JPS60245189A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPS60245189A
JPS60245189A JP10135484A JP10135484A JPS60245189A JP S60245189 A JPS60245189 A JP S60245189A JP 10135484 A JP10135484 A JP 10135484A JP 10135484 A JP10135484 A JP 10135484A JP S60245189 A JPS60245189 A JP S60245189A
Authority
JP
Japan
Prior art keywords
groove
layer
refractive index
astigmatism
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10135484A
Other languages
Japanese (ja)
Other versions
JPH0636456B2 (en
Inventor
Saburo Yamamoto
三郎 山本
Hiroshi Hayashi
寛 林
Taiji Morimoto
泰司 森本
Morichika Yano
矢野 盛規
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP59101354A priority Critical patent/JPH0636456B2/en
Priority to EP85302632A priority patent/EP0162569A3/en
Priority to DE90111456T priority patent/DE3587561T2/en
Priority to EP90111456A priority patent/EP0396157B1/en
Priority to US06/723,390 priority patent/US4677633A/en
Publication of JPS60245189A publication Critical patent/JPS60245189A/en
Publication of JPH0636456B2 publication Critical patent/JPH0636456B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • H01S5/2234Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2237Buried stripe structure with a non-planar active layer

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To generate a laser light having no astigmatism by setting the refractive indexes of inside and outside of narrow groove of a double hetero junction, refractive ratio to the prescribed values and oscillating in stable basic mode to high output. CONSTITUTION:An N type GaAs current blocking layer 12 is laminated on a P type GaAs substrate 11, 2-stage channel 21 of wide width groove 19 and V- shaped narrow width groove 20 are formed by etching, and a P type GaAlAs clad layer 13, a P type GaAlAs active layer 14, an N type GaAlAs clad layer 15, and N type GaAs gap layer in a double hetero configuration are laminated. The real number section of the double refractive index difference of the inside and outside of the groove 20 is 4X10<-3> or larger, and the conjugate section is 4X10<-3> or lower. Then, the mode is stabilized without influence of the variation in the carrier distribution, and when the ratio of the real number section and the conjugate section is set to 1.5 or higher, a beam waist falls without the ultafine distance from the end. As a result, stable basic mode oscillation occurs to high output, and a laser light having no astigmatism that the beam waists coincide at the end is generated.

Description

【発明の詳細な説明】 く技術分野〉 本発明は発振横モードが制御され、しかも非点収差のな
い半導体レーザ素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a semiconductor laser device whose oscillation transverse mode is controlled and which is free from astigmatism.

く従来技術〉 従来の半導体レーザ素子を光導波機構から分類すると、
利得導波形と屈折率導波形に区分される。
Conventional technology> Conventional semiconductor laser devices can be classified based on the optical waveguide mechanism.
It is divided into gain waveguide type and refractive index waveguide type.

前者の利得導波形は横モードが不安定であり、接合に平
行な方向と垂直な方向とで光ビーム幅が最小となるビー
ムウェストの位置から30μm以」二人って、非点収差
が大きくなるため、応用上程々の不都合がある。
In the former gain waveform, the transverse mode is unstable, and the astigmatism is large within 30 μm from the beam waist position where the optical beam width is minimum in the direction parallel and perpendicular to the junction. Therefore, there are some inconveniences in terms of application.

後者の屈折率導波形は横モードが安定で、非点収差も小
さいという利点がある。この屈折率導波形半導体レーザ
の代表的な例として、埋め込みレーザ゛及びV S T
 S (V −channel led S ul〕5
trateT nner S tripe)レーザがあ
る。
The latter refractive index waveform has the advantage of stable transverse mode and small astigmatism. Typical examples of index-guided semiconductor lasers include buried lasers and VST
S (V-channel led Sul) 5
There is a trateTnner Stripe) laser.

埋め込みレーザは、活性層を低屈折率物質で埋め込んで
いるため、完全な屈折率導波を示し、しとい値電流1t
hが小さく、基本横モードで発振し、非点収差もないと
いう利点を有する。その反面、比較的低い光出力で高次
横モードが発生し、端面が破壊しやすいという欠点を有
しているので高畠カレーザには不向きである。
A buried laser has an active layer buried in a low refractive index material, so it exhibits perfect refractive index waveguide and has a threshold current of 1 t.
It has the advantage of having a small h, oscillating in the fundamental transverse mode, and having no astigmatism. On the other hand, it is unsuitable for Takabatake lasers because it has the drawbacks that high-order transverse modes occur at relatively low optical output and the end faces are easily destroyed.

第7図に示されるGaAs−(,1aA(9As系VS
ISレーザは、\l−チャネル9の内側と外側での活性
層4の実効屈折率差ΔNと損失差Δαによって、光が導
波される。従って、埋め込みレーザに比べてしきい値電
流Ithは高くなるか、実効屈折率差ΔNを十分大きく
しても、チャネル外側で・高次モードの光を電流阻市層
2で吸収してしまうので、高出力まで基本横モードを維
持でトるという利点がある。しがしなが呟実効屈折率差
ΔNを大とくすると、損失差Δαも同時に大きくなる。
GaAs-(,1aA(9As VS
In the IS laser, light is guided by the effective refractive index difference ΔN and the loss difference Δα of the active layer 4 between the inside and outside of the \l-channel 9. Therefore, even if the threshold current Ith is higher than that of a buried laser, or the effective refractive index difference ΔN is sufficiently large, the current blocking layer 2 absorbs light in higher-order modes outside the channel. , it has the advantage of maintaining the basic transverse mode up to high output. When the effective refractive index difference ΔN is increased, the loss difference Δα also increases at the same time.

例えば従来のVSISレーザのΔαは] (’l (l
 r)〜2 (100cm″′’である。■−チャネル
外の損失か太きいと、そこでの光の位相が遅れ、ビーム
ウェストは端面より奥へ入り込み易くなる。この理由に
より、従来のVSISレーザは接合に平行方向のビーム
ウェストが端面から5〜15μ「0奥に入り込んでしま
うという欠点を有していた。
For example, Δα of a conventional VSIS laser is ] ('l (l
r) ~ 2 (100cm''''.) - If the loss outside the channel is large, the phase of the light there will be delayed, and the beam waist will easily penetrate deeper than the end face.For this reason, the conventional VSIS laser had the disadvantage that the beam waist in the direction parallel to the joint went 5 to 15 microns deep from the end face.

〈発明の目的〉 本発明は、高出力まで安定な基本横モードで発振し、ビ
ームウェストが端面に一致した、即ち非点収差のない半
導体レーザを提供することを目的とする。
<Objective of the Invention> An object of the present invention is to provide a semiconductor laser which oscillates in a stable fundamental transverse mode up to high output and whose beam waist coincides with the end facet, that is, there is no astigmatism.

〈発明の構成及び作用〉 本発明の半導体レーザ素子について、第1図を参照しな
がら説明する。
<Structure and operation of the invention> The semiconductor laser device of the invention will be described with reference to FIG.

p−GaAs基板11」二にn−GaAs電流阻IV層
12を堆積して、+1−GaAs基板11に対する電流
遮断機能を付与した後、電流3f1. +に1層12表
面より幅II+1、深さDの広幅溝19をエツチングに
より形成する。次に、溝19の中央部に最大幅−の\7
字形溝20をエツチングにより形成する。このようにし
て、形成された二段式チャネル21を有する基板1目二
に、p−GaA7Asクラッド層13、p−GaA(7
As活性層14、n−GaApAsクラッド層15、n
 G a A sキャップ層16からなるダブルへテロ
構造を積層する。
After depositing an n-GaAs current blocking layer 12 on the p-GaAs substrate 11'' to provide a current blocking function to the +1-GaAs substrate 11, a current 3f1. A wide groove 19 having a width II+1 and a depth D is formed from the surface of the first layer 12 by etching. Next, in the center of the groove 19, the maximum width -\7
The groove 20 is formed by etching. In this way, a p-GaA7As cladding layer 13, a p-GaA(7
As active layer 14, n-GaApAs cladding layer 15, n
A double heterostructure consisting of a GaAs cap layer 16 is laminated.

ここで、\1字形溝20の内側と外側との複素屈折率差
Δ1の実数部Re(Δ宝)と虚数部L+(Δ了)が活性
層厚d2と溝19内の1)−クラッド層厚d1fユによ
って、いかに変るかを計算した結果を第2図に示す。ま
た、Re(Δπ)とIm(ΔW)は次式で表わされる。
Here, the real part Re (ΔTakara) and the imaginary part L+ (ΔRyo) of the complex refractive index difference Δ1 between the inside and outside of the \1-shaped groove 20 are the active layer thickness d2 and the 1)-cladding layer in the groove 19. Figure 2 shows the results of calculating how the thickness changes depending on the thickness d1f. Further, Re (Δπ) and Im (ΔW) are expressed by the following equations.

Re(Δイ)=ΔN (1) 1m(ΔW) =Δcr/2k (2)−3= 但し、ΔNは実効屈折率差、Δαは\I−チャネルの外
側における損失差、には波数(2π/λ)である。第2
図には、波長λニア 8 (l nn+の場合について
示した。この図より、Re(Δ1)(ΔN)とLm(Δ
π)(Δα)はdl、−びd2が厚くなる程、減少する
ことがわかる。
Re(Δa)=ΔN (1) 1m(ΔW) =Δcr/2k (2)-3= However, ΔN is the effective refractive index difference, Δα is the loss difference outside the \I-channel, and the wave number (2π /λ). Second
The figure shows the case of wavelength λ near 8 (l nn+. From this figure, Re(Δ1)(ΔN) and Lm(Δ
It can be seen that π)(Δα) decreases as dl, - and d2 become thicker.

上に述べた作り込みの実効屈折率差ΔN及び損失差Δα
の池に、活性層14への注入キャリアによる屈折率変化
を考慮する必要がある。光出力を増加させると、空間的
ホールバーニング等によりキャリア分布に変動が起り、
屈折率分布も変化し、横モードを乱す原因となる。その
変動は3X10−3程度である。
The built-in effective refractive index difference ΔN and loss difference Δα described above
In addition, it is necessary to take into account changes in the refractive index due to carriers injected into the active layer 14. When the optical output is increased, carrier distribution changes due to spatial hole burning, etc.
The refractive index distribution also changes, causing disturbance of transverse modes. The variation is about 3×10 −3 .

従って、横モードを安定化させるには、作り込みの実効
屈折率差ΔNを十分大きくして、キャリア分布の変動に
影響を受けないようにする必要がある。従来のVSIS
レーザでは活性層厚d2=0.1μ臥ダグラッド厚d、
f=0.15μIIIであるので、ΔN=1.5X10
−2と十分大きい反面、■−チャネル外側の吸収がΔα
=2000゜m−1=4− と太き過ぎる。
Therefore, in order to stabilize the transverse mode, it is necessary to make the built-in effective refractive index difference ΔN sufficiently large so that it is not affected by carrier distribution fluctuations. Traditional VSIS
For the laser, the active layer thickness d2 = 0.1μ, the grad thickness d,
Since f=0.15μIII, ΔN=1.5X10
-2, which is sufficiently large, but the absorption outside the ■-channel is Δα
=2000゜m-1=4-, which is too thick.

このΔαが大き過ぎると、そこで光の位相が遅れ、ビー
ムウェストは端面より奥へ入り込み易くなる。その上、
微分量子効率も15%以下に低くなる。
If this Δα is too large, the phase of the light will be delayed and the beam waist will tend to penetrate deeper than the end face. On top of that,
The differential quantum efficiency also decreases to 15% or less.

以上述べた理由により、ΔNはで外るだけ大きく、Δα
はできるだけ小さくするような活性層厚d2とp−クラ
ッド層厚d、flllが存在するはずである。そこで、
Re(Δ1)と1m(ΔW)の比をパラメータRと定義
し、d2及びdlfu+にどう依存するかを計算により
調べた。
For the reasons stated above, ΔN is as large as deviates from Δα
There should be an active layer thickness d2 and a p-cladding layer thickness d, flll that are as small as possible. Therefore,
The ratio of Re(Δ1) to 1m(ΔW) was defined as a parameter R, and how it depended on d2 and dlfu+ was investigated by calculation.

R= Re(ΔN)/rm(Δ1lf) (3)第3図
はRパラメータのd2依存性、第40図はRパラメータ
の”fw依存性を夫々示している。
R=Re(ΔN)/rm(Δ1lf) (3) FIG. 3 shows the d2 dependence of the R parameter, and FIG. 40 shows the "fw dependence" of the R parameter.

これらの図からRパラメータはa2に大きく依存し、d
1fu+にはほとんど依存しないことがわかった。
From these figures, the R parameter largely depends on a2, and d
It was found that there is almost no dependence on 1fu+.

そこで、本発明者等は、種々の活性層厚d2を有するサ
ンプルについて、ビームウェストの端面からの距離が3
μm以内にあるものおよび3μmより奥にあるものにつ
いて、Re(Δ了)および■111(Δ丁)を算出した
ところ、第5図に示すような結果を得た。
Therefore, the present inventors investigated samples with various active layer thicknesses d2 with a distance of 3 from the end face of the beam waist.
When Re (ΔR) and ■111 (ΔD) were calculated for those located within μm and those located deeper than 3 μm, the results shown in FIG. 5 were obtained.

第5図において、○印はビームウェストが端面から3μ
【0以内にある場合を示し、X印はビームウェストが端
面から3μIllよりも奥にある場合を示す。
In Figure 5, the circle mark indicates that the beam waist is 3 μm from the end surface.
The X mark indicates the case where the beam waist is deeper than 3 μIll from the end face.

上記第5図から明らかなように、ビームウェストが端面
から3μ「0以内にあるようにするには、Re(Δτ)
≧4X10−3.Im(Δで)≦4X1(’l−3゜R
≧1.5であればよいことが分かる。
As is clear from Fig. 5 above, in order for the beam waist to be within 3 μ'0 from the end face, Re
≧4X10-3. Im(at Δ)≦4X1('l-3゜R
It can be seen that it is sufficient if ≧1.5.

」−記条件を満足するようにすれば、高出力まで横モー
ドが安定で非点収差のない半導体レーザが実現できるこ
とかわかった。従って、活性層厚d2はItbが増加し
ない範囲で薄い方が良く、1〕−クラッド層厚d1.い
 は上の条件を満足するまで厚くした方が良い。
It has been found that by satisfying the above conditions, it is possible to realize a semiconductor laser with a stable transverse mode up to high output and no astigmatism. Therefore, it is better for the active layer thickness d2 to be thin as long as Itb does not increase, and 1] - cladding layer thickness d1. If so, it is better to increase the thickness until the above conditions are satisfied.

本発明の半導体レーザのもう1つの利点は、従来の\7
SISレーザが一段の屈折率/損失分布により横モード
を決定しているのに対し、二段の屈折率/損失分布によ
り横モードを固定しているので、高出力動作においても
、ピークシフトか見られないことである。
Another advantage of the semiconductor laser of the present invention is that the conventional
While the SIS laser determines the transverse mode using a single-stage refractive index/loss distribution, the transverse mode is fixed using a two-stage refractive index/loss distribution, so even in high-power operation, it is difficult to detect peak shifts. This is something that cannot be done.

本発明のレーザは1]−クラッド層厚”fiuの層厚制
御の点からも優れている。なぜな喧伝幅溝19の深3D
はエツチングによって形成するので基板全面で均一とな
り、また、液相エピタキシャル法による広幅溝1≦Jの
外側のp−クラッド層d11は0.15μm0程度まで
は面内で均一な層厚が得られるからである。従って、d
、fllI=D+d、rは面内でほとんど均一となる。
The laser of the present invention is also excellent in terms of layer thickness control of the cladding layer thickness "fiu".Why is the depth of the width groove 19 3D
Since it is formed by etching, it is uniform over the entire surface of the substrate, and the p-cladding layer d11 outside the wide groove 1≦J formed by the liquid phase epitaxial method has a uniform layer thickness within the plane up to about 0.15 μm0. It is. Therefore, d
, fllI=D+d, r is almost uniform within the plane.

もし、0.3μt。If 0.3 μt.

の厚さを液相エピタキシャル法だけで形成しようとする
と、層厚は傾と易く、0.2〜(’l 、 4.5μm
と不均一になり易い。このレーザをB5l5レーサ’(
Broad −channelled 5ul)str
at、e InnerS tripe 1aser)と
命名した。
If the thickness of
and tends to become uneven. This laser is B5l5 laser' (
Broad-channeled 5ul)str
at, e Inner Stripe 1aser).

〈実施例〉 GaAs −(−,1aA(4As系の化合物半導体を
用いて、本発明の半導体レーザ素子の実施例について説
明する。
<Example> An example of the semiconductor laser device of the present invention will be described using a GaAs-(-, 1aA(4As-based compound semiconductor).

7− 第1図に示すように、1)型GaAs基板11の(10
0)面上にn型GaAsの電流阻止層12を0.8μm
の厚さに、液相エピタキシャル成長させ、その表面より
ホトリソグラフィ技術とケミカル・エツチングによって
、幅す、=6.5μm、深さD=0.2μmの溝19を
形成した。次に、溝19の中心部に幅u+2=3.5μ
mの■字形溝20をp−GaAs基板11に到達するよ
うにエツチングした。このようにして形成された二段式
チャネルを有する基板上にp Ga□、5 A lo、
5Asクラッド層13、’−GaO,85Aj6.15
 As活性層14、n−(xa□、5 A16.5As
クラッド層15、n−GaAsキャップ層16からなる
ダブルへテロ構造を液相エピタキシャル成長させた。層
厚は、d+r =0、1 μm、 d+f、 =0.3
 μm、 a2=0.06 μmになるようにした。こ
の時、計算によりめられるRパラメータ、ΔN及びΔα
はそれぞれ、2゜8X10−”及び650cm’である
7- As shown in FIG. 1, (10
0) N-type GaAs current blocking layer 12 with a thickness of 0.8 μm on the surface
Grooves 19 having a width of 6.5 .mu.m and a depth of 0.2 .mu.m were formed from the surface thereof by photolithography and chemical etching. Next, the width u+2=3.5μ is placed in the center of the groove 19.
The m-shaped groove 20 was etched to reach the p-GaAs substrate 11. On the substrate with the two-stage channel formed in this way, p Ga□, 5 A lo,
5As cladding layer 13, '-GaO, 85Aj6.15
As active layer 14, n-(xa□, 5 A16.5As
A double heterostructure consisting of a cladding layer 15 and an n-GaAs cap layer 16 was grown by liquid phase epitaxial growth. The layer thicknesses are: d+r = 0, 1 μm, d+f, = 0.3
μm, a2 = 0.06 μm. At this time, R parameters determined by calculation, ΔN and Δα
are 2°8 x 10-'' and 650 cm', respectively.

次に、基板裏面をラッピングすることにより半導体レー
ザ素子の厚さを約100μmnとした後、8− n −G a A sキャップ層16表面にはn側電極
として、Au−Ge−Ni を、また、半導体レーザ素
子11裏面にはn側電極としてA11−Znを蒸着し、
450 ’Cに加熱して合金化した。その後、共振器長
が250μIl+になるように襞間した。
Next, after lapping the back surface of the substrate to make the thickness of the semiconductor laser device approximately 100 μm, Au-Ge-Ni was deposited on the surface of the 8-n-Ga As cap layer 16 as an n-side electrode. , A11-Zn is deposited on the back surface of the semiconductor laser element 11 as an n-side electrode,
Alloyed by heating to 450'C. Thereafter, folds were formed so that the resonator length was 250 μIl+.

このように、本発明のB5l5レーザ′の製作方法は容
易である。本実施例のB5l5レーザはしきい値電流I
th=45+nA、発振波長λ=7’80鼎で発振し、
はとんどの素子が発光出力4.0mWまで安定な基本横
モードで動作し、近視野像、遠視野像ともにピークシフ
トは見られなかった。更に、ビームウェストは接合に平
行方向と垂直方向ともに、40mWまで端面に一致して
いた。微分量子効率は片面で25%であった。
As described above, the method for manufacturing the B5l5 laser' of the present invention is easy. The B5l5 laser of this example has a threshold current I
th=45+nA, oscillates at oscillation wavelength λ=7'80,
Most of the elements operated in a stable fundamental transverse mode up to a light emission output of 4.0 mW, and no peak shift was observed in either the near-field or far-field images. Furthermore, the beam waist coincided with the end face up to 40 mW both in the direction parallel to and perpendicular to the junction. The differential quantum efficiency was 25% on one side.

第6図は第1図で示す実施例の溝形成をRIE(リアク
ティブ・イオン・エツチング)により行った場合の断面
図である。ケミカル・エツチングによって形成した溝と
比較して、溝側面がテーパーをもたないところに特徴が
ある。このRIEを利用して製作したB5l5レーザも
前実施例とほとんど同じ特性を示した。
FIG. 6 is a cross-sectional view of the embodiment shown in FIG. 1 when grooves are formed by RIE (reactive ion etching). Compared to grooves formed by chemical etching, this type is characterized by the fact that the groove sides do not have a taper. The B5l5 laser manufactured using this RIE also showed almost the same characteristics as the previous example.

〈発明の効果〉 以」−述べtこよらに、本発明の半導体レーザ(BSI
Sレーザ)は、二段式チャネルによる二段の屈折率/損
失分布、及び活性層厚、1)−クラッド層厚の制御によ
るRパラメータ、ΔN、Δαの最適化により、高出力ま
で安定横モード、無非点収差が実現できる。
<Effects of the Invention> Hereinafter, the semiconductor laser (BSI) of the present invention will be described.
S laser) has a two-stage refractive index/loss distribution with a two-stage channel, and optimization of R parameters, ΔN, and Δα by controlling the active layer thickness and 1)-cladding layer thickness, resulting in stable transverse mode up to high output power. , stigmatism can be achieved.

なお、本発明の半導体レーザ素子は、上述したGaAs
−GaAs基板系に限定されず、InF’−InGaA
sP系やその他のへテロ接合レーザ素子に適用すること
かできる。また、成長方法は液相エピタキシャル(LP
E)法に限定されず、M O−CVD法、VPE法、M
BE法等も適用することがで外る。
Note that the semiconductor laser device of the present invention is made of the above-mentioned GaAs
- Not limited to GaAs substrate system, but InF'-InGaA
It can be applied to sP-based and other heterojunction laser elements. In addition, the growth method is liquid phase epitaxial (LP)
E) Not limited to the method, M O-CVD method, VPE method, M
This can be avoided by applying the BE method, etc.

【図面の簡単な説明】 第1図は本発明のB5l5レーザの断面図。 第2図は複素屈折率差Δγと実数部Re(Qn)と虚数
部Im(6M)の1)−クラッド層厚d、fw、 d2
依存性を示すグラフ。 第3図はRパラメータの活性層厚d、依存性を示すグラ
フ。 第・1図はRパラメータのp−クラッド層厚”fw依存
性を示すグラフ。 第5図はRe(Δ’ii)、Tm(Δ′i′i)、Rハ
ラメータの最適範囲の説明図。 第6図は本発明の池の実施例の断面図。 第7図は従来の\7SISレーザの断面図である。 1 ] r 21−・−1l−GaAs基板。 12 、22−−− n−GaAs電流■止層。 13 、 23 ・・・・・冒T−GaA 、(J A
sクラッド層。 14 、24・=−p−GaA f As活性層。 ] 5 、 25 ・・・−n−GaA 、(J、 A
sクラッド層。 16.26・・−n−GaAsキャップ層!17.27
・・・・・・11側電極。 18.28・・・・・冒)側電極。 19.29・・・・・・@町、深さDをもつ溝。 2rl、30・・・・・・幅町をもつ溝。 特許出願人 シャープ株式会社 代 理 人 弁理士 青用 葆はが2名第5図 Im体五】 116図
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of the B5l5 laser of the present invention. Figure 2 shows the complex refractive index difference Δγ, the real part Re (Qn), and the imaginary part Im (6M) (1) - cladding layer thickness d, fw, d2
A graph showing dependencies. FIG. 3 is a graph showing the dependence of the R parameter on the active layer thickness d. Fig. 1 is a graph showing the dependence of the R parameter on the p-cladding layer thickness fw. Fig. 5 is an explanatory diagram of the optimum ranges of Re (Δ'ii), Tm (Δ'i'i), and R harammeter. Fig. 6 is a sectional view of an embodiment of the pond of the present invention. Fig. 7 is a sectional view of a conventional \7SIS laser. 1] r 21--1l-GaAs substrate. 12, 22-- n- GaAs current stop layer. 13, 23...T-GaA, (JA
s cladding layer. 14,24·=-p-GaA f As active layer. ] 5, 25...-n-GaA, (J, A
s cladding layer. 16.26...-n-GaAs cap layer! 17.27
...11 side electrode. 18.28... side electrode. 19.29...@town, ditch with depth D. 2rl, 30... Ditch with width and width. Patent Applicant Sharp Co., Ltd. Agent Patent Attorney Aoyo 2 people

Claims (1)

【特許請求の範囲】[Claims] (1)基板上に、広狭2段の溝幅を有するチャネルが形
成され、少なくとも上記チャネル部にダブルへテロ接合
構造が形成され、該ダブルへテロ接合部の狭幅の溝部の
内側と外側との複素屈折率差Δγの実数部R,e(Δ宜
)が4X10−3以上、虚数部Im(Δ″iV)が4.
 X 1 (1−3以下で、その比Re(Δ、n)/ 
T m(6M)が1.5以上であることを特徴とする半
導体レーザ素子。
(1) A channel having two groove widths, wide and narrow, is formed on the substrate, and a double heterojunction structure is formed at least in the channel portion, and the inner and outer sides of the narrow groove of the double heterojunction are formed. The real part R, e (Δy) of the complex refractive index difference Δγ is 4X10-3 or more, and the imaginary part Im (Δ″iV) is 4.
X 1 (1-3 or less, the ratio Re(Δ, n)/
A semiconductor laser device characterized in that T m (6M) is 1.5 or more.
JP59101354A 1984-04-17 1984-05-18 Semiconductor laser device Expired - Fee Related JPH0636456B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59101354A JPH0636456B2 (en) 1984-05-18 1984-05-18 Semiconductor laser device
EP85302632A EP0162569A3 (en) 1984-04-17 1985-04-15 A semiconductor laser
DE90111456T DE3587561T2 (en) 1984-04-17 1985-04-15 Semiconductor laser.
EP90111456A EP0396157B1 (en) 1984-04-17 1985-04-15 A semiconductor laser
US06/723,390 US4677633A (en) 1984-04-17 1985-04-15 Semiconductor laser with a two-striped channel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59101354A JPH0636456B2 (en) 1984-05-18 1984-05-18 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPS60245189A true JPS60245189A (en) 1985-12-04
JPH0636456B2 JPH0636456B2 (en) 1994-05-11

Family

ID=14298496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59101354A Expired - Fee Related JPH0636456B2 (en) 1984-04-17 1984-05-18 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH0636456B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118799A (en) * 1994-10-18 2000-09-12 Mitsui Chemicals, Inc. Semiconductor laser device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763885A (en) * 1980-10-06 1982-04-17 Mitsubishi Electric Corp Semiconductor laser device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763885A (en) * 1980-10-06 1982-04-17 Mitsubishi Electric Corp Semiconductor laser device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118799A (en) * 1994-10-18 2000-09-12 Mitsui Chemicals, Inc. Semiconductor laser device

Also Published As

Publication number Publication date
JPH0636456B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
JP4147602B2 (en) Self-oscillation type semiconductor laser
US20020136255A1 (en) Semiconductor laser, optical element provided with the same and optical pickup provided with the optical element
JPH0518473B2 (en)
JP2003060303A (en) Semiconductor laser and manufacturing method therefor
US4754462A (en) Semiconductor laser device with a V-channel and a mesa
JPS60245189A (en) Semiconductor laser element
JPS58197787A (en) Semiconductor laser
JPH0584678B2 (en)
JPH0671121B2 (en) Semiconductor laser device
JP2940158B2 (en) Semiconductor laser device
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JPS601881A (en) Semiconductor laser element
JPH01132191A (en) Semiconductor laser element
JPS6177381A (en) Integrated distributed feedback type semiconductor laser
JPH0422033B2 (en)
JPS6190489A (en) Semiconductor laser device and manufacture thereof
JPH0614575B2 (en) Semiconductor laser device
JPH0256836B2 (en)
JPH01132189A (en) Semiconductor laser element and manufacture thereof
JPH11214792A (en) Semiconductor laser
JP2763781B2 (en) Semiconductor laser device and method of manufacturing the same
JPS60220982A (en) Semiconductor laser element
JPH0553316B2 (en)
JP2006303267A (en) Semiconductor laser device
JPH02113586A (en) Semiconductor laser element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees