JPS62229826A - Deposit film forming method - Google Patents

Deposit film forming method

Info

Publication number
JPS62229826A
JPS62229826A JP7226886A JP7226886A JPS62229826A JP S62229826 A JPS62229826 A JP S62229826A JP 7226886 A JP7226886 A JP 7226886A JP 7226886 A JP7226886 A JP 7226886A JP S62229826 A JPS62229826 A JP S62229826A
Authority
JP
Japan
Prior art keywords
deposited film
deposition chamber
control agent
film forming
seconds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7226886A
Other languages
Japanese (ja)
Inventor
Keishi Saito
恵志 斉藤
Tsutomu Murakami
勉 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7226886A priority Critical patent/JPS62229826A/en
Publication of JPS62229826A publication Critical patent/JPS62229826A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form the deposit films with high quality securing the evenness of electrical and optical properties and the stability of quality even in case of forming thick and hardly peeling off deposit films over broad space by a method wherein the stay time and atmospheric temperature of a gaseous material and a valued electron control agent in a deposit chamber are specified. CONSTITUTION:The stay time r of a gaseous material AaHbXc (A: element selected from Si and Ge, X; halogen atoms, a.b,c: positive integers a>=2, cnot equal to O) and a valued electron control agent in a deposit chamber is specified to be 0.l sec <=r<=50 sec, likewise the atmospheric temperature T in deposit chamber to be 200 deg.C<=T<=1000 deg.C while the product of stay time r and atmospheric temperature T to be 100 deg.C sec<=rT<=3000 deg.C sec. Through these procedures, the deposit films subject to even physical properties and easy film quality control can be formed over broad space.

Description

【発明の詳細な説明】 〔発明の属する分野の説明〕 本発明は、熱エネルギー等の励起エネルギーを利用して
、光導電膜、半導体膜あるいは絶縁性の膜を所定の支持
体上に形成させる堆積膜形成法に関するものである。
[Detailed description of the invention] [Description of the field to which the invention pertains] The present invention is directed to forming a photoconductive film, a semiconductor film, or an insulating film on a predetermined support using excitation energy such as thermal energy. The present invention relates to a deposited film forming method.

(従来技術の説明〕 現在必要に応じて水素原子又は/及びハロゲン原子を含
むアモルファスシリコンlt?GrA−5i(H,X)
J と標記する)膜は、太陽電池や電子写真感光体への
応用が実用化または実用化へ向けて進められている。こ
れ等の技術分野に於LtルA−5i  (H,X)膜は
、SiF4゜S i H4ガスやSi2H6ガスのグロ
ー放電分解法により作製されている。
(Description of prior art) Amorphous silicon lt?GrA-5i (H,X) containing hydrogen atoms and/or halogen atoms as required at present
The film (denoted as J) has been put into practical use or is being put into practical use in solar cells and electrophotographic photoreceptors. In these technical fields, LtA-5i (H,X) films are produced by glow discharge decomposition of SiF4°S i H4 gas or Si2H6 gas.

グロー放電分解法で作製したA−St(H。A-St(H) prepared by glow discharge decomposition method.

X)膜は、グロー放電中に存在するイオンなどの活性種
が電界により加速され、堆積中にA−Si(H,X)膜
へ衝突することによりA−S i(H−+ X ) 膜
中の欠陥が増加している。
X) The film is formed by active species such as ions present during glow discharge being accelerated by the electric field and colliding with the A-Si(H,X) film during deposition. Defects inside are increasing.

現在前記各応用の特性向上のために、A−5i(H,X
)膜の電気的特性の向上が望まれている。
Currently, in order to improve the characteristics of each of the above applications, A-5i (H,
) It is desired to improve the electrical properties of the film.

11n記のようなイオン衝突のない堆積膜形成法として
、 熱エネルギーにより原料ガスを分解しA−3i(H,X
)膜を堆積する方法が注目されている。
As a deposited film formation method without ion collision as described in Section 11n, the raw material gas is decomposed by thermal energy to form A-3i (H,
) Methods for depositing films are attracting attention.

従来、この様な方法における原料ガスとしては、SiH
4,Si2H6等のシランガスがグロー放電分解法の場
合と同様に使用されていた。
Conventionally, SiH has been used as a raw material gas in such a method.
4, Si2H6 and other silane gases were used as in the glow discharge decomposition method.

面乍ら、SiH4,Si2H6等のシランガスは、堆積
速度を速くすると堆積膜が異常成長しやすく、電気特性
及び光導電特性の良いA−Si(H)膜を堆積させるこ
とが困難であった。
However, with silane gases such as SiH4 and Si2H6, when the deposition rate is increased, the deposited film tends to grow abnormally, making it difficult to deposit an A-Si(H) film with good electrical and photoconductive properties.

またS i H4、S i 2 H6等の熱分解により
堆積した膜は、内部応力が大きく剥離しやすいという問
題点があった。
Furthermore, films deposited by thermal decomposition such as S i H4 and S i 2 H6 have a problem in that they have a large internal stress and are easily peeled off.

また更に、SiH4,5i2Hs等の堆積膜形成用物質
に価電子制御剤を混合して、熱分解により価電子制御さ
れた堆積膜を形成する場合1価電子制御剤の分解が不十
分で効率の良い価電子制御が行われないという問題点が
あった。
Furthermore, when a valence electron control agent is mixed with a deposited film forming substance such as SiH4,5i2Hs to form a deposited film with valence electrons controlled by thermal decomposition, the decomposition of the monovalent electron control agent is insufficient and the efficiency is low. There was a problem that good valence electron control was not performed.

〔発明の目的〕[Purpose of the invention]

本発明は、前記の問題点を解決することを目的としてい
る。
The present invention aims to solve the above problems.

本発明の他の目的は、大面積、厚膜の堆積膜の形成にあ
っても電気的、光学的特性の均一性、品質の安定性を確
保した高品質の堆vK膜を作製することのできる方法を
提供することにある。
Another object of the present invention is to produce a high-quality deposited VK film that ensures uniformity of electrical and optical properties and stability of quality even when forming a large-area, thick deposited film. The goal is to provide a method that can be used.

〔問題を解決するための手段〕[Means to solve the problem]

上記目的を達成する本発明の堆積膜形成法は、堆積室内
に導入された気体状原料物質((1)式に示す)と価電
子制御剤に熱エネルギーを与えて前記堆積室内に置かれ
た支持体上に堆積膜を形成する堆積膜形成法において、 前記気体状原料物質と前記価電子制御剤の前記堆積室内
での滞留時間(τ)が0.1秒≦τ≦50秒で、かつ堆
積室内の雰囲気温度(T)が、200℃≦T≦1000
℃で、さらに、滞留時間(τ)と雰囲気温度(T)との
積が、100[’C秒]≦τT≦30000[℃秒]で
あることを特徴としている。
The deposited film forming method of the present invention that achieves the above object provides thermal energy to a gaseous source material (shown in equation (1)) and a valence electron control agent introduced into a deposition chamber, and then placed in the deposition chamber. In the deposited film forming method of forming a deposited film on a support, the residence time (τ) of the gaseous source material and the valence electron control agent in the deposition chamber is 0.1 seconds≦τ≦50 seconds, and The atmospheric temperature (T) in the deposition chamber is 200°C≦T≦1000
℃, and further characterized in that the product of residence time (τ) and ambient temperature (T) satisfies 100 ['C seconds]≦τT≦30000 [°C seconds].

A aHbXc−−−−(1)式 (ただし、AはSi、Geから選択される元素、Xはハ
ロゲン原子、a、b、cは正の整数でa≧2、C#Oで
ある。) 本発明は従来性われていたSiH4,Si2H6の熱分
解による堆積機構の検討を基本としている。
A aHbXc --- Formula (1) (where, A is an element selected from Si and Ge, X is a halogen atom, a, b, and c are positive integers, a≧2, and C#O.) The present invention is based on the investigation of the conventional deposition mechanism of SiH4 and Si2H6 by thermal decomposition.

その結果、前記気体状原料物質の熱分解による堆積膜形
成法の場合、気体状原料物質の堆積室内での滞留時間が
、熱分解によって生成する活性種を制御する上で重要で
あることを見い出した。滞留時間は、堆積室内の雰囲気
温度と密接に関係している。雰囲気温度が高い場合、滞
留時間は短い方が望ましい。
As a result, they found that in the case of the deposited film formation method by thermal decomposition of the gaseous raw material, the residence time of the gaseous raw material in the deposition chamber is important in controlling the active species generated by the thermal decomposition. Ta. Residence time is closely related to atmospheric temperature within the deposition chamber. When the ambient temperature is high, it is desirable that the residence time be short.

しかし、滞留時間と堆積室内の雰囲気温度で堆積室内で
の熱分解によって生成した活性種を制御したとしても良
質な堆積膜を得るためには不充分である。
However, even if the active species generated by thermal decomposition within the deposition chamber are controlled by the residence time and atmospheric temperature within the deposition chamber, it is insufficient to obtain a deposited film of good quality.

良質な堆積膜を得るためには、堆積室内で熱分解で生成
された活性種が単に支持体上に堆積するだけでは不充分
で、支持体上での活性種の再配置や、異常成長の防止、
機構が必要であることを見い出した。
In order to obtain a high-quality deposited film, it is not enough for the active species generated by thermal decomposition in the deposition chamber to simply deposit on the support; it is also necessary to rearrange the active species on the support and prevent abnormal growth. prevention,
I discovered that a mechanism was necessary.

上記した、活性種の再配置や異常成長の防止機構を有す
る活性種を生成する気体状原料物質として鋭意検討した
結果、ハロゲン原子を含有する化合物が有効であること
を見い出した。
As a result of intensive studies as a gaseous raw material for generating active species having a mechanism for preventing active species rearrangement and abnormal growth as described above, it has been found that compounds containing halogen atoms are effective.

しかしハロゲンを含有したモノシランやモノゲルマンは
分解温度が高いために使用できない、Si原子を2ヶ以
上含有したハロゲン化ケイ素化合物や、Ge原子を2ヶ
以上含有したハロゲン化ゲルマニウム化合物が適してい
る。
However, halogen-containing monosilanes and monogermanes cannot be used because of their high decomposition temperatures; halogenated silicon compounds containing two or more Si atoms and halogenated germanium compounds containing two or more Ge atoms are suitable.

該ハロゲン含有気体状原料物質は熱分解によって、ハロ
ゲンを含有した活性種を生成し、該活性種が支持体表面
での堆積膜形成用活性種の再装首を促進し、異常成長を
防止し、良好な堆積膜が得られるものと考えられる。
The halogen-containing gaseous raw material generates halogen-containing active species through thermal decomposition, and the active species promotes the re-heading of the active species for forming a deposited film on the surface of the support, thereby preventing abnormal growth. It is considered that a good deposited film can be obtained.

更に前記堆積膜形成物質に価電子制御剤を添加して堆積
膜を形成する場合、価電子制御剤を十分に分解して、堆
積膜中に添加する必要がある。この為、滞留時間は価電
子制御剤を添加しない場合よりも長くする事が必要であ
る。前記ハロゲン原子含有気体状原料物質としては、A
aHbXc(但し、A:Si、Ge、X:ハロゲン原子
、a、b、c:正の整数a≧2゜c#0)が有効である
Further, when a valence electron control agent is added to the deposited film forming substance to form a deposited film, it is necessary to sufficiently decompose the valence electron control agent before adding it to the deposited film. For this reason, it is necessary to make the residence time longer than when no valence electron control agent is added. The halogen atom-containing gaseous raw material is A
aHbXc (A: Si, Ge, X: halogen atom, a, b, c: positive integer a≧2°c#0) is effective.

具体的には、ハロゲン原子とシリコン原子を含有する気
体状原料物質としては、 S i 2H2O文、5i2H5F、5i2H4C交2
 、 S i 2 H4F 2 、 S i H2C文
F。
Specifically, gaseous raw materials containing halogen atoms and silicon atoms include S i 2H2O, 5i2H5F, 5i2H4C
, S i 2 H4F 2 , S i H2C sentence F.

S i 2 H30文3.5i2H3F3.5i2H2
C文4.5i2H2F4,5i3H7CfL。
S i 2 H30 sentence 3.5i2H3F3.5i2H2
C sentence 4.5i2H2F4, 5i3H7CfL.

5i3)(7F、5i3H6C交21Si3H6F2 
、S i 3H5C交3,5i3H5F3等の鎖状化合
物、S i 4H7C見、 S i 4 H7F 。
5i3) (7F, 5i3H6C cross 21Si3H6F2
, S i 3H5C, chain compounds such as 3,5i3H5F3, S i 4H7C, S i 4 H7F.

5i4H6Cu2,5i4H6F2,5i4H5C文3
.5i4H5F3,5i4H4F+。
5i4H6Cu2, 5i4H6F2, 5i4H5C sentence 3
.. 5i4H5F3, 5i4H4F+.

5i4C文4 、S i 5H9O文、 S i 5H
9F 。
5i4C sentence 4, S i 5H9O sentence, S i 5H
9F.

S i 5 HB C立2,5i5HaF2,5f5H
7Cu3.5i5H7F3,5i5H6F4゜S i 
5 H60文4 、 S i 6)(10c立2 * 
S l 6HLOF2 、S i 6HBCA4 、S
 18H8F4等の環状化合物が有効である。
S i 5 HB C standing 2,5i5HaF2,5f5H
7Cu3.5i5H7F3,5i5H6F4゜S i
5 H60 sentence 4, S i 6) (10c standing 2 *
S l 6HLOF2 , S i 6HBCA4 , S
Cyclic compounds such as 18H8F4 are effective.

又、ハロゲン原子とゲルマニウム原子を含有する気体状
原料物質としては、G e 2 CfLs 。
Further, as a gaseous raw material containing a halogen atom and a germanium atom, G e 2 CfLs is used.

G e 2 F 6 、 G e 2 H5Cl 、 
G e 2 H5F 。
Ge2F6, Ge2H5Cl,
G e 2 H5F.

Ge2H4Cu2 、Ge2H4F2 、Ge2H3C
l 3 、 G e 2 H3F 3等の鎖状化合物が
有効である。
Ge2H4Cu2, Ge2H4F2, Ge2H3C
Chain compounds such as L 3 , G e 2 H3F 3 are effective.

価電子制御剤としては、周期律表第IIIb族元素含有
化合物または周期律表第Vb族元素含有化合物を採用す
るのが望ましい。
As the valence electron control agent, it is desirable to employ a compound containing an element of group IIIb of the periodic table or a compound containing an element of group Vb of the periodic table.

第IIIb族原子導入用の価電子制御剤として具体的に
は硼素原子導入用としては、B2H6。
Specifically, as a valence electron control agent for introducing a group IIIb atom, B2H6 is used for introducing a boron atom.

B4H10,B5H9、B5H11,B6H10゜Bs
H12,BsHL4等の水素化硼素、BF3 。
B4H10, B5H9, B5H11, B6H10゜Bs
Boron hydride such as H12, BsHL4, BF3.

BCJL3.BBr3等のハロゲン化硼素等が挙げられ
る。この他、AlCl3 、GaCl3 。
BCJL3. Examples include boron halides such as BBr3. In addition, AlCl3 and GaCl3.

Ga (CH3)3 、I ncfL3 、TC13等
も挙げることが出来る。
Ga (CH3)3, I ncfL3, TC13, etc. can also be mentioned.

第Vb族原子導入用の価電子制御剤として、本発明にお
いて有効に使用されるのは、燐原子導入用としては、P
H3、P2H4等の水素化燐、PI−14I 、PF3
 、PF5 、PC5L3 。
In the present invention, effective valence electron control agents for introducing Group Vb atoms include P for introducing phosphorus atoms.
Hydrogenated phosphorus such as H3, P2H4, PI-14I, PF3
, PF5, PC5L3.

PCl5.PBr3 、PBr3.PI3等のハロゲン
化燐が挙げられる。この他、AsH3。
PCl5. PBr3, PBr3. Examples include halogenated phosphorus such as PI3. In addition, AsH3.

A S F 3 、 A S Cl 3 、 A S 
B r 3 、 A S F 5 。
A SF 3 , A S Cl 3 , A S
B r 3 , A S F 5 .

SbH3、SbF3.SbF5.Sb0文3゜sbc文
5.SiH3,5iC13,B1Br3等も第Vb族原
子導入用の価電子制御剤の有効なものとして挙げる事が
出来る。
SbH3, SbF3. SbF5. Sb0 sentence 3゜sbc sentence 5. SiH3, 5iC13, B1Br3, etc. can also be mentioned as effective valence electron control agents for introducing Group Vb atoms.

前記、ハロゲン原子含有気体状原料物質と、価電子制御
剤とを混合して、熱分解により価電子制御された良質な
堆積膜を得る為には、前記滞留時間(τ)と、堆積室の
雰囲気温度(T)は、好ましくは0.1秒≦τ≦50秒
、200°C≦T≦tooo℃、too [”c秒〕≦
Tτ≦30000[’C秒]であり、より好ましくは、
0.15秒≦τ≦30秒、300℃≦T≦950℃、2
00 [秒℃]≦Tτ≦35000[秒’C]が望まし
い。
In order to obtain a high-quality deposited film in which valence electrons are controlled by thermal decomposition by mixing the halogen atom-containing gaseous raw material and the valence electron controlling agent, it is necessary to adjust the residence time (τ) and the deposition chamber size. The ambient temperature (T) is preferably 0.1 seconds≦τ≦50 seconds, 200°C≦T≦tooo°C, too [”c seconds]≦
Tτ≦30000 ['C seconds], more preferably,
0.15 seconds≦τ≦30 seconds, 300℃≦T≦950℃, 2
It is desirable that 00 [seconds C]≦Tτ≦35000 [seconds'C].

第1図は1本発明の堆積膜形成法で使用する堆積膜形成
装置の模式図である。
FIG. 1 is a schematic diagram of a deposited film forming apparatus used in the deposited film forming method of the present invention.

堆積膜形成用原料物質及び価電子制御剤はガスボンベ1
8,19,20.21に充填されている。圧力ゲージ2
2−1.22−2.22−3.22−4.でマスフロー
コントローラ24−1.24−2.24−3.24−4
の1次圧がモニターされる。バルブ23−1.23−2
゜23−3.23−4.25−1.25−2゜25−3
.25−4で使用する堆積膜形成用原料物質を選択する
The raw material for forming the deposited film and the valence electron control agent are in gas cylinder 1.
8, 19, 20.21 are filled. pressure gauge 2
2-1.22-2.22-3.22-4. Mass flow controller 24-1.24-2.24-3.24-4
The primary pressure of is monitored. Valve 23-1.23-2
゜23-3.23-4.25-1.25-2゜25-3
.. In step 25-4, a raw material for forming a deposited film is selected.

堆積室10内の支持体11は加熱用ヒータ13によって
所定の温度に維持される。また堆積室温度は、堆積室加
熱用ヒータ30によって所定の温度に維持される。
The support 11 in the deposition chamber 10 is maintained at a predetermined temperature by a heater 13 . Further, the temperature of the deposition chamber is maintained at a predetermined temperature by a heater 30 for heating the deposition chamber.

その後ガス供給パイプ26を介して、堆積膜形成用原料
物質が導入される。堆積室10の内圧は、圧力ゲージ3
1でモニタされる。
Thereafter, a raw material for forming a deposited film is introduced via the gas supply pipe 26. The internal pressure of the deposition chamber 10 is determined by the pressure gauge 3.
1 is monitored.

以上の様にして、支持体ll上に熱分解により、堆積膜
が形成される。排気ガスはパイプ29を介して、系外に
ポンプ(不図示)によって排出される。
As described above, a deposited film is formed on the support 11 by thermal decomposition. The exhaust gas is discharged outside the system via a pipe 29 by a pump (not shown).

本発明に於いて使用される支持体としては、形成される
堆積膜の用途に応じて適宜所望に応じ、て選択されるも
のであれば導電性でも電気絶縁性であっても良い、導電
性支持体としては、例えば、NiCr、ステンレス、A
fl、Cr。
The support used in the present invention may be electrically conductive or electrically insulating, as long as it is selected as desired depending on the use of the deposited film to be formed. As the support, for example, NiCr, stainless steel, A
fl, Cr.

Mo 、Au 、I r 、Nb、Ta、V、Ti 。Mo, Au, Ir, Nb, Ta, V, Ti.

pt、pb等の金属又はこれ等の合金が挙げられる。Examples include metals such as pt and pb, and alloys thereof.

電気絶縁性支持体としては、ポリエステル、ポリエチレ
ン、ポリカーボネート、セルローズアセテート、ポリプ
ロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ
スチレン、ポリアミド等の合成樹脂のフィルム又はシー
ト、ガラス、セラミック、等が通常使用される。これら
の電気絶縁性支持体は、好適には少なくともその一方の
表面が導電処理され、該導電処理された表面側に他の層
が設けられるのが望ましい。
As the electrically insulating support, films or sheets of synthetic resins such as polyester, polyethylene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyamide, glass, ceramic, etc. are usually used. Preferably, at least one surface of these electrically insulating supports is subjected to conductive treatment, and another layer is preferably provided on the conductive treated surface side.

例えばガラスであれば、その表面がNiCr。For example, if it is glass, its surface is NiCr.

AM、Cr、Mo、Au、Ir、Nb、Ta。AM, Cr, Mo, Au, Ir, Nb, Ta.

V、Ti、PL、Pd、In2O3,5n02゜I T
 O(I n 203 + S n O2)等の薄膜を
設ける事によって導電処理され、或いはポリエステルフ
ィルム等の合成樹脂フィルムであればNiCr、AM、
Ag、Pb、Zn、Ni。
V, Ti, PL, Pd, In2O3,5n02゜IT
Conductive treatment is performed by providing a thin film such as O (I n 203 + S n O2), or if it is a synthetic resin film such as polyester film, NiCr, AM,
Ag, Pb, Zn, Ni.

Au、Cr、Mo、Ir、Nb、Ta、V。Au, Cr, Mo, Ir, Nb, Ta, V.

Ti、Pt等の金属で真空蒸着、電子ビーム蒸着、スパ
ッタリング等で処理し、又は前記金属でラミネート処理
して、その表面が導電処理される。支持体の形状として
は、円筒状、ベルト状、板状等、任意の形状とし得、所
望によって、その形状が決定される。
The surface is treated with a metal such as Ti or Pt by vacuum evaporation, electron beam evaporation, sputtering, etc., or laminated with the metal to make the surface conductive. The shape of the support may be any shape, such as a cylinder, a belt, or a plate, and the shape is determined as desired.

支持体は、支持体と膜との密着性及び反応性を考慮して
上記の中より選ぶのが好ましい、更に両者の熱膨張の差
が大きいと膜中に多量の歪が生じ、良品質の膜が得られ
ない場合があるので1両者の熱膨張の差が近接している
支持体を選択して使用するのが好ましい。
It is preferable to select the support from among the above in consideration of the adhesion and reactivity between the support and the membrane.Furthermore, if the difference in thermal expansion between the two is large, a large amount of distortion will occur in the membrane, making it difficult to maintain good quality. Since a film may not be obtained in some cases, it is preferable to select and use supports whose thermal expansion differences are close to each other.

又、支持体の表面状態は、膜の構造(配向)や錐状組織
の発生に直接関係するので、所望の特性が得られる様な
膜構造と膜組織となる様に支持体の表面を処理するのが
望ましい。
In addition, the surface condition of the support is directly related to the structure (orientation) of the membrane and the formation of cone-shaped structures, so the surface of the support must be treated to obtain the membrane structure and structure that will provide the desired properties. It is desirable to do so.

以下、実施例に従って、未発明を具体的に説明、する。Hereinafter, the uninvention will be specifically explained according to Examples.

実施例1 第1図に示す堆積膜形成装置を用いて、S1表、第2表
に示す条件で1本発明の堆積膜形成法によって堆a膜を
作成した。
Example 1 Using the deposited film forming apparatus shown in FIG. 1, a deposited film was created by the deposited film forming method of the present invention under the conditions shown in Table S1 and Table 2.

比較例として、S i 2 H6の結果も第1表に示し
た。
As a comparative example, the results for S i 2 H6 are also shown in Table 1.

第1表に示す活性化エネルギーは、暗導電率の温度依存
性から求めた。
The activation energy shown in Table 1 was determined from the temperature dependence of dark conductivity.

本発明の方法によれば、ドーピング効率が改実施例2 第1図に示す堆積膜形成装置を利用して、本発明の堆積
膜形成方法による価電子制御された堆積層を有する太陽
電池を作成した。
According to the method of the present invention, the doping efficiency was improved. Example 2 Using the deposited film forming apparatus shown in FIG. 1, a solar cell having a deposited layer whose valence electrons were controlled by the deposited film forming method of the present invention did.

太陽電池の構造は、第2図に示すように透明電極をコー
ディングしたガラス支持体200上にP型非晶質シリコ
ン層(201)、i型非晶質シリコン層(202)、n
型非晶質シリコン層(203)そしてAl電極204か
ら構成されている。
The structure of the solar cell is as shown in FIG. 2, on a glass support 200 coated with a transparent electrode, a P-type amorphous silicon layer (201), an i-type amorphous silicon layer (202), an
It consists of an amorphous silicon layer (203) and an Al electrode 204.

本実施例の太陽電池は、第3表に示す条件で作成した。The solar cell of this example was created under the conditions shown in Table 3.

第1層のp型非晶質シリコン層と、第3層のn型非晶質
層を本発明の堆積膜形成法で堆積した・ 一方第2層のi型非晶質シリコン層は、SiH4ガスの
F2ガスによる酸化反応を利用する堆積方法で形成した
。(SiH4とF2は別々に堆植室に導入した。(不図
示)) 以上の様にして形成した太陽電池は従来の太陽電池と比
較して変換効率が16%向上した。
The first p-type amorphous silicon layer and the third n-type amorphous silicon layer were deposited by the deposited film forming method of the present invention.On the other hand, the second i-type amorphous silicon layer was formed using SiH4 It was formed by a deposition method that utilizes an oxidation reaction caused by F2 gas. (SiH4 and F2 were separately introduced into the composting chamber (not shown)) The solar cell formed as described above had a conversion efficiency improved by 16% compared to the conventional solar cell.

実施例3 第1図に示す堆積膜形成法を用いて、第4表に示す条件
で第3図に示す構造の電子写真用像形成部材を作製した
Example 3 Using the deposited film forming method shown in FIG. 1, an electrophotographic image forming member having the structure shown in FIG. 3 was produced under the conditions shown in Table 4.

第3図に示す電子写真用像形成部材は、A!;L支持体
300上に第1層のp型非晶質シリコン層302.第2
層のi型非晶質シリコン層303、第3層の表面層30
4から構成されている。
The electrophotographic imaging member shown in FIG. a first p-type amorphous silicon layer 302 on the L support 300; Second
layer i-type amorphous silicon layer 303, third layer surface layer 30
It consists of 4.

第1層のp型非晶買シリコン層を本発明の堆積膜形成法
で形成し、第2層と第3層は、SiH4,CH4のF2
ガスによる酸化反応によって形成した。
The first p-type amorphous silicon layer is formed by the deposited film forming method of the present invention, and the second and third layers are F2 of SiH4 and CH4.
Formed by gas oxidation reaction.

以上の様にして形成した電子写真用像形成部材の帯電能
を測定したところ従来のものと比較して20%向上して
いた。また暗減衰は30%改善されていた。
When the charging ability of the electrophotographic image forming member formed as described above was measured, it was found to be improved by 20% compared to the conventional one. Furthermore, the dark decay was improved by 30%.

実施例4 第1図に示す堆積膜形成法首を用いて、第5表に示す条
件で、第4図に示す構造の薄膜トランジスターを作製し
た。
Example 4 Using the deposited film forming method shown in FIG. 1 and under the conditions shown in Table 5, a thin film transistor having the structure shown in FIG. 4 was fabricated.

第4図に示す薄膜トランジスターは、ガラス支持体40
0上に第1層の非晶質シリコン層401、第2層のn型
非晶質9937層402、第3層の非晶質酸化シリコン
層403、A文電極405が積層された構造である。
The thin film transistor shown in FIG.
0, a first layer of amorphous silicon layer 401, a second layer of n-type amorphous 9937 layer 402, a third layer of amorphous silicon oxide layer 403, and an A-shaped electrode 405 are stacked. .

第2層のn型非晶質層402を本発明の堆積膜形成法で
堆積した。
A second n-type amorphous layer 402 was deposited by the deposited film forming method of the present invention.

第1層、第3層はSiH+とF2の酸化反応を利用した
ガス接触法で作製した。
The first layer and the third layer were fabricated by a gas contact method using an oxidation reaction between SiH+ and F2.

以上の様にして作製した薄膜トランジスターは従来のも
のよりSN比が12%改善された。
The thin film transistor manufactured as described above had an SN ratio improved by 12% compared to the conventional one.

〔効果〕〔effect〕

以上の詳細な説明および各実施例より、本発明の堆積膜
形成法によれば1、省エネルギー化を計ると同時に膜品
質の管理が容易で大面積に亘って均一物理特性の堆vK
膜が得られる。又、生産性、量産性に優れ、高品質で電
気的、光学的、半導体的等の物理特性に優れた膜を簡便
に得ることが出来る。
From the above detailed explanation and each example, it is clear that according to the method of forming a deposited film of the present invention, 1. It is possible to achieve energy saving, easy control of film quality, and uniform physical properties over a large area.
A membrane is obtained. Furthermore, it is possible to easily obtain a film with excellent productivity and mass production, and with high quality and excellent physical properties such as electrical, optical, and semiconductor properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法に従って堆積膜を製造する装置
を模式的に示したもので、ある。 第2図は、本発明堆積膜形成法によって作成した太陽電
池の模式的断面図である。 第3図は、本発明堆積膜形成法によって作成しちゃ電子
写真用像形成部材の模式的断面図である。 第4図は、本発明堆積膜形成法によって作成した薄Iタ
トランジスターの模式的断面図である。 lO:堆積室 11;支持体 12;支持体支持台 13:ヒータ 14.31:導線 15−1.15−2:ガスの洩れ 18.19.20,21:ガス供給源 22−1.22−2.22−3.22−4:圧力ゲージ 23−1.23−2.23−3.23−4=バルブ 24−1.24−2.24−3.24−4:フローメー
タ 25−1.25−2.25−3.25−4:バルブ 26.26−1 .26−2.26−3.26−4=ガ
ス導入管 27.31:圧力メータ 28;レギュレータ・バルブ 29:ガス排気管 30:堆積室加熱用ヒータ 200・・・ガラス支持体(透明電極付き)201・・
・第1層(p型非晶質シリコン)202・・・第2層(
i型非晶質シリコン)203・・・第3層(n型非晶質
シリコン)300・・・A文基体 302・・・第1層(p型非晶質シリコン)303・・
・第2層(i型非晶質シリコン)304−・・第3層(
a−5iC) 400・・・ガラス支持体 401・・・第1層(非晶質シリコン)402・・・第
273(n・非晶質シリコン)403・・・第3層(絶
縁層)
FIG. 1 schematically shows an apparatus for producing a deposited film according to the method of the present invention. FIG. 2 is a schematic cross-sectional view of a solar cell produced by the deposited film forming method of the present invention. FIG. 3 is a schematic cross-sectional view of an electrophotographic image forming member produced by the deposited film forming method of the present invention. FIG. 4 is a schematic cross-sectional view of a thin I-transistor fabricated by the deposited film forming method of the present invention. lO: Deposition chamber 11; Support 12; Support base 13: Heater 14.31: Conductor 15-1.15-2: Gas leak 18.19.20, 21: Gas supply source 22-1.22- 2.22-3.22-4: Pressure gauge 23-1.23-2.23-3.23-4 = Valve 24-1.24-2.24-3.24-4: Flow meter 25-1 .25-2.25-3.25-4: Valve 26.26-1. 26-2.26-3.26-4 = Gas inlet pipe 27.31: Pressure meter 28; Regulator valve 29: Gas exhaust pipe 30: Deposition chamber heater 200...Glass support (with transparent electrode) 201...
・First layer (p-type amorphous silicon) 202...Second layer (
i-type amorphous silicon) 203...Third layer (n-type amorphous silicon) 300...A-pattern substrate 302...first layer (p-type amorphous silicon) 303...
・Second layer (i-type amorphous silicon) 304--Third layer (
a-5iC) 400... Glass support 401... First layer (amorphous silicon) 402... 273rd (n/amorphous silicon) 403... Third layer (insulating layer)

Claims (5)

【特許請求の範囲】[Claims] (1)堆積室内に導入された気体状原料物質((1)式
に示す)と、価電子制御剤に熱エネルギーを与えて前記
堆積室内に置かれた支持体上に堆積膜を形成する、堆積
膜形成法において、 前記気体状原料物質と前記価電子制御剤の前記堆積室内
での滞留時間(τ)が0.1秒≦τ≦50秒で、かつ堆
積室内の雰囲気温度(T)が200℃≦T≦1000℃
で更に、滞留時間(τ)と雰囲気温度(T)との積が1
00[℃秒]≦τT≦30000[℃秒]であることを
特徴とする堆積膜形式法。 A_aH_bX_c……(1)式 (ただしAはSi、Ge、から選択される元素、Xはハ
ロゲン原子、a、b、cは正の整数で(a≧2)、c≠
0である。)
(1) Applying thermal energy to the gaseous source material (shown in equation (1)) introduced into the deposition chamber and the valence electron control agent to form a deposited film on the support placed in the deposition chamber; In the deposited film forming method, the residence time (τ) of the gaseous source material and the valence electron control agent in the deposition chamber is 0.1 seconds≦τ≦50 seconds, and the atmospheric temperature (T) in the deposition chamber is 200℃≦T≦1000℃
Furthermore, the product of residence time (τ) and ambient temperature (T) is 1
00 [°C seconds]≦τT≦30000 [°C seconds]. A_aH_bX_c...Formula (1) (where A is an element selected from Si, Ge, X is a halogen atom, a, b, c are positive integers (a≧2), c≠
It is 0. )
(2)前記Si含有気体状原料物質、Ge含有気体状原
料物質の内、少なくとも2種以上の気体状原料物質を堆
積室に導入する特許請求の範囲第1項に記載の堆積膜形
成法。
(2) The method for forming a deposited film according to claim 1, wherein at least two types of gaseous raw materials of the Si-containing gaseous raw material and the Ge-containing gaseous raw material are introduced into the deposition chamber.
(3)前記Si含有気体状原料物質が鎖状(2≦a≦6
、b+c=2a+2)である特許請求の範囲第1項に記
載の堆積膜形成法。
(3) The Si-containing gaseous raw material has a chain shape (2≦a≦6
, b+c=2a+2). The deposited film forming method according to claim 1.
(4)前記Si含有気体状原料物質が環状(a≦6、b
+c=2a)である特許請求の範囲第1項に記載の堆積
膜形成法。
(4) The Si-containing gaseous raw material is cyclic (a≦6, b
+c=2a) The deposited film forming method according to claim 1.
(5)前記価電子制御剤に周期律表、IIIb族元素また
は、Vb族元素を含有する化合物を用いる特許請求の範
囲第1項に記載の堆積膜形成法。
(5) The method for forming a deposited film according to claim 1, wherein the valence electron control agent is a compound containing a group IIIb element or a group Vb element of the periodic table.
JP7226886A 1986-03-29 1986-03-29 Deposit film forming method Pending JPS62229826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7226886A JPS62229826A (en) 1986-03-29 1986-03-29 Deposit film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7226886A JPS62229826A (en) 1986-03-29 1986-03-29 Deposit film forming method

Publications (1)

Publication Number Publication Date
JPS62229826A true JPS62229826A (en) 1987-10-08

Family

ID=13484367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7226886A Pending JPS62229826A (en) 1986-03-29 1986-03-29 Deposit film forming method

Country Status (1)

Country Link
JP (1) JPS62229826A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6410090B1 (en) * 1998-09-29 2002-06-25 Applied Materials, Inc. Method and apparatus for forming insitu boron doped polycrystalline and amorphous silicon films

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6410090B1 (en) * 1998-09-29 2002-06-25 Applied Materials, Inc. Method and apparatus for forming insitu boron doped polycrystalline and amorphous silicon films
US6488776B2 (en) 1998-09-29 2002-12-03 Applied Materials, Inc. Method and apparatus for forming insitu boron doped polycrystalline and amorphous silicon films

Similar Documents

Publication Publication Date Title
JPH0651909B2 (en) Method of forming thin film multilayer structure
JPS59179152A (en) Production of thin film
US5126169A (en) Process for forming a deposited film from two mutually reactive active species
JPS62163311A (en) Formation of deposit film
JPS62151573A (en) Deposited film forming device
JPH084070B2 (en) Thin film semiconductor device and method of forming the same
JPS62151572A (en) Deposited film forming device
JPS62229826A (en) Deposit film forming method
JPS62230979A (en) Formation of deposited film
JPH0651908B2 (en) Method of forming thin film multilayer structure
JPH079059B2 (en) Method for producing carbon thin film
JP2510488B2 (en) Deposited film formation method
JPS6191010A (en) Method of forming piles film
JP2001332497A (en) Silicon film and method manufacturing the same
JPS61179869A (en) Method of forming accumulated film
JPS63234513A (en) Deposition film formation
JPS6188514A (en) Formation of deposited film
JPS62229824A (en) Deposit film forming method
JPS61222115A (en) Forming method for deposit-film
JPS61247018A (en) Deposition film forming method and deposition film forming equipment
JP2704986B2 (en) Thin film semiconductor device and method of forming the same
JPS61102724A (en) Method of forming deposited film
JPS62163313A (en) Thin-film multilayer structure and forming method thereof
JPS61101022A (en) Forming method of accumulated film
JPS6188515A (en) Formation of deposited film