JPS60244833A - Measuring method of structure of single-mode optical fiber - Google Patents

Measuring method of structure of single-mode optical fiber

Info

Publication number
JPS60244833A
JPS60244833A JP10236484A JP10236484A JPS60244833A JP S60244833 A JPS60244833 A JP S60244833A JP 10236484 A JP10236484 A JP 10236484A JP 10236484 A JP10236484 A JP 10236484A JP S60244833 A JPS60244833 A JP S60244833A
Authority
JP
Japan
Prior art keywords
optical fiber
light
wavelength
mode
mode optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10236484A
Other languages
Japanese (ja)
Other versions
JPH0354772B2 (en
Inventor
Masayuki Nishimura
正幸 西村
Shuzo Suzuki
鈴木 修三
Masaharu Ohashi
正治 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10236484A priority Critical patent/JPS60244833A/en
Publication of JPS60244833A publication Critical patent/JPS60244833A/en
Publication of JPH0354772B2 publication Critical patent/JPH0354772B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/37Testing of optical devices, constituted by fibre optics or optical waveguides in which light is projected perpendicularly to the axis of the fibre or waveguide for monitoring a section thereof

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To take an accurate measurement by using an image pickup tube for near-infrared light with short wavelength or visible light by detecting the center position of a ground mode by using light with wavelength shorter than the in-use wavelength of the single-mode optical fiber. CONSTITUTION:The single-mode optical fiber which has 1.3mum in-use wavelength and is about 2m long is used as the optical fiber 1 to be measured and excited by a semiconductor laser 8 with 0.85mum oscillation wavelength. The projection end surface of the optical fiber 1 is observed through a TV camera 10 which uses the image pickup tube for near-infrared light with short wavelength and a video processor 5 calculates its light intensity distribution to detect the center position of the ground mode. Then, an LED11 which emits light in the nearly the same 0.85mum wavelength band with incident light is used as a light source for lighting the end surface, and an end surface image of the optical fiber 1 is observed through the TV camera 10 and video processor 5 to detect the external diameter of the objective optical fiber and its center position.

Description

【発明の詳細な説明】 本発明は単一モード光ファイバの構造を高精度に測定す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the structure of a single mode optical fiber with high precision.

通常、単一モード光ファイバの構造パラメータとして測
定される量は外径、コア径、コアの非円率、外径とコア
の偏心量である。中でも単一モード光ファイバの接続損
失を支配する量として特に重要なものは外径および外径
とコアの偏心量である。しかしながら、単一モード光フ
ァイバはその使用波長において基底モート8のみ伝搬す
る状態になっていることから、真に重要なものは外径と
コアの偏心量ではなく、外径と基底モードの偏心量(外
径中心と基底モード中心とのズレ)である。
Generally, the quantities measured as structural parameters of a single mode optical fiber are the outer diameter, core diameter, core non-circularity, and eccentricity between the outer diameter and the core. Among these, particularly important quantities that govern the splice loss of a single mode optical fiber are the outer diameter and the amount of eccentricity between the outer diameter and the core. However, since a single mode optical fiber is in a state where only the fundamental mode 8 propagates at the wavelength used, what is truly important is not the eccentricity of the outer diameter and the core, but the eccentricity of the outer diameter and the fundamental mode. (difference between the center of the outer diameter and the center of the fundamental mode).

コアが真円から変形している場合、一般にはコアの中心
と基底モードの中心は一致しない。そこで、外径と基底
モードの偏心量を測定することが必要となるが、従来技
術で該測定を行うことは極めて困難であった。
When the core is deformed from a perfect circle, the center of the core and the center of the fundamental mode generally do not coincide. Therefore, it is necessary to measure the outer diameter and the amount of eccentricity of the fundamental mode, but it has been extremely difficult to perform this measurement using conventional techniques.

すなわち、従来、光ファイバの構造測定法として広く用
いられている方法は、数十酊程度の短い光フアイバ試料
に白色光を入射させ、その出射端面な顕微鏡で観測する
方法が採用されているが、この場合出射端面上で観測さ
れるのはコアの形状であり、基底モードの中心を検出す
ることは不可能である。一方、基底モードの寸法を測定
する方法として、第1図に示すごとく、被測定単一モー
ド光ファイバ1にその使用波長の光を光源2より入射さ
せ、その出射端面での光強度分布をレンズ系6を介しT
V右カメラと画像処理装置5とを用いて測定する方法が
知られている。そこでさらに、第2図に示すごとく、端
面照明用光源6およびノ・−フミラー7よりなる出射端
面を照明するための光学系を付加し、被測定光ファイバ
の外径と外径の中心をも測定できるようにすれば、基底
モードの偏心量を測定できるものと考えられる。しかし
ながら、通常単一モード光ファイバの使用波長は1.6
μmまたは1.55μm等波長の大きい近赤外光であり
、このためTV右カメラには波長の大きい近赤外光用の
撮像管を使用せざるを得ないが、か〜る波長の大きい近
赤外光用撮像管は可視光用或は波長の小さい近赤外光用
撮像管と比べて著しく感度が悪くしかも分解能が悪いと
いう欠点がある。また、出射端面照明用の光源6は、レ
ンズ系の色収差を考慮すると使用波長とほに同じ波長の
近赤外光としなければならない。このため撮像管に合わ
せて充分な光量を得るために半導体レーザ等レーザ光を
使用することが考えられるが、レーザ光源は干渉性が良
いためスペックル雑音を発生するという問題がある。こ
のように、外径と基底モードの偏心量を従来技術で測定
することは極めて困難であった。
In other words, the conventionally widely used method for measuring the structure of optical fibers involves injecting white light into a short optical fiber sample, about a few tens of inches long, and observing the output end face with a microscope. In this case, what is observed on the output end face is the shape of the core, and it is impossible to detect the center of the fundamental mode. On the other hand, as a method for measuring the dimensions of the fundamental mode, as shown in FIG. T via system 6
A method of measuring using a V-right camera and an image processing device 5 is known. Therefore, as shown in Fig. 2, an optical system for illuminating the output end face consisting of an end face illumination light source 6 and a nof mirror 7 is added, and the outer diameter and the center of the outer diameter of the optical fiber to be measured are determined. If it can be measured, it is thought that the amount of eccentricity of the fundamental mode can be measured. However, the wavelength used for single mode optical fiber is usually 1.6
It is near-infrared light with a large wavelength such as μm or 1.55 μm, and for this reason, the TV right camera has no choice but to use an image pickup tube for near-infrared light with a large wavelength. Infrared light imaging tubes have disadvantages in that they have significantly lower sensitivity and resolution than visible light imaging tubes or near-infrared light imaging tubes with small wavelengths. Further, the light source 6 for illuminating the output end face must be a near-infrared light having a wavelength exactly the same as the wavelength used, considering the chromatic aberration of the lens system. For this reason, it is conceivable to use a laser beam such as a semiconductor laser to obtain a sufficient amount of light to match the image pickup tube, but since the laser light source has good coherence, there is a problem in that it generates speckle noise. As described above, it is extremely difficult to measure the outer diameter and the eccentricity of the fundamental mode using the conventional techniques.

本発明は上記従来の欠点を解消し、単一モートゝ光ファ
イバの外径および外径と基底モードの偏心量を簡単かつ
精度よく測定する方法を提供することを目的としたもの
であって、このため本発明による単一モード光ファイバ
の構造測定法は測定されるべき単一モード光ファイバの
一端から該単一モード光ファイバの使用波長より短い波
長の光を入射させ、該単一モード光ファイバに曲げを加
えて実質的に基底モードのみ伝搬する状態となし、該単
一モード光ファイバの出射端面上で基底モードの中心位
置を検出するとともに、該出射端面を前記入射光とはy
同じ波長の光源を用いて照明し、該出射端の外径と中心
とを検出することにより該単一モート8光フアイノの外
径および外径と基底モードの偏心量とを測定することを
特徴とする。本発明においては、単一モート8光フアイ
ノ2の使用波長より短い波長の光を用いて基底モードの
中心位置を検出できるようにしたから、基底モード中心
位置検出用の入射光として波長の小さく・近赤外光或は
可視光を利用することができ、このため感度および分解
能が良好な波長の小さい近赤外光用或は可視光用撮像管
を用いて精度良い測定を行うことができる。また、出射
端面照明用の光源として上記入射光とはy同じ波長の発
光波長を有するLED等レーザ光以外の光源を利用でき
るので、スペックル雑音の問題を生ずることもな℃・。
The present invention aims to eliminate the above-mentioned conventional drawbacks and provide a method for easily and accurately measuring the outer diameter and the eccentricity of the fundamental mode of a single-mode optical fiber, Therefore, in the method for measuring the structure of a single mode optical fiber according to the present invention, light having a wavelength shorter than the working wavelength of the single mode optical fiber is incident from one end of the single mode optical fiber to be measured. The fiber is bent so that only the fundamental mode propagates, and the center position of the fundamental mode is detected on the output end face of the single mode optical fiber, and the output end face is set to y, which is different from the incident light.
The method is characterized in that the outer diameter and outer diameter of the single moat 8-optical fin and the eccentricity of the fundamental mode are measured by illuminating with a light source of the same wavelength and detecting the outer diameter and center of the output end. shall be. In the present invention, since the center position of the fundamental mode can be detected using light with a wavelength shorter than the wavelength used by the single moat 8-optical ino 2, the incident light with a small wavelength can be used as the incident light for detecting the center position of the fundamental mode. Near-infrared light or visible light can be used, and therefore accurate measurements can be performed using a near-infrared light or visible light imaging tube with a small wavelength and good sensitivity and resolution. Furthermore, since a light source other than a laser beam such as an LED having an emission wavelength that is the same as that of the incident light can be used as a light source for illuminating the output end face, the problem of speckle noise does not occur.

以下、本発明の好適な実施例を添附図を参照しつ〜説明
する。
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

第6図は本発明方法を実施するための装置構成例を示す
。同図において第1.2図と同一参照番号は同一構成手
段を示す。本実施例では、被測定光ファイバ1として使
用波長1.6μm、長さ約277Lの単一モード光ファ
イバを用い、該被測定光ファイバ1を発振波長0.85
μmの半導体レーザ8で励振する。被測定光ファイバ1
は伸直状態で0.85μmの波長の光に対してはシング
ルモード光ファイバとはならないが、図示のように被測
定光ファイバ1の中間部分を丸棒9に巻き付けるなどし
て適当な曲げを加えることにより、基底モードのみ伝搬
し得る状態を実現することができる。そこで被測定光フ
ァイバ1の出射端面な波長の小さい近赤外光用の撮像管
を用いたTV右カメラ0で観測し、画像処理装置5によ
りその光強度分布をめることにより基底モートゝの中心
位置を検出することができる。次に、上記入射光とはy
同じ波長の0.85μm帯で発光するLEDilを端面
照明用の光源として用い、上記TVカメラ10および画
像処理装置5により被測定光ファイバ1の端面像を観測
することにより被測定光ファイバの外径およびその中心
位置を検出する。以上の測定から、被測定光ファイバの
外径および外径と基底モードの偏心量をめることができ
る。
FIG. 6 shows an example of an apparatus configuration for carrying out the method of the present invention. In this figure, the same reference numerals as in FIG. 1.2 indicate the same constituent means. In this example, a single mode optical fiber with a wavelength of 1.6 μm and a length of approximately 277 L is used as the optical fiber 1 to be measured.
It is excited by a μm semiconductor laser 8. Optical fiber to be measured 1
Although it does not become a single mode optical fiber for light with a wavelength of 0.85 μm when stretched straight, it is possible to bend the optical fiber 1 appropriately by wrapping the middle part of the optical fiber 1 around a round bar 9 as shown in the figure. By adding this, it is possible to realize a state in which only the fundamental mode can propagate. Therefore, the output end face of the optical fiber 1 to be measured is observed with the TV right camera 0 using an image pickup tube for near-infrared light with a small wavelength, and the light intensity distribution is determined by the image processing device 5, thereby determining the base mode. The center position can be detected. Next, the above incident light is y
Using an LEDil that emits light in the 0.85 μm band of the same wavelength as a light source for end face illumination, the outer diameter of the optical fiber to be measured is determined by observing the end face image of the optical fiber to be measured 1 using the TV camera 10 and the image processing device 5. and detect its center position. From the above measurements, the outer diameter of the optical fiber to be measured and the eccentricity of the fundamental mode can be determined.

上記の測定においては、基底モード中心位置の検出用入
射光として波長の小さい近赤外光を用い、観測手段とし
て感度および分解能が良好な波長の小さい近赤外光用の
撮像管を用いているので精度良い測定を行うことができ
る。また、出射端面照明用の光源として上記入射光とは
y同じ波長のLED光源を利用できるのでス啄ツクル雑
音の問題を生ずることもない。さらに、測定装置は基底
モードの寸法測定系に端面照明用の光学系とファイバ曲
げ手段を加えることにより得られるので構成が簡単であ
る。
In the above measurements, near-infrared light with a small wavelength is used as the incident light for detecting the fundamental mode center position, and an imaging tube for near-infrared light with a small wavelength with good sensitivity and resolution is used as the observation means. Therefore, highly accurate measurements can be made. Further, since an LED light source having the same wavelength as the incident light can be used as a light source for illuminating the output end face, the problem of scratch noise does not occur. Furthermore, the measuring device is simple in construction because it is obtained by adding an optical system for end face illumination and a fiber bending means to the fundamental mode dimension measuring system.

なお、上記実施例では特に入射光として波長の小さい近
赤外光を用い、観測手段として同じく波長の小さい近赤
外光用の撮像管を用いているが、本発明では入射光とし
て可視光および観測手段として可視光用撮像管を用いる
こともできる。
In the above embodiment, near-infrared light with a small wavelength is used as the incident light, and an imaging tube for near-infrared light with a small wavelength is used as the observation means, but in the present invention, visible light and near-infrared light are used as the incident light. A visible light imaging tube can also be used as the observation means.

以上のように、本発明によれば単一モード光ファイバの
外径および外径と基底モードの偏心量を簡単でかつ精度
良く測定できる方法が提供される。
As described above, the present invention provides a method for easily and accurately measuring the outer diameter of a single mode optical fiber and the eccentricity of the outer diameter and the fundamental mode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は単一モ−ド光ファイバの基底モードの寸法を測
定する従来の測定系を示す図、第2図は単一モード光フ
ァイバの外径および外径と基底モードの偏心量を測定す
るための第1図を改変した測定系を示す図、第6図は本
発明方法に使用される測定系の一例を示す図である。 1・・・被測定光ファイバ、 5・・・画像処理装置、
7・・・ハーフミラ−18・・・半導体レーザ、9・・
・丸棒、10・・・近赤外光用TVカメラ、11・・・
LED特許出願人 住友電気工業株式会社 (外4名)
Figure 1 shows a conventional measurement system for measuring the dimensions of the fundamental mode of a single-mode optical fiber, and Figure 2 shows the outer diameter of a single-mode optical fiber and the eccentricity of the outer diameter and fundamental mode. FIG. 6 is a diagram showing an example of the measurement system used in the method of the present invention. 1... Optical fiber to be measured, 5... Image processing device,
7... Half mirror 18... Semiconductor laser, 9...
・Round bar, 10...TV camera for near-infrared light, 11...
LED patent applicant Sumitomo Electric Industries, Ltd. (4 others)

Claims (4)

【特許請求の範囲】[Claims] (1) 測定されるべき単一モード光ファイバの一端か
ら該単一モード光ファイバの使用波長より短い波長の光
を入射させ、該単一モート9光フアイバに曲げを加えて
実質的に基底モードのみ伝搬する状態となし、該単−モ
ード光ファイバの出で端面上で基底モードの中心位置を
検出するととモ;、該出射端面を前記入射光とはy同じ
波長の光 を用いて照明し、該出射端の外径と中心とを
極比することにより該単−モード光ファイバの外径およ
び外径と基底モードの偏心量とを測定することを特徴と
する単一モード光ファイバの構造測定法。
(1) Light with a wavelength shorter than the working wavelength of the single-mode optical fiber is introduced from one end of the single-mode optical fiber to be measured, and the single-mode optical fiber is bent so that it is substantially in the fundamental mode. When the central position of the fundamental mode is detected on the end face at the output of the single-mode optical fiber, the output end face is illuminated with light having the same wavelength as the incident light. , a structure of a single-mode optical fiber characterized in that the outer diameter and outer diameter of the single-mode optical fiber and the eccentricity of the fundamental mode are measured by polarizing the outer diameter of the output end and the center. Measurement method.
(2)前記入射光の光源として半導体レーザを用いる特
許請求の範囲第1の方法。
(2) A method according to claim 1, in which a semiconductor laser is used as a light source for the incident light.
(3)前記出射端照明用の光源としてLEDを用いる特
許請求の範囲第1項又は第2項の方法。
(3) The method according to claim 1 or 2, in which an LED is used as the light source for illuminating the output end.
(4)前記基底モードの中心位置、出射端の外径および
中心位置の検出手段として可視光用或は波長の小さい近
赤外光用のTVカメラを用いる特許請求の範囲第1項又
は第2項の方法。
(4) Claim 1 or 2 uses a TV camera for visible light or near-infrared light with a small wavelength as means for detecting the central position of the base mode, the outer diameter of the output end, and the central position. Section method.
JP10236484A 1984-05-21 1984-05-21 Measuring method of structure of single-mode optical fiber Granted JPS60244833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10236484A JPS60244833A (en) 1984-05-21 1984-05-21 Measuring method of structure of single-mode optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10236484A JPS60244833A (en) 1984-05-21 1984-05-21 Measuring method of structure of single-mode optical fiber

Publications (2)

Publication Number Publication Date
JPS60244833A true JPS60244833A (en) 1985-12-04
JPH0354772B2 JPH0354772B2 (en) 1991-08-21

Family

ID=14325402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10236484A Granted JPS60244833A (en) 1984-05-21 1984-05-21 Measuring method of structure of single-mode optical fiber

Country Status (1)

Country Link
JP (1) JPS60244833A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104897372A (en) * 2015-06-09 2015-09-09 西安炬光科技有限公司 Near-field nonlinear automatic test method for multi-light-emitting-unit semiconductor laser, and device thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104897372A (en) * 2015-06-09 2015-09-09 西安炬光科技有限公司 Near-field nonlinear automatic test method for multi-light-emitting-unit semiconductor laser, and device thereof

Also Published As

Publication number Publication date
JPH0354772B2 (en) 1991-08-21

Similar Documents

Publication Publication Date Title
US8792757B2 (en) Double clad fiber coupler and device
RU2007115154A (en) OPTICAL MEASURING DEVICE FOR MEASURING CHARACTERISTICS OF MULTIPLE SURFACES OF THE OBJECT OF MEASUREMENT
JP2004513363A (en) Especially for plasma resonance sensors for biosensor technology
JPH0364818B2 (en)
JPH1090064A (en) Microscopic raman system
JP2000241128A (en) Plane-to-plane space measuring apparatus
JPS60244833A (en) Measuring method of structure of single-mode optical fiber
JP2020198999A (en) Optical interference tomographic imaging apparatus
JP2008196901A (en) Light wave interference measuring device
JPS6113129A (en) Measurement for structure of single mode optical fiber
JP2519775B2 (en) Refraction angle measuring device
KR100418711B1 (en) Apparatus for inspecting collimator property
JP4629835B2 (en) Abbe number measuring apparatus and Abbe number measuring method
RU2413205C1 (en) X-ray optical endoscope
Lindgren et al. -78-dB shot-noise limited optical low-coherence reflectometry at 42-m/s scan speed
RU2405137C1 (en) X-ray optical endoscope
RU2643677C1 (en) Method of micro objects investigation and near-field optical microscope for its implementation
JPH0812130B2 (en) Method and apparatus for measuring refractive index distribution
JPS62130306A (en) Optical measuring method for quartz-based optical waveguide
JPS6168532A (en) Spot size measurement for optical fiber
Lewis et al. Interferometer light source and alignment aid using single-mode optical fibres
RU2239179C1 (en) Radio-optical endoscope
JP2001141608A (en) Equipment and method for measuring chromatic aberration of radial grin lens
JPH04262244A (en) Optical measuring apparatus
JPS60233612A (en) Inspecting device of flaw of internal surface of pipe