光成分とp偏光成分とを受光部に入射させ、受光部が受光するs偏光成分とp偏光成分とに基づいて、基板の高さ位置を検出する。   According to another aspect of the present invention, there is provided a substrate position detecting method in which light is projected from an oblique direction onto a substrate having a photoresist layer formed on a surface thereof, and reflected light of the light is incident on a polarizing element to generate an s-polarized component and a p-polarized component. The s-polarized component and the p-polarized component that sequentially pass through the polarizing element by the selection of the polarizing element are made incident on the light receiving unit, and the height of the substrate is determined based on the s-polarized component and the p-polarized component received by the light receiving unit. The position is detected.

本発明によれば、露光装置において、精度よく基板の焦点調整を行うことができる。   According to the present invention, it is possible to accurately adjust the focus of a substrate in an exposure apparatus.

本実施形態である露光装置のブロック図である。It is a block diagram of the exposure apparatus which is this embodiment. 図1の投光部、検出部の構成を示した図である。It is the figure which showed the structure of the light projection part of FIG. 1, and a detection part. 反射光を偏光させずにそのまま受光部へ入射させたときの光強度部分布を示した図である。It is the figure which showed the light intensity part distribution when reflected light is entered into a light-receiving part as it is without polarizing. フォトレジストへの入射角度を変化させたときのs偏光、p偏光の反射率のグラフを示した図である。It is the figure which showed the graph of the reflectance of s polarized light when changing the incident angle to a photoresist, and p polarized light. 反射光(L2、L3)に対してs偏光を透過させ、p偏光を遮断した場合に受光部27に入射する光の強度分布を示した図である。It is the figure which showed intensity distribution of the light which injects into the light-receiving part 27, when s-polarized light is permeate | transmitted with respect to reflected light (L2, L3) and p-polarized light is interrupted | blocked. 反射光(L2、L3)に対してp偏光を透過させ、s偏光を遮断した場合に受光部27に入射する光の強度分布を示した図である。It is the figure which showed intensity distribution of the light which injects into the light-receiving part 27, when p polarized light is permeate | transmitted with respect to reflected light (L2, L3) and s polarized light is interrupted | blocked. 図5の光強度分布(G1、F1)と図6の光強度分布(G2、F2)との差分をとったときの光強度分布を示した図である。It is the figure which showed the light intensity distribution when the difference of the light intensity distribution (G1, F1) of FIG. 5 and the light intensity distribution (G2, F2) of FIG. 6 is taken. 基板位置検出を含む焦点調整処理のフローを示した図である。It is the figure which showed the flow of the focus adjustment process including a board | substrate position detection.

以下では、図面を参照して本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、第1の実施形態である露光装置の概略的構成図である。   FIG. 1 is a schematic block diagram of an exposure apparatus according to the first embodiment.

露光装置10は、レチクル16に形成されたマスクパターンを、ステップ&リピート方式に従って基板(ワーク基板)Wに転写する露光装置であり、紫外線を放射する光源(放電ランプなど)12、照明光学系14、投影光学系18を備えている。光源12から放射された光は、照明光学系14によって照明光量均一の平行光となり、レチクル16に入射する。光源12は、光源駆動部(図示せず)によって駆動される。   The exposure apparatus 10 is an exposure apparatus that transfers a mask pattern formed on a reticle 16 to a substrate (work substrate) W according to a step-and-repeat method. A light source (discharge lamp or the like) 12 that emits ultraviolet rays, and an illumination optical system 14 are used. , A projection optical system 18 is provided. The light emitted from the light source 12 becomes parallel light with a uniform illumination light quantity by the illumination optical system 14 and enters the reticle 16. The light source 12 is driven by a light source driving unit (not shown).

レチクル16は、石英材などから構成されており、回路パターンなどのマスクパターンが形成されている。レチクル16は、マスクパターンが投影光学系18の光源側焦点位置となるように、レチクル用ステージ(図示せず)に搭載されている。レチクル16のマスクパターンを透過した光は、投影光学系18によって基板Wにパターン光として投影される。基板Wは、その露光面が投影光学系18の像側焦点位置と一致するように、露光ステージ30に搭載されている。   The reticle 16 is made of a quartz material or the like, and is formed with a mask pattern such as a circuit pattern. The reticle 16 is mounted on a reticle stage (not shown) so that the mask pattern is the light source side focal position of the projection optical system 18. The light transmitted through the mask pattern of the reticle 16 is projected as pattern light onto the substrate W by the projection optical system 18. The substrate W is mounted on the exposure stage 30 so that the exposure surface thereof coincides with the image side focal position of the projection optical system 18.

基板Wを搭載した露光ステージ30には、互いに直交するX−Y―Zの3軸座標系が規定されている。露光ステージ30は、基板Wを焦点面に沿って移動させるようにX−Y方向に移動可能であるとともに、焦点面(X−Y方向)に垂直なZ軸方向(投影光学系18の光軸方向)へ移動可能であり、さらに、X−Y座標平面上で回転可能である。露光ステージ30の位置座標は、図示しないレーザ干渉計もしくはリニアエンコーダによって測定される。   An XYZ triaxial coordinate system orthogonal to each other is defined for the exposure stage 30 on which the substrate W is mounted. The exposure stage 30 is movable in the XY direction so as to move the substrate W along the focal plane, and also in the Z-axis direction (the optical axis of the projection optical system 18) perpendicular to the focal plane (XY direction). Direction) and can be rotated on an XY coordinate plane. The position coordinates of the exposure stage 30 are measured by a laser interferometer or a linear encoder (not shown).

制御部50は、ステップ&リピート方式に従い、基板Wに形成された各ショット領域にレチクル16のマスクパターンを順次転写していく。すなわち、制御部50は、ショット領域間隔に従って露光ステージ30を間欠的に移動させ、マスクパターンの投影位置に露光対象となるショット領域が位置決めされると、光源12を駆動してパターン光をショット領域に投影させる。   The control unit 50 sequentially transfers the mask pattern of the reticle 16 to each shot area formed on the substrate W in accordance with the step & repeat method. That is, the controller 50 intermittently moves the exposure stage 30 according to the shot area interval, and when the shot area to be exposed is positioned at the projection position of the mask pattern, the control unit 50 drives the light source 12 to emit the pattern light to the shot area. To project.

露光装置10の投影光学系18下方には、焦点調整時に基板Wの高さ方向(z方向)の位置を検出する基板位置検出装置20が設けられている。基板位置検出装置20は、投光部22、検出部24を備え、検出部24は、偏光素子26、受光部27、結像光学系28を備える。画像演算部52は、受光部27から出力される信号に基づいて基板W表面の位置(基板位置)を演算する。ここで基板W表面の位置とは、基材表面に設けられたフォトレジスト層、カバーフィルム等のうち、もっとも表面にある面の位置を意味する。偏光素子制御部29は、偏光素子26の偏光を切り替え制御する。   Below the projection optical system 18 of the exposure apparatus 10 is provided a substrate position detection device 20 that detects the position of the substrate W in the height direction (z direction) during focus adjustment. The substrate position detection device 20 includes a light projecting unit 22 and a detection unit 24, and the detection unit 24 includes a polarizing element 26, a light receiving unit 27, and an imaging optical system 28. The image calculation unit 52 calculates the position (substrate position) of the surface of the substrate W based on the signal output from the light receiving unit 27. Here, the position on the surface of the substrate W means the position of the surface on the most surface among the photoresist layer, the cover film and the like provided on the surface of the base material. The polarization element control unit 29 switches and controls the polarization of the polarization element 26.

図2は、図1の投光部22、検出部24の構成を示した図である。   FIG. 2 is a diagram illustrating the configuration of the light projecting unit 22 and the detecting unit 24 of FIG.

投光部22は、光を放射する光源を備え、ここではレーザ光源によって構成されている。例えば、赤色レーザ光を発光するレーザ光源が適用可能である。投光部22は、レーザ光が基板Wに対して基板斜め方向から入射するように装着されている。入射角度αは、後述するように50°〜80°の範囲内に定められる。例えば、入射角度αを75°に定めることができる。   The light projecting unit 22 includes a light source that emits light, and here is configured by a laser light source. For example, a laser light source that emits red laser light is applicable. The light projecting unit 22 is mounted so that the laser light is incident on the substrate W from an oblique direction of the substrate. The incident angle α is determined within a range of 50 ° to 80 ° as will be described later. For example, the incident angle α can be set to 75 °.

検出部24は、赤色レーザ光の基板Wで反射した光を検出する。受光部27は、ここではライン状に複数の画素(受光素子)を配列させたラインセンサで構成され、反射光が進行する方向に配置されている。例えば、CCDあるいはCOMS型ラインセンサが配置可能である。結像光学系28は、基板Wと受光部27との間に配置されていて、レーザ反射光を受光部27の受光面に結像させる。   The detection unit 24 detects light reflected by the substrate W of red laser light. Here, the light receiving unit 27 includes a line sensor in which a plurality of pixels (light receiving elements) are arranged in a line, and is arranged in a direction in which reflected light travels. For example, a CCD or COMS type line sensor can be arranged. The imaging optical system 28 is disposed between the substrate W and the light receiving unit 27 and forms an image of the laser reflected light on the light receiving surface of the light receiving unit 27.

偏光素子26は、入射する光のs偏光成分(以下s偏光という)の透過とp偏光成分(以下p偏光という)の遮断、p偏光の透過とs偏光の遮断いずれかを選択可能(切り替え可能)な偏光素子であり、ここでは液晶偏光変調器によって構成されている。ただし、偏光の異なる2枚の偏光フィルタを機械的に入れ替える構造、あるいは1枚の偏光フィルタを回転させる構造にすることも可能である。   The polarizing element 26 can select (switchable) one of transmission of s-polarized light component (hereinafter referred to as s-polarized light) and blocking of p-polarized light component (hereinafter referred to as p-polarized light) and blocking of p-polarized light and blocking of s-polarized light. In this case, the polarizing element is constituted by a liquid crystal polarization modulator. However, a structure in which two polarizing filters having different polarizations are mechanically replaced, or a structure in which one polarizing filter is rotated may be employed.

フォトレジストFDを基材BDの表面上に形成した基板Wは、ここではFO−PLP(Fan−Out Panel Level Package)やFO−WLP(Fan−Out Wafer Level Package)などのアドバンストパッケージ基板によって構成されている。アドバンスドパッケージ基板の基材には、樹脂材に半導体チップがモールドされ、複数の配線と絶縁層が形成されている。そのため、基材表面には凹凸が生じる。また、粗面化処理なども行われるため、表面が平滑でない。   The substrate W on which the photoresist FD is formed on the surface of the base material BD is composed of an advanced package substrate such as FO-PLP (Fan-Out Panel Level Package) or FO-WLP (Fan-Out Wafer Level Package). ing. On the base material of the advanced package substrate, a semiconductor chip is molded into a resin material, and a plurality of wirings and insulating layers are formed. Therefore, unevenness occurs on the surface of the substrate. Moreover, since the roughening process etc. are also performed, the surface is not smooth.

基材BD上に層状に形成されたフォトレジストFDは、紫外線に感度を有し、基板Wに入射する赤色レーザ光に対して感度をもたない。ここでは、液体状レジスト、ドライフィルムレジスト等が使用可能であり、また、フォトレジスト表面にカバーフィルムを貼り付けてもよい。   The photoresist FD formed in a layer on the base material BD has sensitivity to ultraviolet rays and does not have sensitivity to red laser light incident on the substrate W. Here, a liquid resist, a dry film resist or the like can be used, and a cover film may be attached to the surface of the photoresist.

フォトレジストFDでは、基板Wに入射するレーザ光(以下、入射光L1とする)の一部がその表面で反射する。フォトレジストFDを透過した残りのレーザ光は、基材BDの表面で反射する。上述したように、基材BDの表面が平滑でないため、基材BDに入射したレーザ光は乱反射する。   In the photoresist FD, a part of laser light (hereinafter referred to as incident light L1) incident on the substrate W is reflected on the surface thereof. The remaining laser light transmitted through the photoresist FD is reflected by the surface of the base material BD. As described above, since the surface of the substrate BD is not smooth, the laser light incident on the substrate BD is irregularly reflected.

したがって、フォトレジストFDの表面で反射した光(以下、反射光L2とする)と、基材BDの表面で乱反射した光(以下、反射光L3)とがそのまま受光部27に入射すると、その光強度分布は複雑な強度分布となる。   Therefore, when light reflected on the surface of the photoresist FD (hereinafter referred to as reflected light L2) and light irregularly reflected on the surface of the base material BD (hereinafter referred to as reflected light L3) enter the light receiving unit 27 as they are, the light The intensity distribution is a complex intensity distribution.

図3は、反射光L2、L3をそのまま受光部27へ入射させたときの光強度部分布を示した図である。横軸は画素位置、縦軸は各画素位置での検出光量を示す。   FIG. 3 is a diagram showing a light intensity portion distribution when the reflected lights L2 and L3 are incident on the light receiving portion 27 as they are. The horizontal axis indicates the pixel position, and the vertical axis indicates the detected light amount at each pixel position.

受光部27の受光ライン上に沿って検出される光強度分布(光量分布)は、複数の波長ピークが不規則に現れる複雑な強度分布となる。このような光強度分布から、フォトレジストFDの反射光L2に応じた光強度成分を抽出し、そのピークの画素位置から基板位置、すなわちフォトレジストFDの表面位置を検出する必要がある。   The light intensity distribution (light quantity distribution) detected along the light receiving line of the light receiving unit 27 is a complex intensity distribution in which a plurality of wavelength peaks appear irregularly. From such a light intensity distribution, it is necessary to extract a light intensity component corresponding to the reflected light L2 of the photoresist FD, and to detect the substrate position, that is, the surface position of the photoresist FD from the peak pixel position.

本実施形態では、偏光素子26の遮断する偏光方向を切り替えること(偏光切替)によって、反射光L2、L3のs偏光、p偏光を交互に受光部27に入射させる。そして、s偏光、p偏光の光強度分布の差分をとることによって、フォトレジストFDの反射光L2のピーク画素位置を検出する。以下、これについて説明する。   In the present embodiment, the s-polarized light and the p-polarized light of the reflected light L2 and L3 are alternately incident on the light receiving unit 27 by switching the polarization direction blocked by the polarizing element 26 (polarization switching). Then, the peak pixel position of the reflected light L2 of the photoresist FD is detected by taking the difference between the light intensity distributions of s-polarized light and p-polarized light. This will be described below.

図4は、フォトレジストへの入射角度を変化させたときのs偏光、p偏光の反射率のグラフを示した図である。   FIG. 4 is a graph showing the reflectance of s-polarized light and p-polarized light when the incident angle to the photoresist is changed.

フォトレジストFDに斜め方向から入射する光L1は、p偏光とs偏光との間で反射率が相違し、その入射角度によってその差の大きさが異なることが知られている。フォトレジストFDの屈折率nを、1.5〜1.6とした場合、s偏光、p偏光の反射率は、ラインP1、P2によって表される。p偏光の反射率がゼロとなるブリュースター角度Bが、ここでは60°となっている。   It is known that the light L1 incident on the photoresist FD from an oblique direction has different reflectance between p-polarized light and s-polarized light, and the magnitude of the difference varies depending on the incident angle. When the refractive index n of the photoresist FD is 1.5 to 1.6, the reflectance of s-polarized light and p-polarized light is represented by lines P1 and P2. The Brewster angle B at which the reflectance of p-polarized light becomes zero is 60 ° here.

入射角度50°〜80°の間では、s偏光はp偏光に対して反射率が高い。したがって、受光部27に入射する反射光L2は、s偏光の成分が大きい。一方、基材BDからの反射光L3は、上述したように乱反射となるため、反射光L3の中でs偏光、p偏光の差はそれほどなく、同程度含まれる。   When the incident angle is between 50 ° and 80 °, the s-polarized light has a higher reflectance than the p-polarized light. Therefore, the reflected light L2 incident on the light receiving unit 27 has a large s-polarized component. On the other hand, since the reflected light L3 from the base material BD becomes irregular reflection as described above, there is not much difference between the s-polarized light and the p-polarized light in the reflected light L3, and is included in the same degree.

そこで、基材BDの反射光L3をs偏光、p偏光に分離して別々に取得し、これを差し引けば、反射光L3の成分の多くを除去することができる。一方、フォトレジストFDの反射光L2の多くはs偏光であってp偏光成分は少ないため、反射光L2をs偏光、p偏光に分離して別々に取得し、これを差し引いても、反射光L2の成分が残る。この反射光L2の光強度分布のピーク画素位置を抽出することができれば、基板位置が求められる。   Therefore, if the reflected light L3 of the base material BD is separately obtained by separating it into s-polarized light and p-polarized light, and subtracting this, it is possible to remove most of the components of the reflected light L3. On the other hand, since most of the reflected light L2 of the photoresist FD is s-polarized light and has little p-polarized component, the reflected light L2 is obtained separately by separating it into s-polarized light and p-polarized light. The component of L2 remains. If the peak pixel position of the light intensity distribution of the reflected light L2 can be extracted, the substrate position can be obtained.

図5は、反射光(L2、L3)に対してs偏光を透過させ、p偏光を遮断した場合に受光部27に入射する光の強度分布を示した図である。   FIG. 5 is a diagram showing an intensity distribution of light incident on the light receiving unit 27 when s-polarized light is transmitted and p-polarized light is blocked with respect to the reflected light (L2, L3).

図5では、フォトレジストFDの反射光L2による光強度分布をG1、基材BDの反射光L3による光強度分布をF1で表している。説明のため、光強度分布G1、F1をそれぞれ異なる波形で描いているが、実際の光強度分布では、図4からも明らかなように、フォトレジストFD、基材BDそれぞれの光強度分布(スペクトル分布)の曲線が分離して表れるものではない。   In FIG. 5, the light intensity distribution by the reflected light L2 of the photoresist FD is represented by G1, and the light intensity distribution by the reflected light L3 of the base material BD is represented by F1. For the sake of explanation, the light intensity distributions G1 and F1 are drawn with different waveforms. However, in the actual light intensity distribution, as is apparent from FIG. 4, the light intensity distributions (spectrums) of the photoresist FD and the substrate BD are shown. The distribution curve does not appear separately.

乱反射しないフォトレジストFDによる光強度分布G1は、ピーク波長に対して対称的な分布になる。一方、乱反射する基材BDの光強度分布F1は、複数のピークをもつ複雑な強度分布となる。   The light intensity distribution G1 by the photoresist FD that is not irregularly reflected is symmetric with respect to the peak wavelength. On the other hand, the light intensity distribution F1 of the substrate BD that diffusely reflects is a complex intensity distribution having a plurality of peaks.

図6は、反射光(L2、L3)に対してp偏光を透過させ、s偏光を遮断した場合に受光部27に入射する光の強度分布を示した図である。   FIG. 6 is a diagram showing an intensity distribution of light incident on the light receiving unit 27 when the p-polarized light is transmitted with respect to the reflected light (L2, L3) and the s-polarized light is blocked.

フォトレジストFDからの反射光L2の多くがs偏光成分であるため、光強度分布G2は、図5に示す光強度分布G1と比べてピークが十分に小さい光強度分布となる。一方、基材BDからの反射光L3の光強度分布F2は、図5の光強度分布F1と比べ、その分布特性(各画素位置での光強度)およびピークの大きさがさほど変わらない。   Since most of the reflected light L2 from the photoresist FD is an s-polarized component, the light intensity distribution G2 has a light intensity distribution whose peak is sufficiently smaller than the light intensity distribution G1 shown in FIG. On the other hand, the light intensity distribution F2 of the reflected light L3 from the base material BD is not much different in its distribution characteristics (light intensity at each pixel position) and peak size compared to the light intensity distribution F1 in FIG.

図7は、図5の光強度分布(G1、F1)と図6の光強度分布(G2、F2)との差分をとったときの光強度分布を示した図である。ここでは、フォトレジストFDの光強度分布をG3、基材BDの光強度分布をF3で示している。   FIG. 7 is a diagram showing the light intensity distribution when the difference between the light intensity distribution (G1, F1) in FIG. 5 and the light intensity distribution (G2, F2) in FIG. 6 is taken. Here, the light intensity distribution of the photoresist FD is indicated by G3, and the light intensity distribution of the substrate BD is indicated by F3.

図7に示すように、基材BDの光強度分布F3は、差分によっていずれのピークも小さい光強度分布となる。一方、フォトレジストFDの光強度分布G3は、それと比較して大きなピークをもつ光強度分布となる。ノイズ成分となる基材BDの反射光L3が取り除かれ、フォトレジストFDの反射光L2のピーク画素位置PTを検出することで、フォトレジストFDの表面位置、すなわち基板位置を検出することができる。   As shown in FIG. 7, the light intensity distribution F <b> 3 of the base material BD has a small light intensity distribution due to the difference. On the other hand, the light intensity distribution G3 of the photoresist FD is a light intensity distribution having a larger peak than that. By removing the reflected light L3 of the base material BD that becomes a noise component and detecting the peak pixel position PT of the reflected light L2 of the photoresist FD, the surface position of the photoresist FD, that is, the substrate position can be detected.

s偏光の画像データとp偏光の画像データとの差分によってフォトレジストFDの反射光L2の光強度分布を抽出するためには、まず、フォトレジストFDで反射するs偏光の光強度を、フォトレジストFDで反射するp偏光よりも十分大きくする必要がある。それとともに、フォトレジストFDを透過して基材BDで反射するs偏光と、フォトレジストFDを透過して基材BDで反射するp偏光との差ができる限り小さくなるようにする必要がある。   In order to extract the light intensity distribution of the reflected light L2 of the photoresist FD based on the difference between the s-polarized image data and the p-polarized image data, first, the s-polarized light intensity reflected by the photoresist FD is calculated using the photoresist. It is necessary to make it sufficiently larger than the p-polarized light reflected by the FD. At the same time, the difference between the s-polarized light that passes through the photoresist FD and is reflected by the substrate BD and the p-polarized light that passes through the photoresist FD and is reflected by the substrate BD needs to be as small as possible.

ここで、図4を再度参照すると、s偏光の反射率を表す曲線P1は、入射角度αが大きくなるにつれて反射率が増加し、入射角度50°を超えるあたりから指数関数的に急激に増加する。一方、p偏光の反射率を表す曲線P2は、反射率ゼロのブリュースター角度60°に向けて漸近し、ブリュースター角度60°を超えると、反射率は大きく増加していく。   Here, referring again to FIG. 4, the curve P1 representing the reflectance of the s-polarized light increases as the incident angle α increases, and exponentially increases from around the incident angle of 50 °. . On the other hand, the curve P2 representing the reflectance of p-polarized light gradually approaches a Brewster angle of 60 ° where the reflectance is zero, and when the Brewster angle exceeds 60 °, the reflectance increases greatly.

入射角度が50°よりも小さいと、s偏光、p偏光の反射率の差が小さい。この場合、基板BDからの反射光L3においてs偏光、p偏光の差が大きくないことから、差分をとることによって、ノイズ成分となる基板BDからの反射光L3のいくつかのピークはいずれも小さくなる。しかしながら、s偏光の反射率も15パーセント以下と小さいため、フォトレジストFDの光強度分布G3(図7参照)のピークも十分大きなものにならない。   When the incident angle is smaller than 50 °, the difference in reflectance between s-polarized light and p-polarized light is small. In this case, since the difference between the s-polarized light and the p-polarized light is not large in the reflected light L3 from the substrate BD, by taking the difference, some of the peaks of the reflected light L3 from the substrate BD that are noise components are all small. Become. However, since the reflectance of s-polarized light is as small as 15% or less, the peak of the light intensity distribution G3 (see FIG. 7) of the photoresist FD does not become sufficiently large.

逆に、入射角度80°を超えると、p偏光の反射率の増加率がs偏光の反射率の増加率を上回り、s偏光、p偏光の反射率の差が縮まっていく。これは、フォトレジストFDからの反射光L2のs偏光、p偏光の光強度の差が小さくなることを意味し、画像データの差分をとると、フォトレジストFDの光強度分布G3のピークが抽出困難なほど小さくなる。   On the contrary, when the incident angle exceeds 80 °, the increase rate of the reflectance of p-polarized light exceeds the increase rate of the reflectance of s-polarized light, and the difference between the reflectances of s-polarized light and p-polarized light is reduced. This means that the difference in the light intensity between the s-polarized light and the p-polarized light of the reflected light L2 from the photoresist FD becomes small. If the difference between the image data is taken, the peak of the light intensity distribution G3 of the photoresist FD is extracted. The harder it gets.

このようなことから、入射角度αは、s偏光の反射率とp偏光の反射率との差が比較的大きい50°<α<80°の範囲に定められる。ブリュースター角度B=60°を超えると反射率の差が大きくなることから、60°<α<80°の範囲に定めるのが良い。   For this reason, the incident angle α is set in a range of 50 ° <α <80 ° where the difference between the reflectance of s-polarized light and the reflectance of p-polarized light is relatively large. When the Brewster angle B exceeds 60 °, the difference in reflectance increases, so it is preferable that the range is set to 60 ° <α <80 °.

特に、s偏光の反射率がおよそ30%〜60%の範囲にある場合、フォトレジストFDで反射するs偏光の光強度が十分大きくなる一方、基材BDで反射するs偏光、p偏光の光強度の差がそれほど大きくならないことから、入射角度αを65°<α<80°に定めるのがよい。   In particular, when the reflectance of s-polarized light is in the range of about 30% to 60%, the light intensity of s-polarized light reflected by the photoresist FD becomes sufficiently large, while the light of s-polarized light and p-polarized light reflected by the base material BD. Since the difference in intensity does not become so large, the incident angle α is preferably set to 65 ° <α <80 °.

図8は、基板位置検出を含む焦点調整処理のフローを示した図である。焦点調整処理は、パターン露光前に1枚の基板、あるいはショットエリアごとに行われる。   FIG. 8 is a diagram showing a flow of focus adjustment processing including substrate position detection. The focus adjustment process is performed for each substrate or shot area before pattern exposure.

投光部22を動作させて、レーザ光を基板Wに照射させる(S101)。このとき、偏光素子26を切り替え制御することで、s偏光を透過させてp偏光を遮断した後、p偏光を透過させてs偏光を遮断する(S102、S103)。受光部27では、s偏光透過、p偏光透過の反射光が順次入射し、光強度分布に応じた画素信号が画像データとして順次出力される。画像データは、図1に図示していないメモリなどに一時的に記憶される。なお、p偏光、s偏光の順で反射光を透過させてもよい。   The light projecting unit 22 is operated to irradiate the substrate W with laser light (S101). At this time, by switching the polarization element 26, the s-polarized light is transmitted and the p-polarized light is blocked, and then the p-polarized light is transmitted and the s-polarized light is blocked (S102, S103). In the light receiving unit 27, reflected light of s-polarized light transmission and p-polarized light light is sequentially incident, and pixel signals corresponding to the light intensity distribution are sequentially output as image data. The image data is temporarily stored in a memory or the like not shown in FIG. The reflected light may be transmitted in the order of p-polarized light and s-polarized light.

画像演算部52では、画像データの差分処理を行う(S104)。そして、その差分画像データの中で光強度がピークとなる画素位置を抽出する(S105)。基準となる(焦点の合う)基板位置に相当する画素位置はあらかじめ定められており、その基準となる画素位置と検出された画素位置との差(ずれ)に応じて焦点調整を行う(S106)。   The image calculation unit 52 performs image data difference processing (S104). Then, a pixel position where the light intensity reaches a peak is extracted from the difference image data (S105). The pixel position corresponding to the reference (focused) substrate position is determined in advance, and focus adjustment is performed according to the difference (deviation) between the reference pixel position and the detected pixel position (S106). .

このように本実施形態によれば、基板Wにパターン光を投影する露光装置10において、投光部22と、検出部24とを備えた基板位置検出装置20が設けられている。検出部24は、偏光素子26、受光部27、結像光学系28を備え、偏光素子26は偏光素子制御部29によって制御される。焦点調整のとき、偏光素子26を切り替えることによって、s偏光の反射光、p偏光の反射光が受光部27へ順番に入射する。画像演算部52では、s偏光の光強度分布を示す画像データとp偏光の光強度分布を示す画像データとの差分が求められ、ピークの現れる画素位置から基板位置が検出される。   As described above, according to the present embodiment, in the exposure apparatus 10 that projects pattern light onto the substrate W, the substrate position detection device 20 including the light projecting unit 22 and the detection unit 24 is provided. The detection unit 24 includes a polarizing element 26, a light receiving unit 27, and an imaging optical system 28, and the polarizing element 26 is controlled by a polarizing element control unit 29. At the time of focus adjustment, s-polarized reflected light and p-polarized reflected light enter the light receiving unit 27 in order by switching the polarizing element 26. The image calculation unit 52 obtains the difference between the image data indicating the light intensity distribution of s-polarized light and the image data indicating the light intensity distribution of p-polarized light, and detects the substrate position from the pixel position where the peak appears.

偏光素子26を利用してs偏光の反射光、p偏光の反射光を受光部27へ時系列的に入射させることにより、フォトレジストFDからの反射光L2とともに、乱反射する基材BDからの反射光L3の光強度分布が現れる光を、そのまま検出することができる。また、単一の受光部27で構成することにより、ピーク波長の画素位置と基板位置とを一義的に対応付けることに問題がなく、精度よく基板位置を検出することができる。   By making the s-polarized reflected light and the p-polarized reflected light incident on the light receiving unit 27 in time series using the polarizing element 26, the reflected light L2 from the photoresist FD and the reflected light from the base material BD that diffusely reflects. The light in which the light intensity distribution of the light L3 appears can be detected as it is. In addition, with the single light receiving unit 27, there is no problem in uniquely associating the pixel position of the peak wavelength with the substrate position, and the substrate position can be detected with high accuracy.

本実施形態では、偏光素子26が、電圧(電気)によって偏光切替制御するため、s偏光、p偏光をほとんど時間差なく受光部27に入射させることができ、基板位置検出を速やかに行うことが可能となる。一方で、偏光素子26は、結像光学系28と受光部27との間に設けられている。これによって、偏光素子26、受光部27、結像光学系28を装備した検出部24をコンパクトな一体的デバイスとして構成することが可能となる。それとともに、結像光学系28を通った反射光だけを偏光素子26によって偏光するため、基板W表面付近に強く現れる乱反射光成分の影響が抑えられた反射光に基づいて光強度分布を得ることが可能となる。   In this embodiment, since the polarization element 26 performs polarization switching control by voltage (electricity), s-polarized light and p-polarized light can be incident on the light receiving unit 27 with almost no time difference, and the substrate position can be detected quickly. It becomes. On the other hand, the polarizing element 26 is provided between the imaging optical system 28 and the light receiving unit 27. Accordingly, the detection unit 24 equipped with the polarizing element 26, the light receiving unit 27, and the imaging optical system 28 can be configured as a compact integrated device. At the same time, since only the reflected light passing through the imaging optical system 28 is polarized by the polarizing element 26, the light intensity distribution is obtained based on the reflected light in which the influence of the irregularly reflected light component that appears strongly near the surface of the substrate W is suppressed. Is possible.

なお、基板位置検出装置を複数設け、基板の複数の位置を検出するようにしてもよい。投光部22に関しては、LEDなどレーザ以外の光源を用いてもよい。偏光素子26に関しては、結像光学系28よりも基板側に配置してもよい。基板位置検出装置20は、ステッパーなどの投影露光装置だけでなく、マスクレス露光装置など他の露光装置にも適用することが可能である。   A plurality of substrate position detection devices may be provided to detect a plurality of positions on the substrate. For the light projecting unit 22, a light source other than a laser such as an LED may be used. The polarizing element 26 may be disposed on the substrate side with respect to the imaging optical system 28. The substrate position detection apparatus 20 can be applied not only to a projection exposure apparatus such as a stepper but also to other exposure apparatuses such as a maskless exposure apparatus.

10 露光装置
20 基板位置検出装置
22 投光部
24 検出部
26 偏光素子(液晶偏光変調器)
27 受光部
28 結像光学系
29 偏光素子制御部
52 画像演算部
W 基板
FD フォトレジスト
BD 基材


DESCRIPTION OF SYMBOLS 10 Exposure apparatus 20 Substrate position detection apparatus 22 Light projection part 24 Detection part 26 Polarization element (liquid crystal polarization modulator)
27 Light Receiving Unit 28 Imaging Optical System 29 Polarizing Element Control Unit 52 Image Calculation Unit W Substrate FD Photoresist BD Base Material


Claims (10)

フォトレジスト層を表面に形成した基板に斜め方向から光を投光する投光部と、
前記光の反射方向に配置され、前記光の反射光のs偏光成分の選択およびp偏光成分の選択が可能な偏光素子と、
前記偏光素子の選択によって前記偏光素子を通過した前記s偏光成分と前記p偏光成分とを受光する受光部とを備え、
前記s偏光成分と前記p偏光成分とに基づいて、基板の高さ位置が検出されることを特徴とする基板位置検出装置。
A light projecting unit that projects light from an oblique direction onto a substrate having a photoresist layer formed on the surface;
A polarizing element that is arranged in the reflection direction of the light and is capable of selecting an s-polarized component and a p-polarized component of the reflected light of the light;
A light receiving unit that receives the s-polarized component and the p-polarized component that have passed through the polarizing element by selection of the polarizing element;
A substrate position detecting apparatus, wherein a height position of a substrate is detected based on the s-polarized component and the p-polarized component.
前記基板に対する光の入射角度αが、50°<α<80°を満たすことを特徴とする請求項1に記載の基板位置検出装置。   The substrate position detection apparatus according to claim 1, wherein an incident angle α of light with respect to the substrate satisfies 50 ° <α <80 °. 前記基板に対する光の入射角度αが、フォトレジスト表面でのブリュースター角度をBとしたとき、B<α<80°を満たすことを特徴とする請求項1または2に記載の基板位置検出装置。   3. The substrate position detecting apparatus according to claim 1, wherein the incident angle [alpha] of light with respect to the substrate satisfies B <[alpha] <80 [deg.], Where B is the Brewster angle on the photoresist surface. 前記基板に対する光の入射角度αが、65°<α<80°を満たすことを特徴とする請求項1乃至3のいずれかに記載の基板位置検出装置。   4. The substrate position detection apparatus according to claim 1, wherein an incident angle α of light with respect to the substrate satisfies 65 ° <α <80 °. 5. 前記受光部に入射する前記s偏光成分の光強度分布と、前記受光部に入射する前記p偏光成分の光強度分布との差に基づいて、基板の高さ位置を演算する画像演算部をさらに備えることを特徴とする請求項に1乃至4のいずれかに記載の基板位置検出装置。   An image calculation unit that calculates a height position of the substrate based on a difference between the light intensity distribution of the s-polarized component incident on the light receiving unit and the light intensity distribution of the p-polarized component incident on the light receiving unit; 5. The substrate position detecting device according to claim 1, further comprising a substrate position detecting device. 前記偏光素子が、前記反射光を前記受光部の受光面に結像させる結像光学系と前記受光部との間に設けられていることを特徴とする請求項1乃至5のいずれかに記載の基板位置検出装置。   6. The polarizing element according to claim 1, wherein the polarizing element is provided between an imaging optical system that forms an image of the reflected light on a light receiving surface of the light receiving unit and the light receiving unit. Substrate position detection device. 前記偏光素子が、液晶偏光変調器で構成されることを特徴とする請求項1乃至6のいずれかに記載の基板位置検出装置。   The substrate position detecting apparatus according to claim 1, wherein the polarizing element includes a liquid crystal polarization modulator. 前記投光部が、レーザ光源であることを特徴とする請求項1乃至7のいずれかに記載の基板位置検出装置。   The substrate position detecting device according to claim 1, wherein the light projecting unit is a laser light source. 請求項1乃至8のいずれかに記載の基板位置検出装置を備えたことを特徴とする露光装置。   An exposure apparatus comprising the substrate position detection apparatus according to claim 1. フォトレジスト層を表面に形成した基板に斜め方向から光を投光し、
前記光の反射光を偏光素子に入射させてs偏光成分およびp偏光成分を選択し、
前記偏光素子の選択によって前記偏光素子を順次通過した前記s偏光成分と前記p偏光成分とを受光部に入射させ、
前記受光部が受光する前記s偏光成分と前記p偏光成分とに基づいて、基板の高さ位置を検出することを特徴とする基板位置検出方法。
Light is projected from an oblique direction onto a substrate having a photoresist layer formed on the surface,
The reflected light of the light is incident on a polarizing element to select an s-polarized component and a p-polarized component,
The s-polarized component and the p-polarized component that sequentially pass through the polarizing element by the selection of the polarizing element are incident on a light receiving unit,
A substrate position detection method, comprising: detecting a height position of a substrate based on the s-polarized component and the p-polarized component received by the light receiving unit.
JP2017151984A 2017-08-04 2017-08-04 Substrate position detection device, exposure apparatus and method for detecting substrate position Pending JP2019032378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017151984A JP2019032378A (en) 2017-08-04 2017-08-04 Substrate position detection device, exposure apparatus and method for detecting substrate position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017151984A JP2019032378A (en) 2017-08-04 2017-08-04 Substrate position detection device, exposure apparatus and method for detecting substrate position

Publications (1)

Publication Number Publication Date
JP2019032378A true JP2019032378A (en) 2019-02-28

Family

ID=65523350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017151984A Pending JP2019032378A (en) 2017-08-04 2017-08-04 Substrate position detection device, exposure apparatus and method for detecting substrate position

Country Status (1)

Country Link
JP (1) JP2019032378A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59188931A (en) * 1983-04-11 1984-10-26 Nippon Telegr & Teleph Corp <Ntt> Height measuring apparatus for wafer
JPH04254319A (en) * 1991-01-30 1992-09-09 Hitachi Ltd Height detection method and its equipment and exposure method and its equipment
JPH05182896A (en) * 1992-01-06 1993-07-23 Canon Inc Object-position detection apparatus
JP2005354073A (en) * 2004-06-10 2005-12-22 Asml Netherlands Bv Level sensor for lithographic device
JP2009016669A (en) * 2007-07-06 2009-01-22 Canon Inc Surface position detection device, surface position detection method, exposure device, and device manufacturing method
JP2017116769A (en) * 2015-12-25 2017-06-29 キヤノン株式会社 Detection device, exposure device and article production method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59188931A (en) * 1983-04-11 1984-10-26 Nippon Telegr & Teleph Corp <Ntt> Height measuring apparatus for wafer
JPH04254319A (en) * 1991-01-30 1992-09-09 Hitachi Ltd Height detection method and its equipment and exposure method and its equipment
JPH05182896A (en) * 1992-01-06 1993-07-23 Canon Inc Object-position detection apparatus
JP2005354073A (en) * 2004-06-10 2005-12-22 Asml Netherlands Bv Level sensor for lithographic device
JP2009016669A (en) * 2007-07-06 2009-01-22 Canon Inc Surface position detection device, surface position detection method, exposure device, and device manufacturing method
JP2017116769A (en) * 2015-12-25 2017-06-29 キヤノン株式会社 Detection device, exposure device and article production method

Similar Documents

Publication Publication Date Title
TWI557513B (en) Overlay measurement apparatus, and lithographic apparatus and device manufacturing method using such overlay measurement apparatus
JP5162006B2 (en) Detection apparatus, exposure apparatus, and device manufacturing method
US11327412B2 (en) Topography measurement system
TWI383269B (en) An optical focus sensor, an inspection apparatus and a lithographic apparatus
TWI729380B (en) Measurement apparatus, exposure apparatus, and method of manufacturing article
KR20130101458A (en) Detection apparatus, exposure apparatus, and method of manufacturing device
JP6076487B2 (en) Lithographic sensor system
JP2009038359A (en) Exposure apparatus and method for manufacturing device
CN114424019A (en) Overlay measuring device
KR20140050562A (en) Detection device, exposure apparatus, and device manufacturing method using same
US7382469B2 (en) Exposure apparatus for manufacturing semiconductor device, method of exposing a layer of photoresist, and method of detecting vibrations and measuring relative position of substrate during an exposure process
JP2019534474A (en) Height sensor, lithographic apparatus, and method for manufacturing a device
US6151121A (en) Position detecting system and device manufacturing method using the same
KR102128488B1 (en) Flexible illuminator
JP2019032378A (en) Substrate position detection device, exposure apparatus and method for detecting substrate position
US8139201B2 (en) Exposure apparatus and method of manufacturing device
KR102048741B1 (en) Detection apparatus, measurement apparatus, lithography apparatus, and method of manufacturing article
JP2005311198A (en) Aligner and focusing position detecting device and method thereof, and device manufacturing method
JP2011040523A (en) Exposure device, and method for manufacturing device using the same
JPH10239015A (en) Surface position detector
JP3880904B2 (en) Alignment detection method, alignment detection apparatus, device manufacturing method, and device manufacturing apparatus
KR20230111579A (en) Detection apparatus, detection method, exposure apparatus and article manufacturing method
JPH11251230A (en) Position detecting device, aligner, and position detecting method
JP2004354230A (en) Position detection device, exposure apparatus and exposure method
JP2010135478A (en) Exposure apparatus and device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220125