JPS6024180B2 - Film preparation method - Google Patents

Film preparation method

Info

Publication number
JPS6024180B2
JPS6024180B2 JP55129641A JP12964180A JPS6024180B2 JP S6024180 B2 JPS6024180 B2 JP S6024180B2 JP 55129641 A JP55129641 A JP 55129641A JP 12964180 A JP12964180 A JP 12964180A JP S6024180 B2 JPS6024180 B2 JP S6024180B2
Authority
JP
Japan
Prior art keywords
film
silane
cylinder
silicon
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55129641A
Other languages
Japanese (ja)
Other versions
JPS5756311A (en
Inventor
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP55129641A priority Critical patent/JPS6024180B2/en
Publication of JPS5756311A publication Critical patent/JPS5756311A/en
Publication of JPS6024180B2 publication Critical patent/JPS6024180B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 本発明は皿価またはV価の不純物元素と水素化シランと
を同一のボンベに充填し、このボンベ内でポリシラン(
Si幻Hy x≧2,y≦4)、または会合状態のモノ
シラン(Siは)またはポリシラン(以下単に会合シラ
ンという)よりなる強化物気体を化学的に活性化、分解
または反応せしめた後、被形成面上に珪素または珪素の
化合物(混合物)の被膜を形成することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, an impurity element having a dish value or a value V and hydrogenated silane are filled in the same cylinder, and polysilane (
After chemically activating, decomposing or reacting a reinforcing gas consisting of Si phantom Hy (x≧2, y≦4), monosilane (Si) or polysilane (hereinafter simply referred to as associated silane) in an associated state, The purpose is to form a film of silicon or a silicon compound (mixture) on the formation surface.

本発明はかかる被膜を塊状のクラス夕を重合せた構造と
したもので、さらにそのクラス夕は場合によっては非晶
質(Amorphous)または半非晶質(Semi−
amorpho瓜、この半非晶質をQ肌si−amor
phous,Simi−cひs地 またはQuasi−
cひsは1といってもよい)の被膜の作製をすることを
目的としている。さらに本発明は、ポリシラン化反応ま
たは会合シラン化反応がボンベ内に水素化シラン(水素
と珪素とのみよりなる化合物気体)特にモノシランを充
填する際、シランまたはそのシランに希釈ガスとしてへ
りュームの不活性気体を用い、かつボンベ内圧力(P(
k9/c*))とシラン濃度(N(%))との関係がN
XPと300%kg/C鰭 特に好ましくは NXP2500%k9/C虎 但しNSI00% において、特に促されることを実験的に立証し、かかる
ポリシランまたは会合シランの多重状態または会合状態
を促進させることを目的としている。
In the present invention, such a coating has a structure in which bulk crystal particles are superposed, and the crystal particles may be amorphous or semi-amorphous depending on the case.
amorpho melon, this semi-amorphous Q skin si-amor
pous, Simi-c Hisji or Quasi-
The purpose of this method is to produce a film with c his (c his can be said to be 1). Furthermore, the present invention provides that when a polysilanization reaction or an associative silanization reaction is performed by filling a cylinder with hydrogenated silane (a compound gas consisting only of hydrogen and silicon), particularly monosilane, silane or the silane is filled with helium as a diluent gas. An active gas is used, and the cylinder internal pressure (P(
The relationship between k9/c*)) and silane concentration (N (%)) is N
The purpose is to experimentally prove that XP and 300% kg/C fins, particularly preferably NXP 2500% k9/C but NSI 00%, is particularly promoted, and to promote the multistate or associated state of such polysilanes or associated silanes. It is said that

従来、シランはモノシラン(Si比沸点11〆0、融点
185午0)が存在し、珪素の水素化物が多重結合した
ポリシラン(Si幻Hy x≧2,y≧4)は不安定な
もので現実的に存在していないとされていた。
Conventionally, silane has been monosilane (Si specific boiling point 11〆0, melting point 185〆0), and polysilane with multiple bonded silicon hydrides (Si phantom Hy x≧2, y≧4) is unstable and is not practical. It was believed that it did not exist.

さらにモノシランは気体であり、それら分子は互いに離
間しあうため「SjH4と記すことが最も適切なものと
されていた。しかし本発明人はシランがかかる一般常識
ではなく、ある特殊な状態即ち高圧下においては逆にポ
リシランまたは会合シランになりやすく、常温または常
温付近の温度(一般に100℃以下)において数十ケ〜
数百万ケの珪素が互いに重合または会合することが判明
した。
Furthermore, since monosilane is a gas and its molecules separate from each other, it was considered most appropriate to write it as ``SjH4''. On the contrary, it tends to become polysilane or associated silane, and at room temperature or near room temperature (generally below 100°C), tens of
It has been found that millions of silicones polymerize or associate with each other.

加えてこの重合または会合分子はさらに本発明のごとき
塊状のクラス夕を積層させるごとくにして作製する被覆
においてはかえって好ましいものであることが判明した
。特に被膜を珪素の結晶化温度である70000以下特
に500こ○以下の温度で非晶質半導体(以下ASとい
う)または半非晶質半導体(以下SASという)を形成
させる際、その被膜を塊状のクラス夕を重合わせて(積
層させた)構造とさせることができた。特にこの塊状の
クラス夕は結晶化温度以上の温度で形成されるいわゆる
境界の明確な多結晶半導体とは異なり、必ずしも結晶粒
界が明快でなく、またこの粒界に界面準位が集中して存
在していないという大きな特長がある。さらに従来より
公知に行われるシランと水素等で希釈されたジボランま
たはフオスヒンとをド−ピング系にて混合すると、シラ
ンはすでに会合状態になっているため、ホウ素またはリ
ンはクラス夕の外側にしか結合(化合)できず、ミクロ
にはホウ素またはリンが不均質に分布してしまう。
In addition, it has been found that these polymerized or associated molecules are even more preferable in coatings prepared by laminating bulk clusters as in the present invention. In particular, when forming an amorphous semiconductor (hereinafter referred to as AS) or a semi-amorphous semiconductor (hereinafter referred to as SAS) at a temperature of 70,000 or below, which is the crystallization temperature of silicon, or particularly 500,000 degrees or less, the film is I was able to create a structure in which the classes were overlapped (stacked). In particular, unlike a polycrystalline semiconductor with clear boundaries, which is formed at a temperature above the crystallization temperature, this lumpy class structure does not necessarily have clear grain boundaries, and interface states are concentrated at these grain boundaries. A major feature is that it does not exist. Furthermore, when silane and diborane or phosphin diluted with hydrogen or the like are mixed in a doping system, which is conventionally known, since the silane is already in an associated state, boron or phosphorus is only present outside the class. They cannot be bonded (combined), and boron or phosphorus is distributed non-uniformly in the microscopic area.

即ち形成された被膜においては、クラス夕の周辺部に多
くの不純物が集中し、珪素被膜中に実質的に局部的に偏
在してしまう。このため添加量に対しそれらがアクセプ
タまたはドナーとして作用するいわゆるイオン化率Np
=アクセブタ濃度/添加したホウ素濃度が3〜30%と
低い。
That is, in the formed film, many impurities are concentrated in the periphery of the silicon film, and are substantially unevenly distributed locally in the silicon film. For this reason, the so-called ionization rate Np where they act as acceptors or donors with respect to the amount added is
=acceptor concentration/added boron concentration is as low as 3 to 30%.

しかし他方、本発明のごとく、ボンベ中にシランと同時
にジボランまたはフオスヒンを添加すると、リンはその
イオン化率Nnが聡〜100%として作用するに加えて
、ホウ素においても95〜99%と桁違いにイオンイり
率を向上させることができるようになった。
However, on the other hand, when diborane or phosphin is added to the cylinder at the same time as silane as in the present invention, the ionization rate Nn of phosphorus acts as ~100%, and the ionization rate of boron also increases by an order of magnitude from 95% to 99%. It is now possible to improve the ionization rate.

本発明はボンベ内で会合または会合状態のシランを形成
させる際、同時にこのボンベにm価またはV価の不純物
例えばジボランまたはフオスヒンまたはアルシンを同時
にシランに対し10功血(シランの体積に対し100/
1び倍の体積)〜10モル%(シランの体積に対し10
%の体積)とした。
In the present invention, when forming silane in an associated or associated state in a cylinder, at the same time, an m-valent or V-valent impurity such as diborane, phosphin, or arsine is added to the cylinder at a rate of 10 times the silane (100 times the volume of the silane).
1 times the volume) to 10 mol% (10 times the volume of silane)
% volume).

するとその不純物がクラス夕の内部に均質に分布しアク
セプタまたはドナー中心を98〜100%のイオン化率
で成就することができた。これはm価またはV価の不純
物のボンベとシランのボンベとを反応系に導入する直前
に混合すると、そのイオン化率が3〜30%であること
を考えるときわめて優れた効果であった。以下に図面に
従って本発明の実施例を説明する。
Then, the impurity was distributed homogeneously inside the crystal layer, and the acceptor or donor center could be ionized at a rate of 98 to 100%. This was an extremely excellent effect considering that when the m-valent or V-valent impurity cylinder and the silane cylinder are mixed immediately before introduction into the reaction system, the ionization rate is 3 to 30%. Embodiments of the present invention will be described below with reference to the drawings.

実施例 1 被形成面を有する基板としては導体基板または絶縁体基
板を用いた。
Example 1 A conductive substrate or an insulating substrate was used as a substrate having a surface to be formed.

第1図において、基板15は200〜1000仏の厚さ
を有し、大きさは10仇Uを最大とし、それらを石英製
ボード14上に林立させた。
In FIG. 1, the substrate 15 has a thickness of 200 to 1000 mm, and a maximum size of 10 mm, and is arranged on a quartz board 14.

ガスの流れにそって平行に形成した。この反応管は0.
1MHZ〜1昨日Zの周波数を有する誘導ェネルギを用
いたもので、代表的には50皿日2,13.58MH2
,2.4&HZとした。
It was formed parallel to the gas flow. This reaction tube is 0.
It uses inductive energy with a frequency of 1 MHZ to 1 yesterday Z, typically 50 days 2,13.58 MH2
, 2.4&HZ.

第1図は13.58MHZの高周波を用いた。誘導ェネ
ルギの供給は容量結合方式であり、一対の電極2,3よ
り行い、反応管1の全体が均質に放電するようにした。
さらにこの放電は被形成面より離れた位置に反応性気体
の活性化室1を設け、重合または会合した珪化物気体例
えばポリシランまたは会合シランは電磁ェネルギ(誘導
ェネルギ)により活性化室1で化学的に活性化、分解ま
たは反応し、さらに飛糊中にこの工程を進行させ、基板
15上に塊状のクラス夕をランダムに贋層して被膜とし
た。反応性気体はボンベ中の高圧下で重合または会合状
態のシラン(SkHy xと2 y≧4においてはm
SiH4)を7より、またこの珪化物気体に同時に皿価
の不純物気体例えばジボラン(&日6)を100肌〜1
0モル%混入し、さらにHeの不活性気体により0〜9
7%希釈させたボンベを8に接続した。またV価におい
ては、リン、枇素、アンチモンをフオスヒン(PH3)
、アルシン(AsH3)、スチビン(SbH3)により
同様に珪化物気体中に添加してボンベ内にHeにより0
〜97%希釈して9に接続した。反応管は管壁の影響を
少なくするため十分太くし、さらにその外周は水冷等を
して壁面で核形成がされないようにした。
In FIG. 1, a high frequency of 13.58 MHZ was used. The induction energy was supplied by a capacitive coupling method through a pair of electrodes 2 and 3 so that the entire reaction tube 1 was uniformly discharged.
Furthermore, this discharge is performed by providing an activation chamber 1 for a reactive gas at a position away from the formation surface, and polymerized or associated silicide gas such as polysilane or associated silane is chemically treated in the activation chamber 1 by electromagnetic energy (induced energy). Activation, decomposition or reaction is carried out, and this process is further advanced during the spraying process, and the lump-like particles are randomly layered on the substrate 15 to form a film. The reactive gas is silane in a polymerized or associated state (SkHy x and 2 y≧4, m
SiH4) from 7 to 1, and at the same time to this silicide gas an impurity gas such as diborane (&day 6) from 100 to 1
0 mol % mixed, and further 0 to 9 by He inert gas.
A bomb with 7% dilution was connected to 8. In addition, in terms of V value, phosphorus, phosphorus, and antimony are phosphine (PH3).
, arsine (AsH3), and stibine (SbH3) were added to the silicide gas in the same way, and then 0 was added to the cylinder with He.
Diluted ~97% and connected to 9. The reaction tube was made sufficiently thick to reduce the influence of the tube wall, and its outer periphery was cooled with water to prevent nucleation from forming on the wall.

このことは減圧気相法が壁面の温度を基板の温度とまっ
た〈同じとし、壁面で形成された多結晶珪素をも積極的
に基板表面に付着させんとしていることと大きく異なっ
ている。
This is very different from the reduced pressure vapor phase method, which assumes that the temperature of the wall surface is the same as that of the substrate, and attempts to actively attach the polycrystalline silicon formed on the wall surface to the substrate surface.

基板15は抵抗加熱炉6により加熱し、反応した気体お
よび元素の生成物はニードルバルブ10、ストップバル
ブ11、真空ロータリーポンプ12を経て排気13させ
た。
The substrate 15 was heated in a resistance heating furnace 6, and the reacted gas and elemental products were evacuated 13 through a needle valve 10, a stop valve 11, and a vacuum rotary pump 12.

反応性気体は主として珪化物気体を用い、ここではシラ
ンはボンベ内にて不活性気体例えばへIJュームにより
50〜3%に希釈させた。
The reactive gas used was primarily a silicide gas, in which the silane was diluted to 50-3% in a cylinder with an inert gas, such as IJ hume.

もちろん100%シランを用いてもよい。反応系(炉5
または活性化室1)は10‐3〜1びbrr特に0.0
05〜5tonの圧力に反応性気体の導入および排気に
より調整した。
Of course, 100% silane may also be used. Reaction system (furnace 5
or activation chamber 1) is 10-3 to 1 and especially 0.0
The pressure was adjusted to 0.05 to 5 tons by introducing reactive gas and evacuation.

一般に500KHZでは1〜2仇Prr、13.58M
H2では0.1〜3on、2.45GH2では0.00
5〜0.1tonが最適であった。本発明において、ボ
ンベ内の圧力は、第3図に後述するが、シランの濃度が
10〜50%にあっては、30k9/仇(10%)〜7
k9/仇(50%)以上特に好ましくはそれぞれ50〜
10k9/地以上の高圧とした。そして、ボンベ内にて
モノシラン分子が分解し、ポリマを得るべく互いに重合
反応したり、またはモノシランがその水素による結合(
水素結合)により互いに会合した会合シランになるよう
にした。
Generally at 500KHZ, 1~2 Prr, 13.58M
0.1-3on for H2, 0.00 for 2.45GH2
The optimal amount was 5 to 0.1 ton. In the present invention, the pressure inside the cylinder will be described later in FIG.
k9/enemy (50%) or more, particularly preferably 50~
The pressure was set to be over 10k9/ground. Then, the monosilane molecules decompose in the cylinder and undergo a polymerization reaction with each other to obtain a polymer, or the monosilane molecules bond due to their hydrogen (
The silanes were made to form associative silanes that associated with each other through hydrogen bonds (hydrogen bonds).

この重合シランまたは会合シランは反応系における活性
化の際、さらにそれが気相中であるにもかかわらず凝集
し、より安定な結晶化へ促進するいわゆる半結晶の塊状
のクラス夕を構成させるためにきわめて有効であった。
This polymerized or associated silane aggregates during activation in the reaction system, even though it is in the gas phase, and forms so-called semi-crystalline clusters that promote more stable crystallization. It was extremely effective.

このため多重または会合状態をボンベ内で促すため、キ
ャリアガスとしては水素は珪素の分解して発生した不対
結合手に対し再水素化結合をしやすいため不適当であり
、不活性気体特にへりューム(He)がきわめて好まし
かった。Heはその電離電圧が24.57eVであり、
他の一般に用いられる希釈気体の10〜1&Vに比べて
大きいこと、また熱伝導係数は他の気体の約3倍の0.
12雛cal/mHg℃であり、形成される被膜の均一
性を向上させるために好都合であった。反応性気体およ
び基板は加熱炉8より加熱され、室温より700ooま
で加熱した。
For this reason, hydrogen is unsuitable as a carrier gas because it tends to re-hydrogenate the unpaired bonds generated by the decomposition of silicon, as it promotes multiple or associated states within the cylinder. Highly preferred was He. He has an ionization voltage of 24.57 eV,
It is larger than the 10-1&V of other commonly used diluent gases, and the heat conductivity coefficient is 0.1V, which is about 3 times that of other gases.
The temperature was 12 cal/mHg°C, which was convenient for improving the uniformity of the formed film. The reactive gas and the substrate were heated from a heating furnace 8, and heated from room temperature to 700 oo.

図面より明らかなごと〈、反応性気体は誘導ェネルギに
より基板より離れた供給源側(ボンベ側)に配置され、
反応性気体はすべて誘導ェネルギにて励起または活性化
、分解させた。またこの活性化物は必要に応じ室温〜2
0000まで加熱させた。かくすることにより活性化ま
たは分解された反応性気体を互いに凝集し会合させた。
物性的にいうならば、互いに凝集させて反応性気体ここ
では珪素が気体中にて活性状態の塊(クラス夕)を複数
ケ作らせた。またこの活性化したクラス夕は基板上に被
膜化されるため、一部の水素が分離し基板上には平板状
または半球状のクラス夕を互いに重なり合って形成させ
ることができた。このためこの平板状または半球状に重
なりあったクラス夕は、飛棚中にヱネルギ的に可能な範
囲での安定状態を求めるため、電子間距離はバラッキが
大きく、かつその原子同志の配位は安定な方角(角度)
を有することが判明した。このため形成された被膜の電
子顕微鏡回折写真においては、アモルファス構造を示す
ハローと結晶化構造を示すスポットまたは線状のりング
状の半規則的な像を示すものとの混合物であった。第2
図A,Bは以上の反応過程のシランより珪素クラス夕を
基板上に形成させるプロセスを要約したもので、Bはポ
リシランの反応、工程を、Aは会合シランの反応工程を
示す。
As is clear from the drawings, the reactive gas is placed on the supply source side (cylinder side) away from the substrate by induced energy,
All reactive gases were excited or activated and decomposed using induced energy. In addition, this activated product can be added at room temperature to 2
It was heated to 0000. In this manner, the activated or decomposed reactive gases coagulated and associated with each other.
In terms of physical properties, they coagulate with each other to form a plurality of lumps (clusters) in which silicon is in an active state in the reactive gas. Furthermore, since the activated clusters were formed into a film on the substrate, some of the hydrogen was separated, and plate-shaped or hemispherical clusters could be formed on the substrate, overlapping each other. For this reason, the classes that overlap in a flat or hemispherical shape seek a stable state within the energetically possible range during the flight, so the distance between electrons varies widely, and the coordination of the atoms is Stable direction (angle)
It was found that the As a result, the electron microscopic diffraction photograph of the formed film showed a mixture of a halo indicating an amorphous structure and a spot or linear ring-like semiregular image indicating a crystallized structure. Second
Figures A and B summarize the process of forming a silicon cluster on a substrate from silane in the above reaction process, with B showing the reaction process of polysilane and A showing the reaction process of associated silane.

即ち、状態1においてmケのシラン例えばモノシラン(
m(SiH4))は状態Dにおいて活性化(m(siH
才)、m(simぶ十2))、さらに状態皿こおいて分
解または反応をおこし、活性のクラス夕(塊)s流日キ
またはsi吉日券+2となる。
That is, in state 1, m silanes such as monosilane (
m(SiH4)) is activated in state D (m(siH4))
It further decomposes or reacts in the state plate, resulting in the active class Yu (lump) s flow day ki or si auspicious day ticket +2.

ここでm,n,m′,n′は任意定数を示し、SiH*
はSi−日の結合手がェネルギを有して活性化している
状態を示す。それらは飛籾中に互いに会合または凝集し
、化学的に活性のクラス夕16になる。この状態を模式
的に示すと、Siクラス夕16の主として周辺部に水素
が集まってシェル17状態を構成している。さらにWに
て基板15上に平板状または半球上にクラス夕20が被
膜化する。このためクラス夕の周辺の輪郭は必ずしも超
密の多結晶のごとく明確ではなく、むしろ電子顕微鏡観
察においてもぼけたものであった。
Here, m, n, m', n' represent arbitrary constants, and SiH*
indicates a state in which the Si-day bond has energy and is activated. They associate or agglomerate with each other during husks, becoming chemically active class 16. To schematically show this state, hydrogen mainly gathers around the Si class layer 16 to form a shell 17 state. Further, in W, a film 20 is formed on the substrate 15 in the form of a flat plate or a hemisphere. For this reason, the contours of the periphery of the crystals were not necessarily as clear as those of ultra-dense polycrystals, but were rather blurred even when observed under an electron microscope.

さらにまた、クラス夕の大きさ、形状もボンベの圧力(
反応性気体の初期状態)、誘導ェネルギの周波数、パワ
ーによる飛糊時間、圧力さらに基板温度により大きな影
響を受ける。しかし透過電子顕微鏡(TEM)において
調べたところ、この塊は直径100A〜10ムの大きさ
を有し、おおむね円状であり角は鋭くはなかった。
Furthermore, the size and shape of the cylinder also depend on the pressure of the cylinder (
It is greatly affected by the initial state of the reactive gas), the frequency of the induced energy, the glue-flying time due to the power, the pressure, and the substrate temperature. However, when examined under a transmission electron microscope (TEM), the mass had a diameter of 100 A to 10 mm, was generally circular, and had no sharp corners.

かかるクラス夕20が次々と基板上に積み重なるため、
さらにそれらは互いに重なり合っている。このためこの
被膜化の工程である状態Wは結晶学的な規則性を寧ろ乱
すものであり、反応性気体の初期状態また活性化および
飛織中の会合(凝集)が気体の状態であるにもかかわら
ず、結晶のごとき規則性特に配位方向の規則性を促すも
のであることが本発明の特徴とするものであった。さら
にこの被膜化した各クラス夕はその厚さとして5〜50
0Aを有し、その実効直径は100A〜10.0仏を実
験結果においては有していた。またクラス夕はシランま
たはシランをへりユームの不活性気体にて希釈させたガ
スのボンベ圧力が高い程、例えばシランの濃度が3%、
10%、50%、100%である場合、第3図曲線22
のごとく10ぴ気圧(気圧貝0ちk9/洲)、3ぴ気圧
、6気圧、2気圧といわゆる一般的な曲線21の3ぴ気
圧、1ぴ気圧、2気圧、1気圧よりそれぞれ高圧にせし
め、クラス夕の塊を作りやすくまた大きなものとさせた
。さらにこの圧力を第3図の曲線23のごとくそれぞれ
150気圧、5ぴ気圧、1疎気圧、5気圧またはそれ以
上とすると、形成されるクラス夕は2〜5倍の3000
A〜10叫こまですることができた。キャリアガスが水
素ではクラス夕は作りに〈く祉においては誘導ヱネルギ
を10〜20Wの弱い電気ェネルギでもスパッタ効果に
より再結合中心の多い損傷をうけた非晶質になってしま
った。さらに温度はこれまでの200〜55000では
なくそれ以下にするとクラスタ内の結晶性は非晶質とな
り飛翻中の熱ェネルギも重要であることが判明した。本
発明は、PまたはN型の導電型の不純物としてジボラン
、フオスヒンもシランと同一のボンベに所定の濃度に同
時に添加する。
Since such classes 20 are piled up one after another on the board,
Furthermore, they overlap each other. For this reason, state W, which is the process of film formation, rather disturbs the crystallographic regularity, and the initial state and activation of the reactive gas and the association (agglomeration) in the fly are in the gaseous state. Nevertheless, the feature of the present invention is that it promotes crystal-like regularity, particularly regularity in the coordination direction. Furthermore, the thickness of each class layer formed into a film is 5 to 50.
0A, and its effective diameter was 100A to 10.0F in experimental results. In addition, the higher the cylinder pressure of silane or a gas made by diluting silane with an inert gas, the higher the concentration of silane is, for example, 3%.
In the case of 10%, 50%, 100%, Fig. 3 curve 22
The pressures are set to be higher than the so-called general curve 21's 3, 1, 2, and 1 atmospheres, such as 10 atmospheres (atmospheric pressure), 3 atmospheres, 6 atmospheres, and 2 atmospheres. , making it easier to make class evening chunks and making them bigger. Furthermore, if these pressures are set to 150 atm, 5 atm, 1 atm, and 5 atm or more as shown in curve 23 in Figure 3, the number of classes formed will be 2 to 5 times as large as 3000 atm.
I was able to do up to 10 screams. When the carrier gas is hydrogen, the material becomes amorphous with many recombination centers due to the sputtering effect, even with a weak electric energy of 10 to 20 W due to induction energy. Furthermore, it has been found that when the temperature is lower than the conventional 200 to 55,000, the crystallinity within the cluster becomes amorphous, and the thermal energy during flight is also important. In the present invention, diborane and phosphin are added as P- or N-type conductivity type impurities to the same cylinder at the same time as silane at a predetermined concentration.

こうするとボンベ内にて多重または会合状態を作る際、
その塊の内部(バルク)にも均質にホウ素またはリンを
添加させることができた。この本発明方法は形成させた
半導体膜中のPまたはN型の導電率を自由に制御できな
いという欠点を有しつつも量産ラインのごとくその導電
率が常に同一の場合は同じボンベに充填した方が操作が
しやすいという特徴を有する。
This way, when creating a multiplex or association state in the cylinder,
Boron or phosphorus could be added homogeneously to the inside (bulk) of the lump. Although this method of the present invention has the disadvantage that the conductivity of P or N type in the formed semiconductor film cannot be freely controlled, it is preferable to fill the same cylinder when the conductivity is always the same as in a mass production line. It has the characteristic of being easy to operate.

このためP型、1型、N型の半導体被膜を積層させてP
N接合、PI接合、NI接合を作らんとした場合、従来
の方法では1〜5モル%のBまたはPを添加しても1ぴ
〜1ぴ○弧(電気伝導度10‐4〜10‐2(0弧)‐
1)の比抵抗を有しているもの、本発明においては、0
.1〜1モル%においても10〜0.10仇(電気伝導
度0.1〜10(0弧)‐1)にまで下げることができ
た。
For this reason, P-type, 1-type, and N-type semiconductor films are stacked to form a P
When trying to make N junctions, PI junctions, and NI junctions, the conventional method has a 1 to 1 pi arc (electrical conductivity of 10-4 to 10- 2 (0 arc) -
1), in the present invention, 0
.. Even at 1 to 1 mol %, it was possible to lower the electrical conductivity to 10 to 0.10 (electrical conductivity 0.1 to 10 (0 arc) -1).

特にこの不純物の添加量を下げて同じ電気伝導度を得る
ことができるということを逆にいうと、不要の不純物則
ちキャリアにとって不純物散乱を呈し移動度を下げ、ま
た不純物再結合中心を形成してキャリアキラーとなる程
度を下げることができ、半導体材料としてきわめて好ま
しいものである。
In particular, the fact that the same electrical conductivity can be obtained by lowering the amount of impurities added means that unnecessary impurities, or carriers, exhibit impurity scattering, lowering mobility, and forming impurity recombination centers. This makes it extremely preferable as a semiconductor material because it can reduce the degree to which it becomes a carrier killer.

さらに本発明において、シボランまたはフオスヒンまた
はアルシンが添加されたシランと窒化物気体であるアン
モニア、酸化物気体である酸素または炭化物気体である
メタンを混合して気相反応をせしめ、Si3N4★(0
<x<4)、Sj02★(0<x<2)、SICx(0
<×<1)を形成してそのェネルギバンド中を1.2〜
1.7eVではなく、さらに1.6〜3.企VとそのN
,0またはCの添加量に比例して増大したPまたはN型
の半導体または半絶縁体を作ることは有効である。
Furthermore, in the present invention, a gas phase reaction is caused by mixing silane to which siborane, phosphin, or arsine is added, ammonia as a nitride gas, oxygen as an oxide gas, or methane as a carbide gas, and causing a gas phase reaction.
<x<4), Sj02★(0<x<2), SICx(0
<x<1) and the inside of the energy band is 1.2~
Instead of 1.7 eV, it is further 1.6 to 3. Project V and its N
, 0 or C to make a P- or N-type semiconductor or semi-insulator proportionally increased.

本発明は半非晶質のみならず非晶質の半導体膜または半
絶縁体膜に対しても有効であることはいうまでもない。
It goes without saying that the present invention is effective not only for semi-amorphous films but also for amorphous semiconductor films or semi-insulator films.

なおボンベ内圧力を長期間1〜6ケ月保持すると、その
時間を経るに従って重合または会合の状態が徐々に進行
して形成される塊状のクラス夕の大きさが3〜1M音‘
こ大きくなった。加えて本発明における圧力とはボンベ
に充填した時の圧力またはボンベの最大圧力をいい、充
填後ボンベの反応性気体を使用すれば圧力は減少するが
、その際も過去にボンベ内で反応して作られた反応性成
物である重合または会合した不純物が内部に十分混合し
た蓮化物等の気体がボンベより得られることはいうまで
もない。
Furthermore, if the pressure inside the cylinder is maintained for a long period of 1 to 6 months, the polymerization or association state will gradually progress and the size of the lumpy particles formed will be 3 to 1 M.
It's gotten bigger. In addition, the pressure in the present invention refers to the pressure at the time of filling the cylinder or the maximum pressure of the cylinder, and if the reactive gas in the cylinder is used after filling, the pressure will be reduced. Needless to say, a gas such as lotus compound in which polymerized or associated impurities, which are reactive components produced by the process, are sufficiently mixed, can be obtained from the cylinder.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いた半導体被膜作製用の反応装置の
概略図を示す、第2図は本発明の反応過程を示したもの
である、第3図は本発明のボンベ内圧力と珪化物気体の
濃度との関係を示す。 弟く図第1図 繁弓図
Figure 1 shows a schematic diagram of a reaction apparatus for producing a semiconductor film used in the present invention, Figure 2 shows the reaction process of the present invention, and Figure 3 shows the pressure inside the cylinder and silicification of the present invention. Shows the relationship with the concentration of physical gases. Younger brother diagram Figure 1 Traditional bow diagram

Claims (1)

【特許請求の範囲】 1 モノシランまたはポリシランよりなる水素化シラン
またはヘリユームで希釈された該シランにジボランまた
はフオスヒンまたはアルシンが添加されたボンベを用い
て被形成膜上にIII価またはV価の不純物が添加された珪
素または珪素の化合物(混合物)を形成させる被膜作製
方法であつて、前記ボンベがシラン濃度(N(%))と
ボンベ内圧力(P(kg/cm^2))とが N×P≧
300%kg/cm^2 但しN≦100% の関係を満たして設けられたことを特徴とする被膜作製
方法。 2 特許請求の範囲第1項において、室温〜700℃に
保持され、かつ10^−^3〜10torrの反応炉内
に供給された反応性気体に、500KHz〜10GHz
の周波数の誘導エネルギを加え、前記反応炉内の被形成
面上に非晶質または結晶構造が一部に混合した半非晶質
の被膜を形成することを特徴とする被膜形成方法。 3 特許請求の範囲第1項において、誘導エネルギによ
り化学的に活性化、分解または反応したIII価またはV価
の不純物の添加した珪素または珪素の化合物(混合物)
が被形成面上に塊状のクラスタが重合わさつた構造のP
またはN型の被膜を作製することを特徴とする被膜形成
方法。
[Claims] 1. III-valent or V-valent impurities are added to a film to be formed using a cylinder in which diborane, phosphin, or arsine is added to hydrogenated silane made of monosilane or polysilane, or the silane diluted with helium. A method for producing a film in which added silicon or a compound (mixture) of silicon is formed, wherein the cylinder has a silane concentration (N (%)) and a cylinder internal pressure (P (kg/cm^2)) of N× P≧
300% kg/cm^2 However, N≦100% A method for producing a film. 2. In claim 1, a reactive gas maintained at room temperature to 700°C and supplied into a reactor at 10^-^3 to 10 torr is supplied with a frequency of 500 KHz to 10 GHz.
A method for forming a film, comprising: applying induction energy at a frequency of , to form a semi-amorphous film partially mixed with an amorphous or crystalline structure on the surface to be formed in the reactor. 3. In claim 1, silicon or a silicon compound (mixture) to which III-valent or V-valent impurities are chemically activated, decomposed or reacted by induced energy.
P has a structure in which large clusters are superimposed on the surface on which it is formed.
Or a film forming method characterized by producing an N-type film.
JP55129641A 1980-09-18 1980-09-18 Film preparation method Expired JPS6024180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55129641A JPS6024180B2 (en) 1980-09-18 1980-09-18 Film preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55129641A JPS6024180B2 (en) 1980-09-18 1980-09-18 Film preparation method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP59005433A Division JPS59224119A (en) 1984-01-16 1984-01-16 Preparation of coating
JP59005432A Division JPS59210639A (en) 1984-01-16 1984-01-16 High-pressure vessel filled up with reactive gas

Publications (2)

Publication Number Publication Date
JPS5756311A JPS5756311A (en) 1982-04-03
JPS6024180B2 true JPS6024180B2 (en) 1985-06-11

Family

ID=15014525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55129641A Expired JPS6024180B2 (en) 1980-09-18 1980-09-18 Film preparation method

Country Status (1)

Country Link
JP (1) JPS6024180B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518711A (en) * 1991-07-16 1993-01-26 Mitsubishi Electric Corp Position detection method and its device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204526A (en) * 1982-05-25 1983-11-29 Kokusai Electric Co Ltd Plasma generating device of chemical gaseous phase forming device
JPS61105834A (en) * 1984-10-29 1986-05-23 Nippon Telegr & Teleph Corp <Ntt> Light-emitting material
JP2812166B2 (en) * 1993-11-25 1998-10-22 日本電気株式会社 Method for manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518711A (en) * 1991-07-16 1993-01-26 Mitsubishi Electric Corp Position detection method and its device

Also Published As

Publication number Publication date
JPS5756311A (en) 1982-04-03

Similar Documents

Publication Publication Date Title
US5910342A (en) Process for forming deposition film
EP0730044A2 (en) Boron-aluminum nitride coating and method of producing same
JPS6024180B2 (en) Film preparation method
JPS59224119A (en) Preparation of coating
JPS5895550A (en) Device for forming non-single crystal semiconductor layer
JPH0325929B2 (en)
JP2626701B2 (en) MIS type field effect semiconductor device
JPH0324775B2 (en)
JP2573125B2 (en) Semiconductor manufacturing gas in a high-pressure vessel
JPH02262324A (en) X-ray transmitting film and its manufacture
JPS6318856B2 (en)
JP3116403B2 (en) Method for manufacturing thin film transistor
JPS5939713A (en) Thin silicon film containing crystallite and its manufacture
JPS631280B2 (en)
JPH02155226A (en) Manufacture of granular semiconductor diamond
JPS57118015A (en) Manufacture of amorphous silicon
JPS5956574A (en) Formation of titanium silicide film
JPS62229826A (en) Deposit film forming method
JPS6299463A (en) Deposited film formation
JPH06252054A (en) Manufacture of p-type cubis-system boron nitride semiconductor
JPS58175824A (en) Device for plasma vapor phase reaction
JPH0217520B2 (en)
JPH0239423A (en) Method of applying iii-v compound to semiconductor substrate
JP2003026497A (en) Method of producing iron silicide crystal
JPS62169325A (en) Forming method for coating film