JPS60243204A - Method for operating blast furnace - Google Patents

Method for operating blast furnace

Info

Publication number
JPS60243204A
JPS60243204A JP9961484A JP9961484A JPS60243204A JP S60243204 A JPS60243204 A JP S60243204A JP 9961484 A JP9961484 A JP 9961484A JP 9961484 A JP9961484 A JP 9961484A JP S60243204 A JPS60243204 A JP S60243204A
Authority
JP
Japan
Prior art keywords
blast furnace
furnace
gas
gas flow
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9961484A
Other languages
Japanese (ja)
Inventor
Teiji Shibuya
渋谷 悌二
Yojiro Yamaoka
山岡 洋次郎
Masaro Izumi
泉 正郎
Morio Saito
斉藤 森生
Ryosuke Kimura
亮介 木村
Mitsuhiro Kitagawa
北川 充宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP9961484A priority Critical patent/JPS60243204A/en
Publication of JPS60243204A publication Critical patent/JPS60243204A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To stabilize conditions in a blast furnace by calcuating the flow rate of gas from the difference in pressure between plural pressure measuring holes arranged in the furnace in the falling direction of starting materials and by controlling the distribution of the flow rate of gas on the basis of the calculated value. CONSTITUTION:Plural pressure measuring holes 1a, 2a are arranged in a blast furnace in the falling direction of starting materials at a prescribed distance (DELTAl) from each other. The difference in pressure between the holes 1a, 2a is measured with a differential pressure gauge 4, and the flow rate of gas is calculated from the measured value. On the basis of the calculated value, the distribution of the flow rate of gas in the furnace is controlled in a movable armor by increasing the amount of ore at the center of the furnace or reducing the speed at the tip of a tuyere.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高炉原料内のガス流速を計測し、この計測値
にもとづいてガス流分布を適正なものとする高炉操業方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a blast furnace operating method that measures the gas flow velocity in a blast furnace raw material and makes the gas flow distribution appropriate based on the measured value.

〔従来の技術〕[Conventional technology]

高炉操業において、径方向及び円周方向のガス流速分布
は、溶銑成分の均一化、燃料比の低下及び炉況の安定を
図るための重要な因子である。このため従来から高炉内
のガス流速を各種機器により測定している。従来の測定
機器として、例えば熱線風速計、ター5・メーター、フ
ルイド流速計などがある。しかしこれらの機器はいずれ
も耐久性、ダスト付着等の問題があり、炉頂部原料表面
上の計測に限られ、原料内のガス流iを直接、連続的に
計測することはできない。
In blast furnace operation, the gas flow velocity distribution in the radial direction and the circumferential direction is an important factor for making the hot metal components uniform, lowering the fuel ratio, and stabilizing the furnace condition. For this reason, the gas flow velocity inside the blast furnace has been measured using various instruments. Conventional measuring instruments include, for example, hot-wire anemometers, tar-5 meters, and fluid anemometers. However, all of these devices have problems such as durability and dust adhesion, and are limited to measurements on the surface of the raw material at the top of the furnace, and cannot directly and continuously measure the gas flow i within the raw material.

〔発明が解決しようとする技術的課題〕本発明は、上記
事情に鑑みてなされたもので、その目的とするところは
、原料内のガス流速を直接かつ連続的に計測してこの計
測i1:もとづいてガス流分布を常に適正なCの(=制
御するととができる高炉操業方法を提供するものである
[Technical Problems to be Solved by the Invention] The present invention has been made in view of the above circumstances, and its purpose is to directly and continuously measure the gas flow velocity within the raw material and to perform this measurement i1: The purpose is to provide a blast furnace operating method in which the gas flow distribution can always be properly controlled.

〔技術的課題を解決するための手段〕[Means for solving technical problems]

すなわち本発明は、高炉内に、原料下降方向に所定距離
離間した少くとも2個の圧力検出孔を設け、各圧力検出
孔位置における差圧を測定してこれら測定値からガス流
速をめ、このガス流速値にもとづいて炉内ガス流速分布
を制御する高炉操業方法である。
That is, the present invention provides at least two pressure detection holes spaced a predetermined distance apart in the descending direction of the raw material in the blast furnace, measures the differential pressure at each pressure detection hole position, determines the gas flow velocity from these measured values, and calculates the gas flow rate. This is a blast furnace operating method that controls the gas flow velocity distribution in the furnace based on gas flow velocity values.

〔実施例〕〔Example〕

以下本発明を図示する実施例を参照して詳細に説明する
。 − まず本発明では、第1図に示すように高炉内に2本のブ
ロー、プZ、2を設置する。これらプローブ1.2は、
下端に圧力検出孔1m、2aを備え、これら圧力検出孔
1s、2−は原料下降方向に所定距離(△j)離間して
いる(通常100〜200M)。これら1対のプローブ
1,2は、図示しないが炉の円周方向及び直径方向に複
数ケ所設置されている。また圧力検出孔1m。
The present invention will be described in detail below with reference to illustrative embodiments. - First, in the present invention, two blowers Z and 2 are installed in a blast furnace as shown in FIG. These probes 1.2 are
The lower end is provided with pressure detection holes 1m and 2a, and these pressure detection holes 1s and 2- are spaced apart by a predetermined distance (Δj) in the downward direction of the raw material (usually 100 to 200M). Although not shown, these pair of probes 1 and 2 are installed at a plurality of locations in the circumferential direction and diametrical direction of the furnace. Also, the pressure detection hole is 1m.

2aとほぼ同一位置にガス温度、ガス組成、圧力を検出
するプローブ3が設置されている。上記プローブ1.2
は、差圧変化を検出する差圧発振器4に接続し、差圧発
振器4はデー舜覧理装置5に接続している。プローブ3
もデーター処理装置5に接続している。
A probe 3 for detecting gas temperature, gas composition, and pressure is installed at approximately the same position as 2a. Above probe 1.2
is connected to a differential pressure oscillator 4 that detects changes in differential pressure, and the differential pressure oscillator 4 is connected to a data sensor 5. probe 3
is also connected to the data processing device 5.

上記圧力検出孔1a、2aでは、原料の降下に伴って差
圧が変化するが、この差圧△Pを差圧発振器4で検出す
″る。第2図は実炉において検出された差圧の変化を示
す。第2図から、鉱石層とコークス層とにより、差圧レ
ベルに明確な差があられれることがわかる。また各層内
において差圧に微少変化があり、その振幅に差が認めら
れる(第3図にその差を拡大して示す)。
In the pressure detection holes 1a and 2a, the differential pressure changes as the raw material falls, and this differential pressure ΔP is detected by the differential pressure oscillator 4.Figure 2 shows the differential pressure detected in an actual furnace. Figure 2 shows that there is a clear difference in the differential pressure level between the ore layer and the coke layer.Also, there are slight changes in the differential pressure within each layer, and there are differences in the amplitude. (Figure 3 shows the difference enlarged).

この振幅の差は、原料が降下に併って圧力検出孔前面を
通過する際の、原料の粒径の差に起因し、粒径に比例す
るものと考えられる。
This difference in amplitude is considered to be due to a difference in particle size of the raw material when the raw material passes in front of the pressure detection hole as it descends, and is proportional to the particle size.

この発明では差圧の測定値から、以下に示すエルガンの
圧損式にもとづいてガス流速を算出する。
In this invention, the gas flow rate is calculated from the measured value of the differential pressure based on the Elgin pressure loss equation shown below.

即ちエルガンの圧損式(1)式は、一般に高炉内の通気
性を表わすのに用いられる。
That is, Ergin's pressure drop equation (1) is generally used to express the air permeability inside a blast furnace.

ただし △P: 差圧 Δ!: 圧力検出端距離 ?C: 重力加速度(定数) φ : 形状係数(定数) μ: 気体の粘度 ρ : 気体の密度 6: 平均粒径 U: ガス流速 ε 二 空隙率 (1)式から ・・・(2) ただし、μとρはガス組成、温度、圧力により計算する
However, △P: Differential pressure Δ! : Pressure detection end distance? C: Gravitational acceleration (constant) φ: Shape factor (constant) μ: Gas viscosity ρ: Gas density 6: Average particle size U: Gas flow rate ε 2 Porosity From equation (1)... (2) However, μ and ρ are calculated based on gas composition, temperature, and pressure.

(平均粒径nの算出) 各層における差圧の微少変化の振幅が粒径に比例するこ
とから、 Xi:差圧の微少変化の振幅 ki二定数 (空隙率εの算出) 粒径の分布が正規分布をなし、しかも実炉における空隙
率はその分布の広がりに比例することがモデル実験から
知られ℃いる。このため空隙率εは、次式からめられる
(Calculation of average particle size n) Since the amplitude of minute changes in differential pressure in each layer is proportional to the particle size, Xi: amplitude of minute changes in differential pressure ki constant (calculation of porosity ε) It is known from model experiments that it forms a normal distribution and that the porosity in an actual reactor is proportional to the spread of the distribution. Therefore, the porosity ε can be calculated from the following equation.

ただじに、は定数。However, is a constant.

このようにして各圧力検出孔の差圧変化にもとづいてガ
ス流速をめ、炉の径方向のガス流速分布及び炉の円周方
向のガス流速分布をめ、これら測定値にもとづいてガス
流速分布が適正なものとなるように制御する。
In this way, the gas flow velocity is determined based on the differential pressure change of each pressure detection hole, the gas flow velocity distribution in the radial direction of the furnace and the gas flow velocity distribution in the circumferential direction of the furnace are determined, and the gas flow velocity distribution is determined based on these measured values. control so that it is appropriate.

例えば炉の中心部のガス流速が大きい場合、ルーバプル
アーマ−を用いて炉中心に鉱石を多くするか、羽口先ス
ピードを小さくするか、あるいはこれらの操作を併用す
るかして、ガス流速を適正なものとする。
For example, if the gas flow rate in the center of the furnace is high, the gas flow rate can be adjusted to an appropriate level by using a louver pull armor to increase the amount of ore in the center of the furnace, by reducing the tuyere tip speed, or by using a combination of these operations. shall be taken as a thing.

炉の周辺部のガス流速が大きい場合、逆にルーパプルア
ーマ−を用いて炉周辺に鉱石を多くするか、羽口先スピ
ードを大きくするか、あるいはこれらの操作を併用する
かして、ガス流速を適正なものとする。
If the gas flow rate around the furnace is high, the gas flow rate can be adjusted to an appropriate level by increasing the amount of ore around the furnace using a looper armor, by increasing the tuyere tip speed, or by using a combination of these operations. make it a thing.

また炉の円周方向のガス流速が不均一の場合、各羽目の
流量を制御してガス流速の円周方向での均一化を図る。
Furthermore, if the gas flow velocity in the circumferential direction of the furnace is non-uniform, the flow rate of each panel is controlled to make the gas flow velocity uniform in the circumferential direction.

このようにガス流速分布を制御することにより、ガスの
有効利用を図れ、適正な還元、軟化、溶融ゾーンを形成
し、スリップを減少する。この結果、溶銑成分のばらつ
きが減少し、燃料比を低下し、炉況を安定なものとする
ことができる。
By controlling the gas flow velocity distribution in this manner, it is possible to effectively utilize the gas, form appropriate reduction, softening, and melting zones, and reduce slip. As a result, variations in the hot metal components are reduced, the fuel ratio is lowered, and the furnace conditions can be stabilized.

例えば、この発明の高炉操業法を実施する前には、溶銑
中のSiは、1日当り平均0.50%、最大0.70%
、最小0.30%、その差0.40%4つ であつflt 、この発明方法を行うことにより、平均
0.45%、最大0.55%、最小0.35%、その差
0.20%となった。
For example, before implementing the blast furnace operating method of the present invention, the Si content in hot metal was 0.50% per day on average and 0.70% per day at maximum.
, the minimum is 0.30%, the difference is 0.40%, and there are 4 flts. By performing the method of this invention, the average is 0.45%, the maximum is 0.55%, the minimum is 0.35%, and the difference is 0.20. %.

この結果から溶銑成分のばらつきが著しく減少している
ことがわかる。
This result shows that the dispersion of hot metal components has been significantly reduced.

また、従来方法では、スリップが1日当り10回であっ
たのが、この発明を実施することにより1〜2回となり
、スリップが著しく減少していることがわかる。
In addition, in the conventional method, slips occurred 10 times per day, but by implementing the present invention, the number of slips decreased to 1 to 2 times per day, which shows that the number of slips has significantly decreased.

更に、従来方法では燃料比が490KP/Tpigであ
ったのが、この発明を実施することにより470KP/
Tp1gとなり、燃料比が低下していることがわかる。
Furthermore, in the conventional method, the fuel ratio was 490KP/Tpig, but by implementing this invention, it has been reduced to 470KP/Tpig.
It becomes Tp1g, and it can be seen that the fuel ratio is decreasing.

〔発明の効果〕〔Effect of the invention〕

以上の結果から明らかなようにこの発明によれば高炉原
料内におけるガス流速を連続的に計測することができる
の、で、炉内のガス流速分布を常に適正なものとするこ
とができ、溶銑成分の均一化、燃料比低下、炉況安定を
図ることができる。
As is clear from the above results, according to the present invention, the gas flow velocity in the blast furnace raw material can be measured continuously, so that the gas flow velocity distribution in the furnace can always be appropriate, and the molten metal It is possible to equalize the components, lower the fuel ratio, and stabilize the furnace condition.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜ダ3図は本発明方法の一例を示し、第1図はプ
ローブの設置状態を示す説明図、第2図は経時的な差圧
変化を示す説明図、第3図は第2図のA部を拡大した経
時的な差圧の微少変化を示す説明図である。 1.2・・・プローブ、3・・・プローブ、1 a、2
 a・・・圧力検出孔、4・・・差圧発振器、5・・・
データー処理装置。 出願人代理人 弁理士 鈴 江 武 彦第2図 碕閣
Figs. 1 to 3 show an example of the method of the present invention, Fig. 1 is an explanatory diagram showing the installation state of the probe, Fig. 2 is an explanatory diagram showing the change in differential pressure over time, and Fig. 3 is an explanatory diagram showing the installation state of the probe. FIG. 2 is an explanatory diagram showing minute changes in differential pressure over time, with part A in the diagram enlarged. 1.2...probe, 3...probe, 1 a, 2
a...Pressure detection hole, 4...Differential pressure oscillator, 5...
Data processing equipment. Applicant's agent Patent attorney Takehiko Suzue Figure 2 Seikaku

Claims (1)

【特許請求の範囲】 (11高炉内に、原料下降方向に所定距離離間した少く
とも2個の圧°力検出孔を設け、各圧力検出孔位置にお
ける差圧を測定してこれら測定値からガス流速をめ、こ
のガス流速値にもとづいて炉内ガス流速分布を制御する
ことを特徴とする高炉操業方法。 (2) ガス流速は、エルガンの圧損式にもとづいて算
出することを特徴とする特許請求の範囲第1項記載の高
炉操業方法。 (3)各圧力検出孔における差圧の微少変化により原料
の粒径及び空隙率を算出し、これら算出値と圧力検出孔
の差圧とからガス流速をめることを特徴とする特許請求
の範囲第1項記載の高炉操業方法。
[Claims] (11) In the blast furnace, at least two pressure detection holes are provided at a predetermined distance apart in the downward direction of the raw material, and the differential pressure at each pressure detection hole position is measured, and the gas A blast furnace operating method characterized in that the gas flow velocity distribution in the furnace is controlled based on the gas flow velocity value. (2) A patent characterized in that the gas flow velocity is calculated based on the Elgin pressure drop formula. The method of operating a blast furnace according to claim 1. (3) The particle size and porosity of the raw material are calculated based on minute changes in the differential pressure in each pressure detection hole, and the gas The blast furnace operating method according to claim 1, characterized in that the flow rate is increased.
JP9961484A 1984-05-17 1984-05-17 Method for operating blast furnace Pending JPS60243204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9961484A JPS60243204A (en) 1984-05-17 1984-05-17 Method for operating blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9961484A JPS60243204A (en) 1984-05-17 1984-05-17 Method for operating blast furnace

Publications (1)

Publication Number Publication Date
JPS60243204A true JPS60243204A (en) 1985-12-03

Family

ID=14251969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9961484A Pending JPS60243204A (en) 1984-05-17 1984-05-17 Method for operating blast furnace

Country Status (1)

Country Link
JP (1) JPS60243204A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015028209A (en) * 2013-07-02 2015-02-12 新日鐵住金株式会社 Method for estimating gas flow velocity and reduced load of blast furnace lumpy zone

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015028209A (en) * 2013-07-02 2015-02-12 新日鐵住金株式会社 Method for estimating gas flow velocity and reduced load of blast furnace lumpy zone

Similar Documents

Publication Publication Date Title
CN104212924B (en) Detection method for blast furnace airflow distribution
JPS60243204A (en) Method for operating blast furnace
CA1049258A (en) Method of detecting abnormal conditions of blast furnaces
JP3624658B2 (en) Evaluation method of in-furnace deposition shape stability in blast furnace
JPH01290709A (en) Operation of blast furnace
JPS60243205A (en) Method for operating blast furnace
JP7111278B1 (en) METHOD AND DEVICE FOR DETECTING RESIDUAL MELTS, AND METHOD OF OPERATING VERTICAL FURNACE
WO2022168556A1 (en) Method for detecting remaining amount of liquid and detection device for same, method for detecting remaining amount of molten substance and detection device for same, and vertical furnace operation method
JP7111277B1 (en) METHOD AND DEVICE FOR DETECTING LIQUID LEVEL HEIGHT OF MELTS, AND METHOD OF OPERATING VERTICAL FURNACE
JPS60243206A (en) Method for operating blast furnace
WO2022168557A1 (en) Detection method and detection device for liquid level height of liquid, detection method and detection device for liquid level height of molten material, and operation method for vertical furnace
JPH0978111A (en) Operation of blast furnace
JPS59221583A (en) Method of monitoring internal state of vertical type furnace
MXPA00011668A (en) Apparatus and method for controlling molten glass flow through a forehearth.
JPS6333527A (en) Method for controlling surface ignition of sintering ore raw material
JPS62228404A (en) Method for measuring flow rate of gas in blast furnace
JPH05186811A (en) Method for operating blast furnace
JPH06306419A (en) Operation of blast furnace
JPH0417607A (en) Method for operating blast furnace
JPS58147503A (en) Operating method of blast furnace
KR20000028284A (en) Method for deciding ventilation inside melting furnace
JPS6115905A (en) Method for operating blast furnace
JPS61201711A (en) Operating method for blast furnace
JPS6191307A (en) Detection of descending of charge in blast furnace
JPS6277414A (en) Operating method for blast furnace