JPS59224119A - Preparation of coating - Google Patents

Preparation of coating

Info

Publication number
JPS59224119A
JPS59224119A JP59005433A JP543384A JPS59224119A JP S59224119 A JPS59224119 A JP S59224119A JP 59005433 A JP59005433 A JP 59005433A JP 543384 A JP543384 A JP 543384A JP S59224119 A JPS59224119 A JP S59224119A
Authority
JP
Japan
Prior art keywords
silane
gas
cylinder
clusters
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59005433A
Other languages
Japanese (ja)
Other versions
JPS6323650B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP59005433A priority Critical patent/JPS59224119A/en
Publication of JPS59224119A publication Critical patent/JPS59224119A/en
Publication of JPS6323650B2 publication Critical patent/JPS6323650B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Abstract

PURPOSE:To improve an ionization rate by packing a trivalent or pentavalent impurity into a bomb at a specific rate to silane. CONSTITUTION:When silane, which is associated or is under the state of association, is formed in a bomb, a trivalent or pentavalent impurity, such as diborane, phosphine or arsine is mixed simultaneously into the bomb by 100PPM-10mol% to silane. The bomb is brought so as to satisfy the relationship of NXP>=300 when the concentration of a silicide such as silane is N% and pressure in the bomb Pkg/cm<2>. The impurity is distributed homogeneously into clusters, and the centers of acceptors or doners can be completed at an ionization rate of 98- 100%.

Description

【発明の詳細な説明】 本発明は■価または7価の不純物元素とシランとを同一
のポンへに充填し、ごのボンベ内でポリシラン(Six
Hy x≧2.  y≧4)、または会合状態のモノシ
ラン(Si%)またはポリシラン(以下単に会合シラン
という)よりなる珪化物気体を生成せしめる高圧容器(
ボンベ)に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves filling a single or heptavalent impurity element and silane into the same cylinder, and then injecting polysilane (Six
Hy x≧2. y≧4), or a high-pressure container (
regarding cylinders).

本発明はポリシラン化反応または会合シラン化反応がボ
ンベ内にシラン特にモノシランを充填スる際、シランま
たはそのシランに希釈ガスとしてヘリュームの不活性気
体を用い、かつボンベ内圧力(P (Kg/c+a) 
)とシラン濃度(N (%))との関係を NXP≧300%Kg/c艷  但しN5100%特に
好ましくは NxP≧500%K g / ctl において、特に促されることを実験的に立証し、かかる
ポリシランまたは会合シランの多重状態または会合状態
を促進させることを目的としている。
In the present invention, when a cylinder is filled with silane, particularly monosilane, in a polysilanization reaction or an associative silanization reaction, an inert gas such as helium is used as a diluent gas for the silane or the silane, and the cylinder internal pressure (P (Kg/c+a )
) and the silane concentration (N (%)). The purpose is to promote multiple or associated states of polysilanes or associated silanes.

本発明はかかる高圧容器を用いて化学的に活性化、分解
または反応せしめた後、被形成師上に珪素または珪素の
化合物(混合物)の被膜を形成することを目的とする。
The object of the present invention is to chemically activate, decompose, or react using such a high-pressure container, and then form a film of silicon or a silicon compound (mixture) on the material to be formed.

本発明はかかる被膜を塊状のクラスタを重合わせた構造
としたもので、さらにそのクラスタは場合によっては非
晶質(Amorphous )または半非晶質(Sem
i  amorphous sこの半非晶質をQuas
i −amorphous、 Sem1−crysta
lまたはQuasi −crystalといってもよい
)の被膜の作製をすることを目的としている。
The present invention provides such a coating with a structure in which massive clusters are superimposed, and the clusters may be amorphous or semi-amorphous depending on the case.
i amorphous quas this semi-amorphous
i-amorphous, Sem1-crysta
The purpose of this study is to fabricate a coating of crystals (which may also be referred to as Quasi-crystal or Quasi-crystal).

従来、シランはモノシラン(Sill+  沸点用2℃
融点−185“C)が存在し、珪素の水素化物が多重結
合をしたポリシラン(SixHy x≧2.y≧4)は
不安定なもので現実的に存在していないとされていた。
Conventionally, silane was monosilane (Sill+ boiling point 2℃
It was believed that polysilane (SixHy x≧2.y≧4), which has a melting point of -185"C) and has multiple bonds of silicon hydride (SixHy x≧2.y≧4), is unstable and does not actually exist.

さらにモノシランは気体であり、それら分子は互いに離
間しあうため、5il14と記すことが最も適切なもの
とされていた。
Furthermore, since monosilane is a gas and its molecules are spaced apart from each other, it was considered most appropriate to write it as 5il14.

しかし木兄門人はシランがかかる一般審識ではなく、あ
る特殊な状態即ち高圧下においては逆にポリシランまた
は会合シランになりやすく、常温または常温付近の温度
(一般に100℃以下)において数十ケル数百刃ケの珪
素が互いに重合または会合することが判明した。加えて
この重合または会合分子はさらに本発明のごとき塊状の
クラスタを積層させるごとくにして作製する被膜におい
てはかえって好ましいものであることが判明した。
However, Kien disciples do not generally understand that silane is a silane, but in certain special conditions, that is, under high pressure, it tends to turn into polysilane or associated silane, and at room temperature or near room temperature (generally below 100 degrees Celsius), it tends to turn into polysilane or associated silane. It was found that 100 blades of silicon polymerize or associate with each other. In addition, it has been found that these polymerized or associated molecules are even more preferable in coatings prepared by laminating massive clusters as in the present invention.

特に被膜を珪素の結晶化温度である700℃以下特に5
00℃以下の温度で非晶質半導体(以下へSという)ま
たは半非晶質半導体(以下SASという)を形成させる
際、その被膜を塊状のクラスタを重合わせて(積層させ
た)構造とさせることができた。特にこの塊状のクラス
タは結晶化温度以上の温度で形成されるいわゆる境界の
明確な多結晶半導体とは異なり、必ずしも結晶粒界が明
快でなく、またこの粒界に界面準位が集中して存在して
いないという大きな特長がある6 さらに従来より公知に行われるシランと水素等で希釈さ
れたジボランまたはフォスヒンとをドーピング系にて混
合すると、シランはすでに会合状態になっているため、
ホウ素またはリンはクラスタの外側にしか結合(化合)
できず、ミクロにはホウ素またはリンが不均質に分布し
てしまう。即ち形成された被膜においては、クラスタの
周辺部に多くの不純物が集中し、珪素被膜中に実質的に
局部的に偏在してしまう。このため添加量に対しそれら
がアクセプタまたはドナーとして作用するいわゆるイオ
ン化率 Np−アクセプタ濃度/添加したホウ素濃度が3〜30
%と低い。
In particular, the coating should be kept at temperatures below 700°C, which is the crystallization temperature of silicon, especially at 5°C.
When forming an amorphous semiconductor (hereinafter referred to as S) or a semi-amorphous semiconductor (hereinafter referred to as SAS) at a temperature of 00°C or lower, the film is formed into a structure in which massive clusters are overlapped (stacked). I was able to do that. In particular, unlike polycrystalline semiconductors with clear boundaries, which are formed at temperatures above the crystallization temperature, these massive clusters do not necessarily have clear grain boundaries, and interface states are concentrated at these grain boundaries. 6 Furthermore, when silane and diborane or phosphin diluted with hydrogen, etc. are mixed in a doping system, which has been done in the past, the silane is already in an associated state.
Boron or phosphorus is bound (combined) only to the outside of the cluster
This is not possible, and boron or phosphorus is distributed non-uniformly in the microscopic area. That is, in the formed film, many impurities are concentrated around the clusters and are substantially unevenly distributed locally in the silicon film. For this reason, the so-called ionization rate Np - acceptor concentration / added boron concentration, in which they act as acceptors or donors, is 3 to 30.
% is low.

しかし他方、本発明のごとく、ボンベ中にシランと同時
にジボランまたはフオスヒンを添加すると、リンはその
イオン化率Nnが98〜100%として作用するに加え
て、ホウ素においても95〜99%と桁違いにイオン化
率を向上させることができるようになった。
However, on the other hand, when diborane or phosphin is added to the cylinder at the same time as silane as in the present invention, the ionization rate Nn of phosphorus acts at 98 to 100%, and the ionization rate of boron also increases by an order of magnitude to 95 to 99%. It became possible to improve the ionization rate.

本発明はボンベ内で会合または会合状態のシランを形成
させる際、同時にこのボンベにm価またはV価の不純物
例えばジボランまたはフオスヒンまたはアルシンを同時
にシランに対し1100PP (シランの体積に対し1
00 /10”倍の体積)〜IOモル%(シランの体積
に対し10%の体積)とした。するとその不純物がクラ
スタの内部に均質に分布しアクセプタまたはドナー中心
を98〜100%のイオン化率で成就することができた
。これはm価または■価の不純物のボンベとシランのボ
ンベとを反応系に導入する直前に混合すると、そのイオ
ン化率が3〜30%であることを考えるときわめて優れ
た効果であった。
In the present invention, when silane is formed in an associated or associated state in a cylinder, an m-valent or V-valent impurity such as diborane, phosphine, or arsine is simultaneously added to the cylinder at a concentration of 1100 PP per silane (1100 PP per volume of silane).
00/10'' times the volume) to IO mol% (10% volume relative to the volume of silane).Then, the impurity is homogeneously distributed inside the cluster and the acceptor or donor center has an ionization rate of 98 to 100%. This is extremely effective considering that when a cylinder of M-valent or ■-valent impurity and a cylinder of silane are mixed immediately before introduction into the reaction system, the ionization rate is 3 to 30%. The effect was excellent.

以下に図面に従って本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

実施例1 被形成面を有する基板としては導体基板または絶縁体基
板を用いた。
Example 1 A conductive substrate or an insulating substrate was used as a substrate having a surface to be formed.

第1図において、基板(15)は200〜1000μの
厚さを有し、大きさは10cm  を最大とし、それら
を石英製ボード(14)上に林立させた。ガスの流れに
そって平行に形成した。
In FIG. 1, the substrates (15) had a thickness of 200 to 1000 μm and a maximum size of 10 cm, and were arranged on a quartz board (14). It was formed parallel to the gas flow.

この反応管は0.1MH2〜10GHzの周波数を有す
る誘導エネルギを用いたもので、代表的には50ONI
Iz。
This reaction tube uses induction energy with a frequency of 0.1 MH2 to 10 GHz, and is typically 50ONI.
Iz.

13.56M’6.2.45GH2とした。第1図は1
3.56MIIzの高周波を用いた。誘導エネルギの供
給は容量結合方式であり、一対の電極< 2 >、(3
)より行い、反応管(1)の全体が均質に放電するよう
にした。さらにこの放電は被形成面より離れた位置に反
応性気体の活性化室(1)を設け、重合または会合した
珪化物気体例えばポリシランまたは会合シランは電磁エ
ネルギ(誘導エネルギ)により活性化室(1)で化学的
に活性化、分解または反応し、さらに飛翔中にこの工程
を進行させ、基板(15)上に塊状のクラスタをランダ
ムに積層して被膜とした。反応性気体はボンベ中の高圧
下で重合または会合状態のシラン(Sixty x≧2
 y≧4においてはm5tl+4 )を(7)より、ま
たこの珪化物気体に同時に■価の不純物気体例えばジボ
ラン(B、)l、)を1100PP〜10モル%混入し
、さらにHeの不活性気体により0〜97%希釈させた
ボンへを(8)に接続した。またV価においては、リン
、砒素、アンチモンをフォスヒン(pH,、)、アルシ
ン(八sH3>、スチビン(Sbtls)により同様に
珪化物気体中に添加してボンへ内にtieにより0〜9
7%希釈して(9)に接続した。
13.56M'6.2.45GH2. Figure 1 is 1
A high frequency of 3.56 MIIz was used. Inductive energy is supplied by a capacitive coupling method, and a pair of electrodes <2>, (3
) so that the entire reaction tube (1) was uniformly discharged. Furthermore, this discharge is performed by providing an activation chamber (1) for a reactive gas at a position away from the surface to be formed, and polymerized or associated silicide gas such as polysilane or associated silane is activated by electromagnetic energy (induction energy) in the activation chamber (1). ) to chemically activate, decompose, or react, and further proceed with this process while in flight, and form a film by laminating massive clusters randomly on the substrate (15). The reactive gas is silane in a polymerized or associated state (Sixty x≧2
When y≧4, m5tl+4) is added from (7), and 1100PP to 10 mol% of a valent impurity gas such as diborane (B, )l) is mixed into the silicide gas at the same time. A bong diluted from 0 to 97% was connected to (8). Regarding the V value, phosphorus, arsenic, and antimony were similarly added to the silicide gas using phosphin (pH, ), arsine (8sH3>, and stibine (Sbtls)) and then added to the silicide gas using a tie between 0 and 9.
It was diluted 7% and connected to (9).

さらに弗化物気体は例えばSiF4 (弗化珪素)をボ
ンベ内に添加してボンベ内の珪素の弗化物気体を形成さ
せた。
Further, as a fluoride gas, for example, SiF4 (silicon fluoride) was added into the cylinder to form a fluoride gas of silicon in the cylinder.

反応管は管壁の影響を少なくするため十分太くし、さら
にその外周は水冷等をして壁面で核形成がされないよう
にした。
The reaction tube was made sufficiently thick to reduce the influence of the tube wall, and its outer periphery was cooled with water to prevent nucleation from forming on the wall.

このことは減圧気相法が壁面の温度を基板の温度とまっ
たく同じとし、壁面で形成された多結晶珪素をも積極的
に基板表面に付着させんとしていることと大きく異なっ
ている。
This is very different from the reduced pressure vapor phase method, which makes the temperature of the wall surface exactly the same as the temperature of the substrate, and actively tries to make the polycrystalline silicon formed on the wall surface adhere to the substrate surface.

基板(15)は抵抗加熱か(6)により加熱し、反応し
た気体および元素の生成物はニードルバルブ(10)、
ストップバルブ(11)、真空ロータリーポンプ(12
)を経て排気(13)させた。
The substrate (15) is heated by resistance heating (6) and the reacted gaseous and elemental products are passed through a needle valve (10);
Stop valve (11), vacuum rotary pump (12)
) and then exhausted (13).

反応性気体は主として珪化物気体を用い、ここではシラ
ンはボンへ内にて不活性気体例えばヘリュームにより5
0〜3%に希釈させた。もちろん100%シランを用い
てもよい。
The reactive gas used is primarily a silicide gas, in which the silane is reacted with an inert gas such as helium in a bomb.
Diluted to 0-3%. Of course, 100% silane may also be used.

反応系(炉(5)または活性化室(1))は10−ヨ〜
10torr特に0.005〜5torrの圧力に反応
性気体の、導入および排気により調整した。一般に50
0KHzでは1〜20torr、13.56MHzでは
0.1〜3torr。
The reaction system (furnace (5) or activation chamber (1)) is 10-yo~
A pressure of 10 torr, particularly 0.005 to 5 torr, was adjusted by introducing and evacuating reactive gas. generally 50
1 to 20 torr at 0KHz and 0.1 to 3 torr at 13.56MHz.

2.45GII2では0.005〜0.1torrが最
適であった。
For 2.45 GII2, 0.005 to 0.1 torr was optimal.

本発明において、ボンベ内の圧力は、第3図に後述する
が、シランの濃度が10〜50%にあっては、3011
g/an! (10%)〜7Kg/−(50%)以上特
に好ましくはそれぞれ50〜LOKg/c♂以上の高圧
とした。
In the present invention, the pressure inside the cylinder will be described later in FIG. 3, but when the concentration of silane is 10 to 50%,
g/an! (10%) to 7 Kg/-(50%) or more, particularly preferably 50 to LO Kg/c♂ or more.

そして、ボンベ内にてモノシラン分子が分解し、ポリマ
を得るべく互いに重合反応したり、またはモノシランが
その水素による結合(水素結合)により互いに会合した
会合シランになるようにした。
Then, the monosilane molecules were decomposed in the cylinder and subjected to a polymerization reaction with each other to obtain a polymer, or the monosilane molecules were made to associate with each other through hydrogen bonds (hydrogen bonds) to form an associated silane.

この重合シランまたは会合シランは反応系における活性
化の際、さらにそれが気相中であるにもかかわらず凝集
し、より安定な結晶化へと促進するいわゆる半結晶の塊
状のクラスタを構成させるためにきわめて有効であった
。このため多重または会合状態をボンベ内で促すため、
キャリアガスとして水素は珪素の分解して発生した不対
結合手に対し再水素化結合をしやすいため不適当であり
、不活性気体特にヘリューム(lie)がきわめて好ま
しかった。Ileはその電離電圧が24.57eVであ
り、他の一般に用いられる希釈気体の10〜15eVに
比べて大きいこと、また熱伝導係数は他の気体の約3倍
の0.123Kcal /mug ’Cテあり、形成さ
レル被膜の均一性を向上させるために好都合であった。
This polymerized or associated silane aggregates during activation in the reaction system, even though it is in the gas phase, forming so-called semi-crystalline massive clusters that promote more stable crystallization. It was extremely effective. For this reason, in order to encourage multiple or associative conditions within the cylinder,
Hydrogen is unsuitable as a carrier gas because it tends to rehydrogenate dangling bonds generated by decomposition of silicon, and an inert gas, particularly helium (lie), is extremely preferred. Ile has an ionization voltage of 24.57 eV, which is higher than the 10 to 15 eV of other commonly used diluent gases, and a thermal conductivity coefficient of 0.123 Kcal/mug 'C, which is about three times that of other gases. This was advantageous for improving the uniformity of the formed layer coating.

反応性気体および基板は加熱炉(8)より加熱され、室
温より700℃まで加熱した。図面より明らかなごとく
、反応性気体は誘導エネルギにより基板より離れた供給
源側(ボンベ側)に配置され、反応性気体はすべて誘導
エネルギにて励起または活性化、分解させた。またこの
活性化物は必要に応じ室温〜200 ’Cにまで加熱さ
せた。かくすることにより活性化または分解された反応
性気体を互いに凝集し会合させた。物性的にいうならば
、互いに凝集させて反応性気体ここては珪素が気体中に
て活性状態の塊(クラスタ)を複数ケ作らせた。
The reactive gas and the substrate were heated in a heating furnace (8) from room temperature to 700°C. As is clear from the drawings, the reactive gas was placed on the supply source side (the cylinder side) away from the substrate by the induction energy, and all the reactive gases were excited or activated and decomposed by the induction energy. The activated product was also heated from room temperature to 200'C if necessary. In this manner, the activated or decomposed reactive gases coagulated and associated with each other. In terms of physical properties, they coagulate with each other to form a plurality of clusters in which silicon is active in the reactive gas.

またこの活性化したクラスタは基板上に被膜化されるた
め、一部の水素が分離し基板上には平板状または半球状
のクラスタを互いに重なり合って形成させることができ
た。このためこの平板状または半球状に重なりあったク
ラスタは、飛翔中にエネルギ的に可能な範囲での安定状
態を求めるため、電子間距離はバラツキが大きく、かつ
その原子同志の配位は安定な方角(角度)を有すること
が判明した。このため形成された被膜の電子顕微鏡回折
写真においては、アモルファス構造を示すハローと結晶
化構造を示すスポットまたは線状のリング状の半規則的
な像を示すものとの混合物であった。
Furthermore, since the activated clusters were formed into a film on the substrate, some of the hydrogen was separated, and it was possible to form flat or hemispherical clusters overlapping each other on the substrate. For this reason, these flat or hemispherical clusters seek a stable state within the energetically possible range during flight, so the distance between electrons varies widely, and the coordination of the atoms is not stable. It turns out that it has a direction (angle). As a result, the electron microscopic diffraction photograph of the film thus formed was a mixture of a halo indicating an amorphous structure and a spot or linear ring-shaped semi-regular image indicating a crystallized structure.

第2図(A >、< B )は以上の反応過程のシラン
より珪素クラスタを基板上に形成させるプロセスを要約
したもので、(B)はポリシランの反応工程を、(A)
は会合シランの反応工程を示す。
Figure 2 (A >, < B ) summarizes the process of forming silicon clusters on a substrate from silane in the above reaction process, (B) shows the reaction process of polysilane, and (A)
shows the reaction process of associated silanes.

即ち、状態■においてmヶのシラン例えばモノシラン(
m (Sjll、p) )は状態Hにおいて活性化(m
 (Sillf) ) 、m (Sinllzs:) 
>、さらに状態■において分解または反応をおこし、活
性のクラスタ(塊) 54mH4z+  またはS i
 n Iltw%1  となる。ここでm。
That is, in state ①, m silanes such as monosilane (
m (Sjll, p) ) is activated (m
(Sillf) ), m (Sillzs:)
>, further decomposition or reaction occurs in state ■, resulting in an active cluster (clump) 54mH4z+ or S i
nIltw%1. Here m.

n、 m、 nは任意定数を示し、SiはStの結合手
が活性状態にあり、Sili”はS J−IIの結合手
がエネルギを有して活性化している状態を示す。それら
は飛翔中に互いに会合または凝集し、化学的に活性のク
ラスタ(16)になる。この状態を模式的に示すと、S
iクラスタ(16)の主として周辺部に水素が集まって
シェル(17)状態を構成している。さらに■にて基板
(15)上に平板状または半球状にクラスタ(20)が
被膜化する。
n, m, and n represent arbitrary constants, Si indicates that the St bond is in an active state, and Sili'' indicates that the S J-II bond has energy and is activated. The S
Hydrogen mainly gathers around the i-cluster (16) to form a shell (17) state. Further, in step (3), clusters (20) are formed into a flat or hemispherical film on the substrate (15).

このためこのクラスタの周辺の輪郭は必ずしも超重の多
結晶のごと(明確ではなく、むしろ電子顕微鏡観察にお
いてもぼけたものであった。さらにまた、クラスタの大
きさ、形状もボンベの圧力(反応性気体の初期状態)、
誘導エネルギの周波数、パワーによる飛翔時間、圧力さ
らに基板温度により大きな影響を受ける。
For this reason, the outline around this cluster was not necessarily clear, like that of a superheavy polycrystal, and was rather blurry under electron microscope observation.Furthermore, the size and shape of the cluster also depended on the pressure of the cylinder (reactivity). initial state of gas),
It is greatly affected by the frequency of induction energy, flight time due to power, pressure, and substrate temperature.

しかし透過電子顕微鏡(TEM )において調べたとこ
ろ、この塊は直径100人〜10μの大きさを有し、お
おむね円状であり角は鋭くはなかった。かかるクラスタ
(20)が次々と基板上に積み重なるため、さらにそれ
らは互いに重なり合っている。
However, when examined under a transmission electron microscope (TEM), the mass had a diameter of 100 to 10 microns, was generally circular, and had no sharp edges. Since such clusters (20) are stacked one after another on the substrate, they also overlap each other.

このためこの被膜化の工程である状態■は結晶学的な規
則性を寧ろ乱すものであり、反応性気体の初期状態また
活性化および飛翔中の会合(凝集)が気体の状態である
にもかかわらず、結晶のごとき規則性特に配位方向の規
則性を促すものであることが本発明の特徴とするもので
あった。
For this reason, state (2), which is the process of film formation, rather disturbs the crystallographic regularity, and even though the initial state of the reactive gas and the association (agglomeration) during activation and flight are in the gaseous state. Regardless, the present invention is characterized by promoting crystal-like regularity, particularly regularity in the coordination direction.

さらにこの被膜化した各クラスタはその厚さとして5〜
500人を有し、その実効直径は1()0人〜10.0
μを実験結果においては有していた。
Furthermore, each cluster formed into a film has a thickness of 5~
It has 500 people and its effective diameter is 1()0 people to 10.0
μ in the experimental results.

またクラスタはシランまたはシランをヘリj、−ムの不
活性気体にて希釈させたガスのボンベ圧力が高い程、例
えばシランの濃度が3%、10%、50%、100%で
ある場合、第3図曲線(22)のごとり100気圧(気
圧即ちKg/cJ)、30気圧、6気圧、2気圧といわ
ゆる一般的な曲線(21)の30気圧、10気圧、2気
圧、1気圧よりそれぞれ高圧にせしめ、クラスタの塊を
作りやすくまた大きなものとさせた。さらにこの圧力を
第3図の曲線(23)のごとくそれぞれ150気圧、5
0気圧、10気圧、5気圧またはそれ以上とすると、形
成されるクラスタは2〜5倍の3000人〜10μにま
ですることができた。
In addition, the higher the cylinder pressure of silane or a gas made by diluting silane with an inert gas in the helium, for example, when the concentration of silane is 3%, 10%, 50%, or 100%, the cluster becomes more As shown in Figure 3 curve (22), 100 atm (atmospheric pressure or Kg/cJ), 30 atm, 6 atm, and 2 atm, respectively from the so-called general curve (21) of 30 atm, 10 atm, 2 atm, and 1 atm. By applying high pressure, it was possible to easily form clusters and make them larger. Furthermore, this pressure is increased to 150 atm and 5 atm, respectively, as shown in curve (23) in Figure 3.
When the pressure was set to 0 atm, 10 atm, 5 atm or more, the clusters formed could be increased 2 to 5 times to 3000 to 10 microns.

キャリアガスが水素ではクラスタは作りにくく計におい
ては誘導エネルギを10〜20讐の弱い電気エネルギで
もスパッタ効果により再結合中心の多い損傷をうけた非
晶質になってしまった。
When the carrier gas is hydrogen, it is difficult to form clusters, and even with a weak electrical energy of 10 to 20 degrees of induction energy, the result is a damaged amorphous structure with many recombination centers due to the sputtering effect.

さらに温度はこれまでの200〜550℃ではなくそれ
以下にするとクラスタ内の結晶性は非晶質となり飛翔中
の熱エネルギも重要であることが判明した。
Furthermore, it has been found that if the temperature is lower than the conventional 200-550°C, the crystallinity within the cluster becomes amorphous, and the thermal energy during flight is also important.

本発明は、PまたはN型の導電型の不純物としてジポラ
ン、フオスヒンもシランと同一のボンベに所定の濃度に
同時に添加する。こうするとボンベ内にて多重または会
合状態を作る際、その塊の内部(バルク)にも均質にホ
ウ素またはリンを添加させることができた。
In the present invention, as impurities of P or N type conductivity, diporan and phosphin are added simultaneously to the same cylinder as silane at a predetermined concentration. In this way, when creating a multiple or associated state in the cylinder, boron or phosphorus could be added homogeneously to the inside (bulk) of the mass.

この本発明方法は形成させた半導体膜中のPまたはN型
の導電率を自由に制御できないという欠点を有しつつも
量産ラインのごとくその導電率が常に同一の場合は同じ
ボンベに充填した方が操作がしやすいという特徴を有す
る。
Although this method of the present invention has the disadvantage that the conductivity of P or N type in the formed semiconductor film cannot be freely controlled, it is preferable to fill the same cylinder when the conductivity is always the same as in a mass production line. It has the characteristic of being easy to operate.

このためP型、I型、N型の半導体被膜を積層させてP
N接合、PI接合、N1接合を作らんとした場合、従来
の方法では1〜5モル%のBまたはPを添加しても10
” 〜10’ (2cm (電気伝導度10′4〜10
″2(Ωcm)’)の比抵抗を有しているも、本発明に
おいては0.1〜1モル%においても10〜0.1Ωc
m (電気伝導度0.1〜10(Ωcm)″)にまで下
げることができた。
For this reason, P-type, I-type, and N-type semiconductor films are stacked to form a P
When trying to make an N junction, PI junction, or N1 junction, in the conventional method, even if 1 to 5 mol% of B or P is added, 10
” ~10' (2cm (electrical conductivity 10'4 ~ 10
Although it has a specific resistance of ``2 (Ωcm)'), in the present invention, even at 0.1 to 1 mol%, it has a specific resistance of 10 to 0.1 Ωc.
m (electrical conductivity 0.1 to 10 (Ωcm)″).

特にこの不純物の添加量を下げて同じ電気伝導度を得る
ことができるということを逆にいえば、不要の不純物即
ちキャリアにとって不純物散乱を呈し、移動度を下げ、
また不純物再結合中心を形成してキャリアキラーとなる
程度を下げることができ、半導体林料としてきわめて好
ましいものである。
In particular, the fact that the same electrical conductivity can be obtained by reducing the amount of impurities added means that unnecessary impurities, that is, carriers, exhibit impurity scattering, lowering their mobility, and
Furthermore, it is possible to reduce the degree to which impurity recombination centers form and become carrier killers, making it extremely preferable as a semiconductor material.

さらに本発明において、ジポラン、またはフォスヒンま
たはアルシーンが添加されたシランと窒化物気体である
アンモニア、酸化物気体である酸素または炭化物気体で
あるメタンを混合して気相反応をせしめ、”qNi< 
(0< x < 4)、5tO2−、(Q < x〈2
)、5ICx (0< x< 1)を形成してそのエネ
ルギバンド巾を1.2〜l 、 7eVではなく、さら
に1.6〜3.OeVとそのN、OまたはCの添加量に
比例して増大したPまたはN型の半導体または半絶縁体
を作ることは有効である。
Furthermore, in the present invention, a gas phase reaction is caused by mixing silane to which diporane, phosphine, or arsine is added, and ammonia, which is a nitride gas, oxygen, which is an oxide gas, or methane, which is a carbide gas.
(0 < x < 4), 5tO2-, (Q < x < 2
), 5ICx (0 < x < 1) and its energy band width is 1.2~l, not 7eV, and further 1.6~3. It is effective to make P- or N-type semiconductors or semi-insulators with OeV increased proportionally to its N, O or C addition.

本発明は半非晶質のみならず非晶質の半導体膜または半
絶縁体膜に対しても有効であることはいうまでもない。
It goes without saying that the present invention is effective not only for semi-amorphous films but also for amorphous semiconductor films or semi-insulator films.

なおボンベ内圧力を長期間1〜6ケ月保持すると、その
時間を経るに従って重合または会合の状態が徐々に進行
して形成される塊状のクラスフの大きさが3〜10倍に
大きくなった。加えて本発明における圧力とはボンベに
充填した時の圧力またはボンベの最大圧力をいい、充填
後ボンベの反応性気体を使用すれば圧力は減少するが、
その際も過去にボンベ内で反応して作られた反応生成物
である重合または会合した不純物が内部に十分混合した
珪化物等の気体がボンベより得られることはいうまでも
ない。
Note that when the pressure inside the cylinder was maintained for a long period of 1 to 6 months, the state of polymerization or association gradually progressed over time, and the size of the lump-like clasphs formed increased by 3 to 10 times. In addition, the pressure in the present invention refers to the pressure when the cylinder is filled or the maximum pressure of the cylinder, and if the reactive gas in the cylinder is used after filling, the pressure will decrease.
Needless to say, in this case, a gas such as a silicide is obtained from the cylinder, in which impurities which are polymerized or associated impurities, which are reaction products produced by a reaction in the cylinder in the past, are sufficiently mixed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いた半導体被膜作製用の反応装置の
概略図を示す。 第2図は本発明の反応過程を示したものである。 第3図は本発明のボンベ内圧力と珪化物気体の濃度との
関係を示す。
FIG. 1 shows a schematic diagram of a reaction apparatus for producing a semiconductor film used in the present invention. FIG. 2 shows the reaction process of the present invention. FIG. 3 shows the relationship between the internal pressure of the cylinder and the concentration of silicide gas according to the present invention.

Claims (1)

【特許請求の範囲】 1、モノシラン、ポリシランよりなる水素化シランまた
は弗化珪素よりなる珪化物気体またはヘリュームで希釈
された珪化物気体に■価の不純物元素の化合物気体であ
るジボランまたは7価の不純物元素の化合物気体である
フォスヒンまたはアルシンが10モル%以下の濃度に添
加され、さらに、前記ボンへは前記珪化物濃度(N (
%))とボンベ内圧力(P (Kg/Crab)\とが NXP≧300%Kg/ctJ  但しN5100%の
関係を満たして設けられたことを特徴とする反応性気体
が充填された高圧容器。
[Claims] 1. Hydrogenated silane consisting of monosilane or polysilane, silicide gas consisting of silicon fluoride, or silicide gas diluted with helium, diborane or heptavalent impurity element compound gas Phosphin or arsine, which is a compound gas of an impurity element, is added to a concentration of 10 mol% or less, and the silicide concentration (N (
A high-pressure container filled with a reactive gas, characterized in that the cylinder internal pressure (P (Kg/Crab)) satisfies the relationship of NXP≧300%Kg/ctJ, provided that N5100%.
JP59005433A 1984-01-16 1984-01-16 Preparation of coating Granted JPS59224119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59005433A JPS59224119A (en) 1984-01-16 1984-01-16 Preparation of coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59005433A JPS59224119A (en) 1984-01-16 1984-01-16 Preparation of coating

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP55129641A Division JPS6024180B2 (en) 1980-09-18 1980-09-18 Film preparation method

Publications (2)

Publication Number Publication Date
JPS59224119A true JPS59224119A (en) 1984-12-17
JPS6323650B2 JPS6323650B2 (en) 1988-05-17

Family

ID=11611058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59005433A Granted JPS59224119A (en) 1984-01-16 1984-01-16 Preparation of coating

Country Status (1)

Country Link
JP (1) JPS59224119A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4892568A (en) * 1988-02-19 1990-01-09 Wacker-Chemitronic Gesellschaft Fur Elektronik-Grundstoffe Mbh Process for removing n-type impurities from liquid or gaseous substances produced in the gas-phase deposition of silicon
JPH02225674A (en) * 1988-04-15 1990-09-07 Matsushita Electric Ind Co Ltd Production of thin unsingle crystal film

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01295167A (en) * 1988-05-23 1989-11-28 Jidosha Kiki Co Ltd Abnormality detecting device for wheel speed
JPH0280964A (en) * 1988-09-16 1990-03-22 Nippon Denso Co Ltd Apparatus for processing wheel speed signal
JPH05133855A (en) * 1991-02-18 1993-05-28 Osaka Oxygen Ind Ltd Gas sampling apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4892568A (en) * 1988-02-19 1990-01-09 Wacker-Chemitronic Gesellschaft Fur Elektronik-Grundstoffe Mbh Process for removing n-type impurities from liquid or gaseous substances produced in the gas-phase deposition of silicon
JPH02225674A (en) * 1988-04-15 1990-09-07 Matsushita Electric Ind Co Ltd Production of thin unsingle crystal film

Also Published As

Publication number Publication date
JPS6323650B2 (en) 1988-05-17

Similar Documents

Publication Publication Date Title
JPS6237527B2 (en)
CN103526297A (en) Method for preparing topological insulator Bi2Se3 film
JPS59224119A (en) Preparation of coating
US3853974A (en) Method of producing a hollow body of semiconductor material
JPH0658891B2 (en) Thin film single crystal diamond substrate
JPS5895550A (en) Device for forming non-single crystal semiconductor layer
JPS6024180B2 (en) Film preparation method
JPS6243536B2 (en)
Maslov et al. Deposition of β-Ga 2 O 3 layers by sublimation on sapphire substrates of different orientations
JPS62156813A (en) Thin film semiconductor element and forming method thereof
TW594853B (en) The manufacturing method of diamond film and diamond film
JPH0324775B2 (en)
JP2573125B2 (en) Semiconductor manufacturing gas in a high-pressure vessel
JP2626701B2 (en) MIS type field effect semiconductor device
KR101926678B1 (en) Silicon carbide epi wafer and method of fabricating the same
JPS6318856B2 (en)
TWI725797B (en) Silicon carbide crystal growing apparatus and crystal growing method thereof
JPS58175824A (en) Device for plasma vapor phase reaction
WO2024004998A1 (en) Method for producing silicon film, and silicon film
JPS5939713A (en) Thin silicon film containing crystallite and its manufacture
JPS6236632B2 (en)
JPS61267315A (en) Plasma cvd device
JPS6299463A (en) Deposited film formation
JP3112796B2 (en) Chemical vapor deposition method
JPS6136371B2 (en)