JPS60238483A - Coated hard metal - Google Patents

Coated hard metal

Info

Publication number
JPS60238483A
JPS60238483A JP9471884A JP9471884A JPS60238483A JP S60238483 A JPS60238483 A JP S60238483A JP 9471884 A JP9471884 A JP 9471884A JP 9471884 A JP9471884 A JP 9471884A JP S60238483 A JPS60238483 A JP S60238483A
Authority
JP
Japan
Prior art keywords
cemented carbide
coated
phase
base material
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9471884A
Other languages
Japanese (ja)
Other versions
JPS6248751B2 (en
Inventor
Minoru Nakano
稔 中野
Masaaki Tobioka
正明 飛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP9471884A priority Critical patent/JPS60238483A/en
Publication of JPS60238483A publication Critical patent/JPS60238483A/en
Publication of JPS6248751B2 publication Critical patent/JPS6248751B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/38Borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium

Abstract

PURPOSE:To develop the titled coated hard metal for cutting tools having excellent high-speed cutting properties by forming a thin layer of the carbide, boride, nitride, oxide, etc. of a specified metal on the surface of an ultrahard base material obtained by sintering WC added with Co as a binder. CONSTITUTION:A double carbide consisting essentially of WC and Co is deposited at the inside 1-100mu from the surface in a hard metal obtained by sintering ultrahard WC added with Fe-group metals such as Co as a binder. A single or a double layer of a metal such as Ti, Zr, Nb, Ta, Cr, Mo, W, etc., >=1 kind selected from a group of Al, Si and B, and >=1 kind consisting of C, B, N, and O is coated on the surface, and the obtained material is heated to 900-1,100 deg.C in a gaseous atmosphere of hydrocarbons, N2, NH3, CO, etc. at 1-300Torr pressure, and the coated base material having a hard coated layer cosisting of WC and the hard carbide, boride, nitride, and oxide of said elements and having saturation magnetization expressed by equation (1) can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は被覆超硬合金に関し、特に高速切削用のコーテ
ィング工具として用いられる被覆超硬合金に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a coated cemented carbide, and more particularly to a coated cemented carbide used as a coated tool for high-speed cutting.

(従来の技術) 超硬合金を母材として、母材表面にTie 。(Conventional technology) Tie on the surface of the base material using cemented carbide as the base material.

Ti0N、Tin、 A403等を単層または積層に被
後した被覆超硬合金は、母材の靭性と、表面層の硬質層
のもつ耐摩耗性、耐熱性、耐化学反応性を兼備しており
、工具材料として優れた性能を倉 Cイ譬へ t (発明の解決しようとする問題点) 近時、切削速度の高速化によって、工具材料等にはより
高度の耐摩耗性が要求されてきており、しかも、汎用性
を損われていない工具材料の開発が望まれている。
Coated cemented carbide coated with TiON, Tin, A403, etc. in a single layer or a laminated layer has both the toughness of the base material and the wear resistance, heat resistance, and chemical reaction resistance of the hard surface layer. (Problem to be solved by the invention) Recently, as cutting speeds have increased, tool materials have been required to have higher wear resistance. However, it is desired to develop a tool material that does not impair its versatility.

超硬合金を母材とする被覆超硬合金を切削工具材料とし
て用いる場合K、例えば炭素鋼を切削速度が300 m
 / min以上の高速で切削すると、その刃先温度が
超硬合金の液相温度(約1300℃)?超えるため、合
金の軟弱化により刃先部の塑性、変形性が劣下して(す
なわち塑性変形を生じ)、著しく耐摩耗性が低下してし
まい短時間で使用不可能となり、いかにAtomやTI
Cの膜厚を厚くしても、その効果は期待できないのが現
状である。
When a coated cemented carbide with a cemented carbide base material is used as a cutting tool material, for example, carbon steel is cut at a cutting speed of 300 m.
When cutting at a high speed of / min or more, the temperature of the cutting edge reaches the liquidus temperature of the cemented carbide (approximately 1300℃)? As the alloy softens and weakens, the plasticity and deformability of the cutting edge deteriorates (in other words, plastic deformation occurs), resulting in a significant drop in wear resistance and making it unusable in a short period of time.
At present, even if the film thickness of C is increased, no effect can be expected.

このために、よシ耐熱性の優れる、サーメットや、セラ
ミックスを母材とする被覆工具材料も開発されてきてい
る。しかしながら、所詮、サーメットやセラミックスの
靭性け、超硬合金に比較すればはるかに低く、汎用工具
としては、使用に耐えない。
For this reason, coated tool materials using cermets or ceramics as base materials, which have excellent heat resistance, have been developed. However, the toughness of cermets and ceramics is much lower than that of cemented carbide, and cannot be used as a general-purpose tool.

例えば、300m/n1inを越える高速切角11にお
いては、ムbos やA440.−TIC系のセラミッ
クス工具が使用されるが、それらは主として、送りや切
り込みの小、さい仕上切削加工においてである。これら
の工具材料は、高送りや切込量が大きくなると靭性が不
足して使用に耐えない。
For example, in high-speed cutting angle 11 exceeding 300m/n1in, MBOS and A440. -TIC ceramic tools are used, but mainly for small finish cutting operations with small feeds and depths of cut. These tool materials lack toughness and cannot be used when the feed rate is high or the depth of cut is large.

また最近、SiN4 系の工具材料も開発されているが
、SiN、は鋼との反応性が高いため、通常の一般鋼切
削においては使用に耐えない。この81N4 を母材と
して表面にAl403e被覆した工具材料も開発されて
いるが、これもSiN4 工具の範w4を越えるもので
はなく、満足なものとは言えない。
Recently, SiN4-based tool materials have also been developed, but SiN is highly reactive with steel, so it cannot be used in ordinary steel cutting. A tool material using 81N4 as a base material and coated with Al403e on the surface has also been developed, but this too does not go beyond the range of SiN4 tools and cannot be said to be satisfactory.

被覆切削工具の母材として必要とされる耐摩耗性と靭性
を兼備した母材としては、依然として超硬合金が優れて
いると言える。しかし高速切削に用いると前述のような
セラミックスに比較してその液相温度が低いための、耐
塑性変形性の劣化という間顆がある。
It can be said that cemented carbide is still an excellent base material that has both wear resistance and toughness required as a base material for coated cutting tools. However, when used for high-speed cutting, there is a deterioration in plastic deformation resistance due to the lower liquidus temperature compared to the ceramics mentioned above.

本発明は、上記の問題点を解決して、耐塑性変形性の優
れる超硬合金を母材とした、高速切削も可能で、汎用性
も損われない被覆超硬合金を提供することを目的とし、
本発明の被覆超硬合金は優れた高速切削工具材料として
用いるととができる。
The purpose of the present invention is to solve the above-mentioned problems and provide a coated cemented carbide that uses a cemented carbide with excellent plastic deformation resistance as a base material, is capable of high-speed cutting, and does not impair its versatility. year,
The coated cemented carbide of the present invention can be used as an excellent high speed cutting tool material.

(問題点を解決する手段) 本発明は、wc6硬質相とし、鉄族金属の1種もしくけ
、それ以上を結合相とし、た超硬合金において、該超硬
合金の表面から1〜100μより内部に主としてWCと
Coからなる複炭化物が析出してなる超硬合金を母材と
し、該母材の表面に周期律表IVa、Va、Vla族の
金属と、At、Si、Bからなる群より選ばれる1種以
上と、C,B、N、Oからなる群より選ばれる1種以上
から構成される被覆を有する被覆超硬合金に関するもの
である。
(Means for Solving the Problems) The present invention provides a cemented carbide having a WC6 hard phase and one or more iron group metals as a binder phase, from 1 to 100 μm from the surface of the cemented carbide. The base material is a cemented carbide in which double carbides mainly composed of WC and Co are precipitated, and the surface of the base material is made of metals from groups IVa, Va, and Vla of the periodic table, and the group consisting of At, Si, and B. The present invention relates to a coated cemented carbide having a coating composed of one or more selected from the group consisting of C, B, N, and O.

(作用) 本発明は、超硬合金の結合炭素量を該超硬合中にη相と
呼ばれる主としてCoとWからなる複炭化物(0o3W
3(! 、0O1lW6(! )を存在させることによ
って、上述の問題点を解決し、それにより該超硬合金を
母材とする被覆超硬合金の耐熱性を改善するものである
(Function) The present invention reduces the amount of bonded carbon in the cemented carbide into a double carbide (0o3W
3(!, 0O1lW6(!)) solves the above-mentioned problems, thereby improving the heat resistance of the coated cemented carbide having the cemented carbide as a base material.

超硬合金は、その含有炭素量によって、その合金特性が
著しく変化することはよく知られる。
It is well known that the alloy properties of cemented carbide vary significantly depending on the amount of carbon contained therein.

通常は、WC相とCo相からなる2相合金又は、Ti、
Ta、 Wb、 Mo、 W、Or の炭化物、窒化物
、炭窒化物の1種以上からなる固溶体相からなる3相合
金が存在する炭素量領域で実用に供されている。
Usually, a two-phase alloy consisting of a WC phase and a Co phase, or a Ti,
It is put into practical use in the carbon content range where three-phase alloys consisting of a solid solution phase consisting of one or more of carbides, nitrides, and carbonitrides of Ta, Wb, Mo, W, and Or exist.

この理由は、従来はη相が出現すると著しく強度が低下
してしまうと考えられていたからであり、いかにη−相
の出現しない合金を作成するかが、当業者にとって、生
産技術上の大きな問題であシ、η相出現を極力抑えた合
金しか実用に供されていなかった。
The reason for this is that it was previously thought that the appearance of the η phase would significantly reduce the strength, and for those skilled in the art, how to create an alloy in which the η phase does not appear is a major problem in terms of production technology. Only alloys that minimized the appearance of the reed and η phases had been put into practical use.

本発明の特徴は、このような従来の概念に反たところに
ある。
The feature of the present invention is that it is contrary to such conventional concept.

本発明者らは、被覆超硬合金部材の欠損状況を詳細に検
討した結果、被覆超硬合金部材の欠損および破壊の殆ど
が、該部材の表面のごく近傍(表面から1〜100μm
の領域)に起点をもつ亀裂圧帰因しているとの新しい知
見を得た。
As a result of a detailed study of the state of defects in coated cemented carbide members, the present inventors found that most of the defects and fractures in coated cemented carbide members occur in the very vicinity of the surface of the member (1 to 100 μm from the surface).
We have obtained new knowledge that the crack pressure is attributable to crack pressure originating in the area of

さらにまた本発見者らは、合金中にη相が共存する超硬
合金は、η相が出現していない合金に比べると、靭性け
や\劣るものの、その液相出現温度は逆に約60℃も高
いため、耐塑性変形性と、耐熱性はより優れているとい
うことも見出した。
Furthermore, the present discoverers found that although cemented carbide in which the η phase coexists in the alloy has inferior toughness compared to alloys in which the η phase does not appear, its liquid phase appearance temperature is, on the contrary, approximately 60°C. It was also found that since the temperature is high, the plastic deformation resistance and heat resistance are better.

そして、超硬合金表面から1〜100μmの領域におい
てl相?消失させれば、たとえ該合金内部にη相が存在
していても、通常の合金と同様に靭性が保持できること
、加えてその内部にη相が存在していれば耐塑性変形性
および耐熱性が向上することを見出し、本発明に到達し
た。
And the l phase in the region 1 to 100 μm from the cemented carbide surface? If it disappears, even if the η phase exists inside the alloy, it can maintain the same toughness as a normal alloy, and in addition, if the η phase exists inside the alloy, it will have good plastic deformation resistance and heat resistance. The present invention has been achieved based on the discovery that this can be improved.

本発明の被覆超硬合金において、母材とする超硬合金は
周期律表IVa、VaおよびMa族金属の1種もしくは
それ以上の炭化物および/または窒化物の1種もしくは
それ以上を硬質相とし、鉄族金属の1種もしくはそれ以
上を結合相とするものである。
In the coated cemented carbide of the present invention, the cemented carbide used as the base material has a hard phase of one or more carbides and/or nitrides of one or more metals of group IVa, Va, and Ma of the periodic table. , one or more iron group metals are used as a binder phase.

超硬合金表面近傍でη相が出現していない層(η相消失
領域)を、表面から1〜100μmの領域としたのは、
η相消失層の厚さが1μmより薄くなると靭性保持が困
難であり、また100μml越えると耐熱性が低下する
ためである。好ましくけ5〜50μmの領域である。
The reason why the layer where the η phase does not appear near the cemented carbide surface (η phase disappearing region) is defined as a region 1 to 100 μm from the surface is as follows.
This is because if the thickness of the η phase disappearing layer becomes thinner than 1 μm, it is difficult to maintain toughness, and if it exceeds 100 μm, heat resistance decreases. It is preferably in the range of 5 to 50 μm.

出現するη−相量は、合金中の炭素量により異るが、本
発明の超硬合金母材の炭素量は、合金中のCO結合相量
(重量%)と、飽和磁気量(4πσ値)の比率であられ
して、 の範囲が好ましい。14以下では、合金中のη相量が多
くなシ汎用性が低下してくる。また16を越える場合は
η相の出現がみられない。
The amount of η-phase that appears varies depending on the amount of carbon in the alloy. ), and the range is preferable. If it is less than 14, the amount of η phase in the alloy becomes large and the versatility decreases. Further, when the value exceeds 16, no η phase appears.

また、母材の合金表面から1〜100μmの部分をη相
消失相とするために、該合金に被覆を設ける以前に、炭
化水素、N、 、NH3ガスまたはCOガスの雰囲気中
、900〜1100℃にて、1〜300 torr の
減圧下で熱処理するのが好ましい。この場合900℃以
下では消失効果が弱く、1100℃以上では、合金内部
深くオでη相が消失してしまう。又、1 torr 以
下でけ消失効果が弱すぎ、300 torr 以上では
効果がありすぎる。
In addition, in order to form a η-phase vanishing phase in a portion of 1 to 100 μm from the alloy surface of the base metal, the alloy is heated at 900 to 1100 μm in an atmosphere of hydrocarbon, N, NH3 gas, or CO gas before coating the alloy. Preferably, the heat treatment is carried out at a temperature of 1 to 300 torr. In this case, the disappearance effect is weak at temperatures below 900°C, and at temperatures above 1100°C, the η phase disappears deep inside the alloy. Also, the vanishing effect is too weak at 1 torr or less, and too effective at 300 torr or more.

当然のことではあるが、このη相消失のための処理を該
合金を粉末圧粉体より焼結体とする焼結ri!l!程の
一部にとり入れて行い、該焼結体の一部を研削して、例
えば、にげ面のみにη相消失f61のない母材としても
本来の目的を達成しつる。
As a matter of course, this treatment for the disappearance of the η phase is performed by sintering the alloy into a sintered body rather than a powder compact. l! By grinding a part of the sintered body, for example, the original purpose can be achieved even as a base material without η phase disappearance f61 only on the burnt surface.

本発明に用いる被覆層は、周期律表IVa、Vaおよび
Ma族の金属と、At、EliおよびBか−らなる群よ
り選んだ1種以上と、O,B、NおよびOからなる群よ
秒選んだ1種以上から構成される単層又は混合物もしく
は化合物の1種も1、 <けそれ以上を被覆してなるも
のである。
The coating layer used in the present invention includes metals from groups IVa, Va, and Ma of the periodic table, one or more selected from the group consisting of At, Eli, and B, and the group consisting of O, B, N, and O. A single layer or a mixture or a compound consisting of one or more of the selected compounds may also be coated with one or more of the selected compounds.

Tie 、SiO、TiN 、A/403等の硬度の筒
い物質を被覆層として選択すれば、耐摩耗性が向上する
。A403. ZrO2,’rto、等の酸化物を被覆
層として用いれば、母材の耐熱性と相乗して、耐熱性が
著しく向上する。
If a hard cylindrical material such as Tie, SiO, TiN, or A/403 is selected as the coating layer, the wear resistance will be improved. A403. If an oxide such as ZrO2, 'rto, etc. is used as a coating layer, the heat resistance will be significantly improved in conjunction with the heat resistance of the base material.

又、Tie 、TiN 、A403. ZrO2等の混
合体、固溶体等のような複合化された層又は、これらを
交互に積層したものでもよい。
Also, Tie, TiN, A403. It may also be a composite layer such as a mixture of ZrO2 or the like, a solid solution, or a layer in which these layers are alternately laminated.

これら被覆層を形成するには、化学蒸着法(OVD法)
、プラズーFOVD法、光励起OVD法等の化学的蒸着
を用いてもよいし、またイオンブレーティング、イオン
ミキシング、イオンビームデポジション等の物理的蒸着
によってもよい。
Chemical vapor deposition method (OVD method) is used to form these coating layers.
, a plasma FOVD method, a photo-excited OVD method, or the like, or a physical vapor deposition method such as ion blasting, ion mixing, ion beam deposition, etc. may be used.

また、硬質の炭素膜や、硬質のBN膜を本発明の超硬合
金(母材)上に直接に、才たはTie 。
In addition, a hard carbon film or a hard BN film can be directly coated on the cemented carbide (base material) of the present invention using a ceramic or tie film.

SiO、TiN 、 A4403 もしくはアモルファ
スBN等を中間層として介在させた上に、被伊すれば、
母材の耐熱性と、被覆層の高硬度という長所をもって、
高性能の被層超硬合金工具が得られる。
If SiO, TiN, A4403, amorphous BN, etc. are interposed as an intermediate layer and coated,
With the advantages of heat resistance of the base material and high hardness of the coating layer,
A high-performance coated cemented carbide tool can be obtained.

(発明の効果) 本発明の被覆超硬合金は、従来に比べ、耐塑性変形性お
よび耐熱性が向上し、かつ、従来合金同様の靭性を保持
し、さらに高硬度を有するので、高速切削圧も長時間耐
え得る優れた工具材料として用いることができる。また
、被覆されてい;tい超硬合金母材そのものも、工具材
料としての汎用性を備えた優れたものである。
(Effects of the Invention) The coated cemented carbide of the present invention has improved plastic deformation resistance and heat resistance compared to conventional alloys, maintains toughness similar to conventional alloys, and has high hardness, so high-speed cutting pressure It can also be used as an excellent tool material that can withstand long periods of time. Furthermore, the uncoated cemented carbide base material itself is excellent in its versatility as a tool material.

(実施例) 実施例1 95重量%Waと5重量%Coからなる超硬合金で、そ
の炭素量がそれぞれ異る(A)、 03)、 (ψの3
種類の合金を作成した。それぞれの飽和磁気量4πσ値
1dCA)61.03)70、(C)85(ガウス/c
rn3/?)であった。
(Example) Example 1 A cemented carbide consisting of 95% by weight Wa and 5% by weight Co, with different carbon contents (A), 03), (3 of ψ).
Created various types of alloys. Respective saturation magnetic quantity 4πσ value 1dCA) 61.03) 70, (C) 85 (Gauss/c
rn3/? )Met.

これら(A)〜(0)の合金を、OVD装置内で温度1
000℃にて、COガス雰囲気20o torrにて3
0分保持した後、TlC142容量チ、0H410容u
%、残部H2からなるガス中、温度1000℃にてその
表面にTie ’)厚さ3μmに生成させた。しかる後
、At*Os 5容量%、CjO*5容量チ、残部US
 からなるガス中、温度1000℃にてさらに厚さ5μ
mのA403を生成させた。
These alloys (A) to (0) were heated at a temperature of 1 in an OVD device.
3 at 000℃, CO gas atmosphere 20o torr
After holding for 0 minutes, TLC142 volume chi, 0H410 volume u
%, the balance being H2, at a temperature of 1000° C., a Tie') was formed on the surface to a thickness of 3 μm. After that, At*Os 5% by volume, CjO*5% by volume, remainder US
In a gas consisting of
A403 of m was produced.

このようにして得た合金の断面組織を見ると、(A)は
表面より45μm首ではWe −Coの2相領域で、そ
れ以上の内部は、WC相、CO相、η相(co3w、o
 )の3相領域であった。…)は同じく40μmまでは
VC−Coの2相領域であった。
Looking at the cross-sectional structure of the alloy thus obtained, (A) shows a We-Co two-phase region at the neck 45 μm from the surface, and the interior beyond that is a WC phase, CO phase, η phase (co3w, o
) was in the three-phase region. ) was also in the VC-Co two-phase region up to 40 μm.

(0)にはη相の出現はなく、VC−C02和合金であ
った。
In (0), no η phase appeared and it was a VC-C02 sum alloy.

これら(A)〜(C)によるコーティングチップについ
て、下記表1の条件によシ切削テストを行った。
A cutting test was conducted on the coated chips of these (A) to (C) under the conditions shown in Table 1 below.

表 1 テスト結果を表2に示す。Table 1 The test results are shown in Table 2.

表 2 実施例2 95重量%weと5重量%Co からなる超硬合金で、
飽和磁気量4πσ値/Co量比=158のものについて
、温度1000℃にて、それぞれ100 torr の
(イ)OH4ガス雰囲気、(ロ)Hz 雰囲気、(ハ)
NH3雰囲気中にて加熱処理を施した。
Table 2 Example 2 A cemented carbide consisting of 95% by weight we and 5% by weight Co.
Regarding the saturation magnetic quantity 4πσ value/Co amount ratio = 158, at a temperature of 1000°C, (a) OH4 gas atmosphere, (b) Hz atmosphere, and (c) 100 torr, respectively.
Heat treatment was performed in an NH3 atmosphere.

上記の処理を施す以前では、合金はその表面才でがVC
相とCO相とη相からなるものであったが、(イ)工程
によれば表面から80μmまではWC! −CO相の2
相領域でそれ以上の内部はり相の共存する3相合金、ま
た(口)、(ハ)の工程によれば、60μmまではWC
−Coの2相領域で、それ以上の内部はη相の共存する
3相領域となっていた。
Before the above treatment, the alloy had a VC
However, according to the process (a), up to 80 μm from the surface is WC! -CO phase 2
In the case of three-phase alloys in which more internal beam phases coexist in the phase region, and according to the steps (1) and (3), WC up to 60 μm
-Co was a two-phase region, and the interior beyond that was a three-phase region where η phase coexisted.

実施例3 実施例2の(イ)工程を施し六チップについて、プラズ
マCvD法でTiC!N e厚さ3μm1アモルファス
BNを厚さ1μmコーティングしたのち、硬質I B 
N 81 (?度3000 kg/wn” )f j−
ティングして表1と同一の条件で切削テストを行ったと
ころ、40分までも切削可能であった。。
Example 3 Six chips subjected to the step (a) of Example 2 were subjected to TiC! using plasma CVD method. After coating amorphous BN with a thickness of 1 μm, hard I B
N 81 (? degree 3000 kg/wn”) f j-
When a cutting test was conducted under the same conditions as in Table 1, cutting was possible for up to 40 minutes. .

代理人 内 1) 明 代理人 萩 原 亮 −Among agents: 1) Akira Agent Ryo Hagi Hara -

Claims (1)

【特許請求の範囲】 (])wCを硬質相とし、鉄族金属の1種もしくは、そ
れ以上を結合相とした超硬合金において、該超硬合金の
表面から1〜100μより内部に主としてweとCOか
らなる複炭化物が析出してなる超硬合金を母材とし、該
母材の表面に周期律表Na、Va、Ma族の金属と、A
t、Si、Bかもなる群よシ選ばれる1種以上と、O,
B、N、Oからなる群よル選げれる1種以上から構成さ
れる被Me有する袖n市(硬合金。 (2)該超硬合金母材の表面を被覆するにあたり前もっ
て、炭化水素、Nz、 NHsガスまたはCOのいずれ
かのガス雰囲気にて、1〜300torr の減圧下、
温度900〜1100℃に加熱して、それにより該母材
表面から1〜らなる複炭化物が消失された特許請求の範
囲第(1)項に記載の被覆超硬合金。 (3) Co を結合相とする該合金の飽和磁気量が結
合相量との比率で表示して、 の範囲にちる特許請求の範囲第(1)項また社第(2)
項に記載の被覆超硬質合金。
[Scope of Claims] (]) In a cemented carbide having wC as a hard phase and one or more iron group metals as a binder phase, mainly we A cemented carbide formed by precipitating double carbide consisting of
One or more selected from the group consisting of t, Si, and B, and O,
(2) Before coating the surface of the cemented carbide base material, a hydrocarbon, Under reduced pressure of 1 to 300 torr in a gas atmosphere of either Nz, NHs gas or CO,
The coated cemented carbide according to claim 1, wherein the coated cemented carbide is heated to a temperature of 900 to 1100°C to thereby eliminate one or more double carbides from the surface of the base material. (3) The saturation magnetic amount of the alloy containing Co as a binder phase is expressed as a ratio to the binder phase amount, and the scope of claim (1) or claim (2) falls within the following range:
Coated cemented carbide as described in section.
JP9471884A 1984-05-14 1984-05-14 Coated hard metal Granted JPS60238483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9471884A JPS60238483A (en) 1984-05-14 1984-05-14 Coated hard metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9471884A JPS60238483A (en) 1984-05-14 1984-05-14 Coated hard metal

Publications (2)

Publication Number Publication Date
JPS60238483A true JPS60238483A (en) 1985-11-27
JPS6248751B2 JPS6248751B2 (en) 1987-10-15

Family

ID=14117909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9471884A Granted JPS60238483A (en) 1984-05-14 1984-05-14 Coated hard metal

Country Status (1)

Country Link
JP (1) JPS60238483A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104478A (en) * 1979-01-30 1980-08-09 Nippon Kogaku Kk <Nikon> Metallizing apparatus
JPS55113874A (en) * 1971-05-26 1980-09-02 Gen Electric High strength * high abrasion resistance coated super alloy product
JPS5826428A (en) * 1981-08-07 1983-02-16 三菱電機株式会社 Circuit breaker
JPS5856033A (en) * 1981-09-29 1983-04-02 Fujitsu Ltd Multiplying circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113874A (en) * 1971-05-26 1980-09-02 Gen Electric High strength * high abrasion resistance coated super alloy product
JPS55104478A (en) * 1979-01-30 1980-08-09 Nippon Kogaku Kk <Nikon> Metallizing apparatus
JPS5826428A (en) * 1981-08-07 1983-02-16 三菱電機株式会社 Circuit breaker
JPS5856033A (en) * 1981-09-29 1983-04-02 Fujitsu Ltd Multiplying circuit

Also Published As

Publication number Publication date
JPS6248751B2 (en) 1987-10-15

Similar Documents

Publication Publication Date Title
US7648736B2 (en) Coated cutting tool for turning of steel
US4268569A (en) Coating underlayers
US4019873A (en) Coated hard metal body
US3999954A (en) Hard metal body and its method of manufacture
US3955038A (en) Hard metal body
EP1309733A2 (en) Chromium-containing cemented carbide body having a surface zone of binder enrichment
JP2007528941A (en) Coated body and method for coating substrate
JPH08506620A (en) Cemented carbide with surface area rich in binder phase and improved edge toughness strength
JP2003508242A (en) Coated grooving or cutting inserts
JPS6142789B2 (en)
JPS627267B2 (en)
WO2001018272A1 (en) Coated cemented carbide insert
JPH11124672A (en) Coated cemented carbide
JPH0244790B2 (en)
JPS60238483A (en) Coated hard metal
JPH09262705A (en) Surface coated tungsten carbide group super hard alloy cutting tool having excellent toughness in hard coating layer thereof
JPH0364469A (en) Coated sintered hard alloy tool
JPS6312940B2 (en)
JPS5917176B2 (en) Sintered hard alloy with hardened surface layer
JPH03122280A (en) Coated cemented carbide tool
JP2974285B2 (en) Manufacturing method of coated carbide tool
EP1222316A1 (en) Coated cemented carbide insert
JPS6119777A (en) Abrasion and heat resistant coated cemented hard alloy meterial
JPH01180980A (en) Coated tool material
JPH0225721B2 (en)