JPS61267315A - Plasma cvd device - Google Patents

Plasma cvd device

Info

Publication number
JPS61267315A
JPS61267315A JP10978385A JP10978385A JPS61267315A JP S61267315 A JPS61267315 A JP S61267315A JP 10978385 A JP10978385 A JP 10978385A JP 10978385 A JP10978385 A JP 10978385A JP S61267315 A JPS61267315 A JP S61267315A
Authority
JP
Japan
Prior art keywords
gas
glow discharge
density plasma
region
plasma region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10978385A
Other languages
Japanese (ja)
Other versions
JPH0578933B2 (en
Inventor
Hideo Takagi
高木 秀雄
Kojin Nakagawa
行人 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP10978385A priority Critical patent/JPS61267315A/en
Publication of JPS61267315A publication Critical patent/JPS61267315A/en
Publication of JPH0578933B2 publication Critical patent/JPH0578933B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)

Abstract

PURPOSE:To efficiently manufacture the film having excellent characteristics by a method wherein at least reactive gas of one or more kinds is introduced into a glow discharge region through the intermediary of a high density plasma region, and on the other hand, another reactive gas containing at least one or more kinds is introduced into the glow discharge region without having the intermediary of the high density plasma region. CONSTITUTION:Of a plurality of kinds of reactive gas to be introduced, one or more kinds of gas of low efficiency of activation is introduced into a glow discharge region 10 from the first gas introducing pipe 4 through the intermediary of a high density plasma region 8. On the other hand, other kind of reactive gas is directly introduced into the glow discharge region 10 through the second gas introducing pipe 5. As the low activation gas passes through the high density plasma region 8 as above-mentioned, the activation of gas is accelerated, and on the other hand, the gas which does not pass trough the high density plasma region is not excessively decomposed by plasma. As a result, the activation and the decompositional efficiency of a plurality of kinds of reactive gas can be controlled properly, and the film of good quality can be formed at a high speed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、安定な成膜特性が得られる構成にしたプラズ
マCVD装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a plasma CVD apparatus configured to provide stable film forming characteristics.

(従来技術) プラズマCVD装置は、現在非晶質シリコン膜や窒化シ
リコン膜をはじめとする無機膜や有機物のプラズマ重合
膜の作成に広く用いられている。
(Prior Art) Plasma CVD apparatuses are currently widely used for producing inorganic films such as amorphous silicon films and silicon nitride films, and plasma polymerized films of organic substances.

当該装置は、一般に反応容器である真空容器、真空排気
装置、グロー放電発生手段、反応ガス導入手段で構成さ
れている。そして当該装置による成膜過程は次の通りで
ある。
The apparatus generally includes a vacuum vessel which is a reaction vessel, a vacuum evacuation device, a glow discharge generating means, and a reaction gas introducing means. The film forming process using this apparatus is as follows.

すなわち、反応ガス導入手段によって反応ガスを真空容
器に導入しながら、同時に真空排気して減圧状態を保ち
、真空容気中に設置された内部電極又は真空容器外に設
置された外部電極に直流、交流又は高周波電圧を印加す
ることによりグロー放電を行なう。そしてこのグロー放
電により真空容器内に導入された反応ガスを活性化し、
生成した活性種により基体表面に膜を生成する。
That is, while a reaction gas is introduced into the vacuum container by the reaction gas introduction means, a vacuum is evacuated at the same time to maintain a reduced pressure state, and direct current is applied to the internal electrode installed in the vacuum chamber or the external electrode installed outside the vacuum container. Glow discharge is performed by applying an alternating current or high frequency voltage. This glow discharge activates the reaction gas introduced into the vacuum container,
A film is formed on the surface of the substrate by the generated active species.

当該装置の特徴としては、(1)比較的低温で成膜でき
る。(2)反応ガスの種類を切替える操作だけで各種の
異なる性質の膜を生成できる。
The features of this device are: (1) It can form a film at a relatively low temperature. (2) Films with various different properties can be produced simply by switching the type of reaction gas.

(3)蒸着法やイオンブレーティング法等の他の真空成
膜法と比較して大面積に均一な成膜ができる。(4)ス
パッタ装置、イオンブレーティング装置など他の装置で
は得られない独自の機能、物性をもつ膜を生成できる等
が掲げられる。
(3) A uniform film can be formed over a large area compared to other vacuum film forming methods such as vapor deposition and ion blating. (4) It is possible to produce films with unique functions and physical properties that cannot be obtained with other equipment such as sputtering equipment and ion blating equipment.

上記特徴を有するプラズマCVD装置を使用して成膜す
る場合、反応ガスとして同時に複数の種類のガスを導入
することが多い。
When forming a film using a plasma CVD apparatus having the above characteristics, a plurality of types of gases are often simultaneously introduced as reaction gases.

例えば非晶質シリコン膜を作成する場合、シリコン源と
してモノシラン、ジシラン、トリシラン、四フッ化硅素
等のガスを使用するとともにドーピング用としてジボラ
ン、フォスフイン、アルシン等のガスを使用する。また
バンドギャップを制御する目的でメタン等の炭化水素ま
たは窒素、ゲルマン、S n H4等のガスを用い、更
に希釈または反応制御用として水素、アルゴン、ヘリウ
ム等のガスを用いる。
For example, when creating an amorphous silicon film, a gas such as monosilane, disilane, trisilane, silicon tetrafluoride, etc. is used as a silicon source, and a gas such as diborane, phosphine, arsine, etc. is used for doping. Further, for the purpose of controlling the band gap, a hydrocarbon such as methane or a gas such as nitrogen, germane, Sn H4, etc. is used, and furthermore, a gas such as hydrogen, argon, helium, etc. is used for dilution or reaction control.

また窒化シリコン膜を作成する場合は、シリコン源とし
て、モノシラン、ジシラン、トリシラン、四フッ化硅素
等のガスを使用するとともに窒素源として窒素ガスまた
はアンモニア、ヒドラジン、三フッ化窒素等を使用し、
更に希釈または反応制御用として、アルゴン、ヘリウム
、水素、窒素等のガスを使用する。
In addition, when creating a silicon nitride film, a gas such as monosilane, disilane, trisilane, silicon tetrafluoride, etc. is used as a silicon source, and nitrogen gas, ammonia, hydrazine, nitrogen trifluoride, etc. is used as a nitrogen source.
Furthermore, gases such as argon, helium, hydrogen, nitrogen, etc. are used for dilution or reaction control.

上記ガスは、その膜作成目的に応じて2種類以上を混合
して使用される場合がほとんどである。
In most cases, two or more types of the above gases are used as a mixture depending on the purpose of film formation.

(本発明が解決しようとする問題点) 従来のプラズマCVD装置では、均一なグロー放電領域
中に混合ガスを導入して、これを活性化及び反応させる
方法をとるのが一般的であるが、この際ガスの種類によ
りプラズマによるガスの活性化度が異なる場合がある。
(Problems to be Solved by the Present Invention) In conventional plasma CVD apparatuses, a method is generally adopted in which a mixed gas is introduced into a uniform glow discharge region and activated and reacted. At this time, the degree of activation of the gas by the plasma may vary depending on the type of gas.

そのため一部のガスについては、その活性化効率が悪く
ほとんど反応しないまま排気されたり、また他の一部の
ガスに一3= ついては、プラズマにより過剰に分解され、成膜速度が
遅くなったり、粉体の発生が多くなったりする等の現象
が起こり、効率的な成膜が行なえず、所期の膜特性も得
られないという問題があった。
Therefore, some gases have poor activation efficiency and are exhausted without much reaction, and some other gases are excessively decomposed by plasma, slowing down the film formation rate. Phenomena such as increased generation of powder occur, making it impossible to form an efficient film and resulting in failure to obtain the desired film characteristics.

本発明は、上記従来の欠点を解消し、良好な特性の膜を
効率よく作成するプラズマCVD装置を提供することを
目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to provide a plasma CVD apparatus that eliminates the above-mentioned conventional drawbacks and efficiently forms films with good characteristics.

(問題を解決するための手段) 本発明は、真空容器、真空排気手段、反応ガス導入手段
を備え、減圧中にてグロー放電により反応ガスを分解ま
たは活性化することによって基板表面に成膜するプラズ
マCVD装置において、グロー放電領域内に少なくとも
一部」二の高密度プラズマ領域を設けるとともに、上記
反応ガスとして複数の種類のガスを用い、当該反応ガス
のうち少なくとも一種類以上の反応ガスを上記高密度プ
ラズマ領域を介してグロー放電領域に導入する一方、他
の少なくとも一種類以上の反応ガスを上記高密度プラズ
マ領域を介さずグロー放電領域に導入するような構成に
している。
(Means for Solving the Problem) The present invention comprises a vacuum container, evacuation means, and reactive gas introduction means, and forms a film on a substrate surface by decomposing or activating the reactive gas by glow discharge under reduced pressure. In a plasma CVD apparatus, at least a part of a high-density plasma region is provided in a glow discharge region, and a plurality of types of gases are used as the reactive gas, and at least one of the reactive gases is used as the reactive gas. The reactant gas is introduced into the glow discharge region through the high-density plasma region, while at least one other type of reactive gas is introduced into the glow discharge region without passing through the high-density plasma region.

(本発明の実施例) 図面第1図は、通常使用されている平行平板型プラズマ
CVD装置に本発明を適用した一実施例を示したもので
ある。以下図面に基づいて説明する。
(Embodiment of the present invention) FIG. 1 shows an embodiment in which the present invention is applied to a commonly used parallel plate type plasma CVD apparatus. This will be explained below based on the drawings.

1は真空容器であり、当該真空容器1は油拡散ポンプ、
ターボポンプ、ルーツブロアポンプ、油回転ポンプ等の
排気系(図示していない)によって真空排気されている
。そして当該真空容器1内にはヒータ9を内蔵した基板
ホルダー6を設置しており、この基板ホルダー6上に基
板7を載置している。当該基板ホルダー6は、上記ヒー
タ9によって100 ’C〜400℃程度に加熱される
1 is a vacuum container, and the vacuum container 1 includes an oil diffusion pump,
It is evacuated by an exhaust system (not shown) such as a turbo pump, Roots blower pump, or oil rotary pump. A substrate holder 6 having a built-in heater 9 is installed in the vacuum container 1, and a substrate 7 is placed on this substrate holder 6. The substrate holder 6 is heated to about 100'C to 400C by the heater 9.

真空容器1の内部に基板ホルダー6に対向して電圧印加
電極3が設置される。当該電圧印加電極3に電源12よ
り発生する直流、又は交流若しくは高周波電圧を印加す
ることにより電圧印加電極3と基板ホルダー6との間に
グロー放電10が生起する。
A voltage applying electrode 3 is installed inside the vacuum container 1 facing the substrate holder 6 . A glow discharge 10 is generated between the voltage application electrode 3 and the substrate holder 6 by applying a direct current, an alternating current, or a high frequency voltage generated from a power source 12 to the voltage application electrode 3 .

本図では電圧印加電極3が上に、基板ホルダー6が下に
なる様装置されているが、この位置関係が上下逆になる
場合でも、また両方共鉛直に配置される場合でも同様に
本発明の目的は達せられる。
In this figure, the device is arranged so that the voltage application electrode 3 is on top and the substrate holder 6 is on the bottom, but the present invention can be applied even if the positional relationship is upside down or both are arranged vertically. The purpose of is achieved.

電圧印加電極3の基板ホルダー6に対向する面側に四部
11−を設けることにより、グロー放電領域]−〇の一
部に高密度プラズマ領域8が生成する。
By providing the four parts 11- on the side of the voltage application electrode 3 facing the substrate holder 6, a high-density plasma region 8 is generated in a part of the glow discharge region]-.

当該高密度プラズマ領域8を生成する為の凹部]−1の
寸法は、その凹部11に電圧印加電極3と基板ホルダー
6との間に発生するプラズマより密度の高いプラズマが
発生する条件を満足するものであれば任意であり必ずし
も限定されるものではない。この高密度プラズマ8が発
生する条件は、ガスの種類や容器内圧力や放電電力によ
り異なる。
The dimensions of the recess for generating the high-density plasma region 8]-1 satisfy the condition that plasma with higher density than the plasma generated between the voltage application electrode 3 and the substrate holder 6 is generated in the recess 11. It is arbitrary and is not necessarily limited. Conditions for generating this high-density plasma 8 vary depending on the type of gas, the pressure inside the container, and the discharge power.

但し、実験では、通常プラズマCVDで一般的に用いら
れる条件、つまり反応ガスとしてモノシラン及び窒素を
用い、圧力として6Pa〜200 Pa、放電電力がi
oow〜2kWの範囲で、放電を行なったところ、径が
φ2ITIIl〜φ40mm、深さが径の0.5倍〜1
−0倍程度で良好な結果が得られた。
However, in the experiment, the conditions commonly used in plasma CVD were used, that is, monosilane and nitrogen were used as the reaction gas, the pressure was 6 Pa to 200 Pa, and the discharge power was i.
When discharge was performed in the range of oow to 2kW, the diameter was φ2ITIIl to φ40mm, and the depth was 0.5 to 1 times the diameter.
Good results were obtained at around -0 times.

またその形状は円筒形に限定されるものではなく、スリ
ッ1−状やハニカム状であっても同様に高密度プラズマ
領域8が生成する。四部11の数は、電圧印加電極3に
1−個以上設けることにより高密度プラズマ領域8がそ
の数に対応して生成する。
Further, the shape is not limited to a cylindrical shape, and the high-density plasma region 8 is similarly generated even if the shape is a slit shape or a honeycomb shape. By providing one or more four portions 11 on the voltage application electrode 3, high-density plasma regions 8 are generated corresponding to the number of the four portions 11.

また高密度プラズマ領域8を形成する凹部11の表面の
材質は、電圧印加電極3と同一金属でも良いが、生成す
る膜の中に不純物が混入することを避ける為には、シリ
コン、石英、窒化シリコン、アルミナ等の不純物放出効
率の低い材質を用いることができる。
The material of the surface of the recess 11 forming the high-density plasma region 8 may be the same metal as that of the voltage application electrode 3, but in order to avoid contamination of impurities into the produced film, it is preferable to use silicon, quartz, nitride, etc. A material with low impurity release efficiency, such as silicon or alumina, can be used.

真空容器1には反応ガスを導入するための二つのガス導
入管を接続している。このうち第1ガス導入管4は、電
圧印加電極3内を貫通し、高密度プラズマ領域8を介し
、グロー放電領域10に反応ガスを導入するように形成
している。一方、第2ガス導入管5は、電圧印加電極3
内を貫通して高密度プラズマ領域8を介さずにグロー放
電領域10に反応ガスを導入するように形成している。
Two gas introduction pipes for introducing reaction gases are connected to the vacuum vessel 1. Among these, the first gas introduction tube 4 is formed so as to penetrate through the inside of the voltage application electrode 3 and introduce a reactive gas into the glow discharge region 10 via the high-density plasma region 8 . On the other hand, the second gas introduction pipe 5 connects the voltage application electrode 3
It is formed so that the reactive gas is introduced into the glow discharge region 10 without passing through the high-density plasma region 8 by penetrating the inside thereof.

第2ガス導入管5および凹部11そして当該凹部11に
開口する第1ガス導入管4は、夫々1個以上であれば基
本的に高密度プラズマ領域8を生成し、かつ該高密度プ
ラズマ領域8を介して導入するガスと該高密度プラズマ
領域8を介さずに導入するガスとを分離するという目的
を達成できるが、基板7上に均一な成膜をするためには
それらの数は夫々多い方が望ましい。
If the second gas introduction pipe 5 and the recess 11 and the first gas introduction pipe 4 opening into the recess 11 are one or more each, the high-density plasma region 8 is basically generated, and the high-density plasma region 8 Although the purpose of separating the gas introduced through the high-density plasma region 8 from the gas introduced without passing through the high-density plasma region 8 can be achieved, in order to uniformly form a film on the substrate 7, the number of each of them is large. It is preferable.

また、真空容器1内に開口する第2ガス導入管5の開口
部5aの径は、その開口部において高密度プラズマが発
生しないよう充分に小さくする必要がある。
Further, the diameter of the opening 5a of the second gas introduction pipe 5 that opens into the vacuum vessel 1 needs to be sufficiently small so that high-density plasma is not generated at the opening.

通常、開口部5aの径をφ2nn未満にすると高密度プ
ラズマの発生を防止できる。
Normally, if the diameter of the opening 5a is less than φ2nn, generation of high-density plasma can be prevented.

しかして、導入される複数の種類の反応ガスのうち、一
方で活性化効率の悪い一種類以上のガスを第1ガス導入
管4から高密度プラズマ領域8を介してグロー放電領域
10に導入する一方、同時に他方では他の種類の反応ガ
スを第2ガス導入管5を通じて直接グロー放電領域1o
に導入する。
Among the plurality of types of reactive gases introduced, one or more types of gas with poor activation efficiency are introduced from the first gas introduction pipe 4 into the glow discharge region 10 via the high-density plasma region 8. On the other hand, on the other hand, another type of reaction gas is directly introduced into the glow discharge area 1o through the second gas introduction pipe 5.
to be introduced.

上記のように活性化効率の悪いガスが高密度プラズマ領
域8を通過するのでガスの活性化が促進される一方、高
密度プラズマ領域を通過しないガスはプラズマによって
過剰に分解されることはない。
As mentioned above, since the gas with poor activation efficiency passes through the high-density plasma region 8, the activation of the gas is promoted, while the gas that does not pass through the high-density plasma region is not excessively decomposed by the plasma.

本発明に係るプラズマCVD装置を使用して窒化シリコ
ン膜を作成した。すなわち、第1ガス導入管4から窒素
ガスを、第2ガス導入管5がらはシランガスを導入する
。そして13.56MHzの高周波電力を電圧印加電極
3に印加したところ成膜速度は通常の平行平板型の電極
を用いた場合は、300人/min程度であルノニ対し
て1000人/min以上の成膜速度が得られ、良好な
膜質の窒化シリコン膜を得ることができた。同時に粉体
の発生も少なくなった。
A silicon nitride film was created using a plasma CVD apparatus according to the present invention. That is, nitrogen gas is introduced from the first gas introduction pipe 4, and silane gas is introduced from the second gas introduction pipe 5. When a high frequency power of 13.56 MHz was applied to the voltage application electrode 3, the film formation rate was about 300 layers/min when normal parallel plate electrodes were used, which was more than 1000 layers/min compared to Lunoni. A high film speed was obtained, and a silicon nitride film of good quality could be obtained. At the same time, the generation of powder was also reduced.

これは、シランガスに比べて活性化、分解しにくい窒素
ガスが高密度プラズマ領域8を通過するようにして活性
化、分解をし易くしたのでグロー放電領域10に直接導
入するシランガスとの分解のバランスが良くなったため
と考えられる。
This is because nitrogen gas, which is difficult to activate and decompose compared to silane gas, passes through the high-density plasma region 8 to be easily activated and decomposed, so that the decomposition balance with the silane gas that is directly introduced into the glow discharge region 10 is maintained. This is thought to be due to improved performance.

また、このようなグロー放電の場合、プラズマは、高密
度プラズマ領域8の部分に集中することから、同一高周
波電力でも基板7面上のプラズマ密度は通常の平行平板
型電極に対して弱くなる。
Furthermore, in the case of such a glow discharge, the plasma is concentrated in the high-density plasma region 8, so that even with the same high-frequency power, the plasma density on the surface of the substrate 7 is weaker than that of a normal parallel plate electrode.

そのため基板7に対する荷電粒子によるダメージは少な
くなることが期待される。
Therefore, it is expected that damage to the substrate 7 caused by charged particles will be reduced.

上記と同様に本発明に係る装置を使用して非晶質シリコ
ンを作成する場合、例えばN型の非晶質シリコンでは、
第1ガス導入管4から水素とフォスフインの混合ガスを
導入し、第2ガス導入管5からシランガスを導入する。
When producing amorphous silicon using the apparatus according to the present invention in the same manner as described above, for example, for N-type amorphous silicon,
A mixed gas of hydrogen and phosphine is introduced from the first gas introduction pipe 4, and silane gas is introduced from the second gas introduction pipe 5.

これによると通常の平行平板型電極に比べてフォスフイ
ンの分解が促進され、高ドーピング効率の膜を得ること
ができた。
According to this method, the decomposition of phosphine was accelerated compared to normal parallel plate electrodes, and a film with high doping efficiency could be obtained.

(発明の効果) 以上の説明から明らかなように、本発明によれば複数種
の反応ガスの活性化・分解効率の制御を行なうことがで
きるので、良好な膜質の膜を高速で成膜することができ
る。
(Effects of the Invention) As is clear from the above explanation, according to the present invention, it is possible to control the activation and decomposition efficiency of multiple types of reaction gases, so that a film with good quality can be formed at high speed. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

図面第1図は本発明の一実施例を示したプラズマCVD
装置の概略断面図である。 1−一一一真空容器、2−一一一排気口、3−一一一電
圧印加電極、4−一一一第1ガス導入管、5−一一一第
2ガス導入管、8−一一一高密度プラズマ領域、10−
一−−グロー放電領域。
Figure 1 shows a plasma CVD system showing an embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view of the device. 1-111 vacuum container, 2-111 exhaust port, 3-111 voltage application electrode, 4-111 first gas introduction tube, 5-111 second gas introduction tube, 8-1 11 High density plasma region, 10-
1--Glow discharge area.

Claims (2)

【特許請求の範囲】[Claims] (1)真空容器、真空排気手段、グロー放電発生手段、
反応ガス導入手段を備え、減圧中にてグロー放電により
反応ガスを分解または活性化することによって基板表面
に膜を形成するプラズマCVD装置において、上記グロ
ー放電領域内に少なくとも一以上の高密度プラズマ領域
を設けるとともに、上該反応ガスとして複数の種類のガ
スを用い、当該反応ガスのうち少なくとも一種類以上の
反応ガスを上記高密度プラズマ領域を介してグロー放電
領域に導入する一方、少なくとも一種類以上の他の反応
ガスを上記高密度プラズマ領域を介さずグロー放電領域
に導入することを特徴とするプラズマCVD装置。
(1) Vacuum container, evacuation means, glow discharge generating means,
In a plasma CVD apparatus that is equipped with a reactive gas introducing means and forms a film on a substrate surface by decomposing or activating the reactive gas by glow discharge under reduced pressure, at least one high-density plasma region is provided in the glow discharge region. and using a plurality of types of gas as the reactive gas, at least one of the reactive gases is introduced into the glow discharge region via the high-density plasma region, while at least one or more of the reactive gases is introduced into the glow discharge region via the high-density plasma region A plasma CVD apparatus characterized in that another reactive gas is introduced into the glow discharge region without passing through the high-density plasma region.
(2)真空容器内に臨ませた電圧印加電極の基板ホルダ
ーに対向する面上に凹部を設けることにより、該凹部内
に高密度プラズマ領域を形成するようにしたことを特徴
とする、前記特許請求の範囲第1項記載のプラズマCV
D装置。
(2) The above-mentioned patent is characterized in that a recess is provided on the surface facing the substrate holder of the voltage application electrode facing into the vacuum container, thereby forming a high-density plasma region within the recess. Plasma CV according to claim 1
D device.
JP10978385A 1985-05-22 1985-05-22 Plasma cvd device Granted JPS61267315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10978385A JPS61267315A (en) 1985-05-22 1985-05-22 Plasma cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10978385A JPS61267315A (en) 1985-05-22 1985-05-22 Plasma cvd device

Publications (2)

Publication Number Publication Date
JPS61267315A true JPS61267315A (en) 1986-11-26
JPH0578933B2 JPH0578933B2 (en) 1993-10-29

Family

ID=14519107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10978385A Granted JPS61267315A (en) 1985-05-22 1985-05-22 Plasma cvd device

Country Status (1)

Country Link
JP (1) JPS61267315A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0199213A (en) * 1987-10-13 1989-04-18 Mitsui Toatsu Chem Inc Device for formation of film
JPH01226147A (en) * 1988-03-07 1989-09-08 Mitsui Toatsu Chem Inc Apparatus and method for forming film
JPH07312364A (en) * 1995-06-08 1995-11-28 Toshiba Corp Semiconductor manufacturing equipment and its manufacturing method
US5773100A (en) * 1987-08-14 1998-06-30 Applied Materials, Inc PECVD of silicon nitride films

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225517A (en) * 1983-06-06 1984-12-18 Nippon Denso Co Ltd Apparatus for manufacture of amorphous semiconductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225517A (en) * 1983-06-06 1984-12-18 Nippon Denso Co Ltd Apparatus for manufacture of amorphous semiconductor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773100A (en) * 1987-08-14 1998-06-30 Applied Materials, Inc PECVD of silicon nitride films
US6040022A (en) * 1987-08-14 2000-03-21 Applied Materials, Inc. PECVD of compounds of silicon from silane and nitrogen
JPH0199213A (en) * 1987-10-13 1989-04-18 Mitsui Toatsu Chem Inc Device for formation of film
JPH01226147A (en) * 1988-03-07 1989-09-08 Mitsui Toatsu Chem Inc Apparatus and method for forming film
JPH07312364A (en) * 1995-06-08 1995-11-28 Toshiba Corp Semiconductor manufacturing equipment and its manufacturing method

Also Published As

Publication number Publication date
JPH0578933B2 (en) 1993-10-29

Similar Documents

Publication Publication Date Title
US4471003A (en) Magnetoplasmadynamic apparatus and process for the separation and deposition of materials
US4487162A (en) Magnetoplasmadynamic apparatus for the separation and deposition of materials
JP2005005280A (en) Method for passivating semiconductor substrate
JPS63187619A (en) Plasma cvd system
JPS6347141B2 (en)
JPH0541705B2 (en)
JPS61267315A (en) Plasma cvd device
EP1294640A1 (en) Method and apparatus for production of high purity silicon
JP2654790B2 (en) Vapor phase epitaxy
JP2590534B2 (en) Thin film formation method
US5221643A (en) Method for producing polycrystalline semiconductor material by plasma-induced vapor phase deposition using activated hydrogen
JPH08222554A (en) Film deposition and film deposition system using plasma
JPH02248038A (en) Manufacture of polycrystalline semiconductor substance layer
JPH079059B2 (en) Method for producing carbon thin film
EP0418438A1 (en) Method and apparatus for the plasma etching, substrate cleaning or deposition of materials by D.C. glow discharge
JPS5745226A (en) Manufacture of thin film semiconductor
JPS63166235A (en) Parallel flat plate type plasma cvd system
JP2617539B2 (en) Equipment for producing cubic boron nitride film
JPH02294482A (en) Thin film forming device
JPS5956574A (en) Formation of titanium silicide film
JPS6191918A (en) Manufacturing device of compound thin film
JPH05201794A (en) Production for diamond semiconductor
JPS6318856B2 (en)
JPH0745541A (en) Thin film forming method
JPS6343330A (en) Plasma cvd apparatus for formation of silicon nitride thin film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term