JPS60236244A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60236244A
JPS60236244A JP9233484A JP9233484A JPS60236244A JP S60236244 A JPS60236244 A JP S60236244A JP 9233484 A JP9233484 A JP 9233484A JP 9233484 A JP9233484 A JP 9233484A JP S60236244 A JPS60236244 A JP S60236244A
Authority
JP
Japan
Prior art keywords
film
thin film
resist
wide
etched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9233484A
Other languages
Japanese (ja)
Inventor
Masataka Horai
正隆 宝来
Haruhide Fuse
玄秀 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9233484A priority Critical patent/JPS60236244A/en
Publication of JPS60236244A publication Critical patent/JPS60236244A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To simultaneously form narrow and wide separations in a self-aligning manner with the surface in a flat state by selectively etching by thin fluid organic film by the simply step of masking only once. CONSTITUTION:Separating grooves 2, 3 are formed on a p type silicon substrate 1, and a NSG film 4 is accumulated. A silicon nitride thin film 8 is accumulated, and quinone diad resist 6 having fluidity is coated. When the resist film 6 is etched and finished in the state that silicon nitride film 8 is exposed, resist films 6B, 6C remain on the separated portions 2A, 3A. The film 8 is etched with the films 6B, 6C as masks, and removed. The film 4 is etched and selectively removed. The film 8A and the resist 6B are lifted off on the narrow separated portion 2A. The films 8B and 6C on the wide separated portion 3A are removed so that the surface of the substrate 1 becomes completely flat.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置の製造方法、特に半導体装置の素子
間分離方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for isolating elements of a semiconductor device.

従来例の構成上その問題点 従来、半導体装置の素子間分離方法として絶縁物を分離
溝に埋め込む方式がある。その従来技術の一例を第1図
K j 、9説明する。シリコン基板1上にホトエツチ
ング技術を用いて深さ約1μmからなる分離溝2.3を
形成する(第1図人)。次にcvD法等によシ約1μm
の厚さの絶縁物4を堆積する。この時分離溝2の分離幅
は約0.5〜2μmであり、捷た分離溝3の分離幅は数
10〜数100μmあり第1図B If(示した様に狭
い分離溝2土の絶縁物2人はほとんど平坦に埋まるが、
分離溝3」−の絶縁物3AVi分離溝3の深さとほぼ同
じ深さの段差5がA三しる。
Problems with the structure of the conventional example Conventionally, as a method for isolating elements of a semiconductor device, there is a method of burying an insulator in an isolation trench. An example of the prior art will be explained in FIG. 1 K j , 9. Isolation grooves 2.3 having a depth of about 1 μm are formed on the silicon substrate 1 using photoetching technology (see FIG. 1). Next, by CVD method etc., the thickness is about 1 μm.
An insulator 4 is deposited to a thickness of . At this time, the separation width of the separation groove 2 is approximately 0.5 to 2 μm, and the separation width of the separated separation groove 3 is several tens to several hundreds of μm. The two people are buried almost flat,
The insulator 3AVi of the isolation trench 3 has a step 5 of approximately the same depth as the depth of the isolation trench 3.

次にホトリソ用感光性レジスト膜6を厚さ約1μm塗布
する。この時狭い分離部2人のレジス]・M6Viはぼ
完全に平坦となる。また広い分離部3A上のレジスト膜
6はわずかに埋め込壕れ厚くなるが段差部5人は残る(
第1図C)。次にリアクティブイオンエツチング法によ
り、エツチングガスC3’8またはCHF 3と02ノ
約30:1の混合比のプラズマ雰囲気中でイオン7によ
ってレジスト膜6および絶縁膜4を同時にエツチングし
ていき、シリコン基板1が露出した段階でエツチングを
終了する(第3図D)。この時、2,3μm 程度捷で
の比較的狭い分離領域2人けを1ぼ完全に平坦な状態で
絶縁膜を埋め込むことは可能であるが、数100/1m
 もある広い分離領域3Bの部分はほとんど埋め込むこ
とは不可能である。
Next, a photosensitive resist film 6 for photolithography is applied to a thickness of about 1 μm. At this time, the narrow separation part [registration of two people]・M6Vi becomes almost completely flat. In addition, the resist film 6 on the wide separation part 3A becomes slightly buried and thickened, but the step part 5 remains (
Figure 1C). Next, by a reactive ion etching method, the resist film 6 and the insulating film 4 are simultaneously etched with ions 7 in a plasma atmosphere with an etching gas C3'8 or CHF 3 and 02 at a mixing ratio of about 30:1. Etching is finished when the substrate 1 is exposed (FIG. 3D). At this time, it is possible to bury an insulating film in a relatively narrow isolation region of about 2 to 3 μm in a completely flat state for two people, but it is possible to bury an insulating film in a completely flat state,
It is almost impossible to embed parts of the wide isolation region 3B.

この様に従来の埋め込み分離技術では数μmの輻までし
か平坦に埋め込むことはできず、数100μ■ある広い
領域を同一の工程で同時に埋め込むことは不ijJ能で
あるため、マスク工程を追加して別々に狭い領域と広い
領域を埋め込み分離する必要があり、工程が複雑になら
ざるを得す製造上の経済的な問題があった。
In this way, with conventional embedding separation technology, it is only possible to embed flatly up to a radius of a few μm, and it is impossible to embed a wide area of several 100 μm at the same time in the same process, so a mask process is added. Therefore, it is necessary to embed and separate the narrow region and the wide region separately, which creates an economical problem in manufacturing as the process becomes complicated.

発明の目的 本発明はこのような従来の問題に鑑み、ホトマスク工程
を増加することなく、セルファライン的に幅の狭い分離
と広い分離の両方とも同時に分離する方法を掃供するも
のである。特に集積度の高い高密度MO3LSIの素子
間分離に大きな効果を有するものである。
OBJECTS OF THE INVENTION In view of these conventional problems, the present invention provides a method for simultaneously performing both narrow and wide separations in a self-aligned manner without increasing the number of photomask steps. In particular, it has a great effect on isolation between elements in a highly integrated, high-density MO3LSI.

発明の構成 本発明は、半導体基板上に様々な幅をもつ分離溝を形成
後、第1の絶縁膜を堆積し、フッ素系エツチングに耐性
を有する第2の薄膜(例えばチン化ケイ素等)を形成す
る。その後流動性の第3の有機薄膜(例えばレジスト膜
又は、ノリ力フィルムまたは、ポリイミド)を塗布し、
ドライエツチングにより第3の有機薄膜をエツチングし
て第2の薄膜が露出した段階で終了する。この時第3の
有機薄膜を分離部」二に薄く残すことが可能であり、こ
の分離部上の有機薄膜をマスクとして第2の薄膜を選択
的にエツチングして分離部J−にのみセルファライン的
に第2の薄膜を残し、これをマスクとして、次に第1の
絶縁膜を等方性エツチングによシ選択的に除去する。最
後に分離部上の第3および第2の薄膜を除去することに
より、はぼ完全に平坦な表面が得られ、マスクを用いる
ことなく幅の広い部分及び狭い部分を同時に絶縁分離す
ることがIJJ能となる。
Structure of the Invention In the present invention, after forming isolation grooves with various widths on a semiconductor substrate, a first insulating film is deposited, and a second thin film (for example, silicon nitride, etc.) resistant to fluorine etching is deposited. Form. After that, apply a fluid third organic thin film (for example, a resist film, a glue film, or a polyimide),
The third organic thin film is etched by dry etching, and the process ends when the second thin film is exposed. At this time, it is possible to leave a thin third organic thin film on the separation part J-, and by selectively etching the second thin film using this organic thin film on the separation part as a mask, a self-line is formed only in the separation part J-. The first insulating film is then selectively removed by isotropic etching, leaving the second thin film as a mask. Finally, by removing the third and second thin films on the isolation part, a nearly completely flat surface is obtained, and it is possible to simultaneously insulate and isolate the wide and narrow parts without using a mask. Becomes Noh.

実施例の説明 以下MO3型集積回路の製造に関して本発明の実施例を
第2図を用いて詳細に説明する。P型(1o○)シリコ
ン基板1上にホトエツチング技術を用いて約1μmの幅
の分離溝2および約100μmの幅の分離溝3を深さ約
1μmで形成したのち、常圧CVD法によりNSG膜4
(ノンドープシリケートガラス)を約1μmの厚さで堆
積する(第2図A)。
DESCRIPTION OF THE EMBODIMENTS An embodiment of the present invention will now be described in detail with reference to FIG. 2 in connection with the manufacture of an MO3 type integrated circuit. After forming isolation grooves 2 with a width of about 1 μm and isolation grooves 3 with a width of about 100 μm with a depth of about 1 μm on a P-type (1o○) silicon substrate 1 using photoetching technology, an NSG film is formed using an atmospheric pressure CVD method. 4
(non-doped silicate glass) is deposited to a thickness of about 1 μm (FIG. 2A).

この時、狭い分離部2A上の表面はほぼ平坦に堆積され
るが広い分離部3A上には分離溝深さと同等の段差部6
が生じる。
At this time, the surface on the narrow separation part 2A is deposited almost flat, but on the wide separation part 3A there is a stepped part 6 equivalent to the depth of the separation groove.
occurs.

次にフッ化水素系のエツチング液に対して耐性を有する
チン化ケイ素膜8を厚さ約0.04μmで減圧CVD法
を用いて堆積し、次いて流動性を有するキノンジアト系
のポジ型レジスト6を厚さ約1μmで塗布する(第2図
B)。この時狭い分離部2人上のレジスト膜6はほぼ完
全に平坦化され、また広い分離部3A上のレジスト膜e
Aij:牢−坦にはならないが約2割程度厚くなる。こ
れは高粘度で流動性を有するレジスト膜が段差を緩和す
る効果があるためである。次にこのレジスト膜6を16
0’C10分間の熱処理を施した後02プラズマ雰囲気
9中でレジスト膜6を全面エツチングし、チン化ケイ素
膜8が露出した状態で終了すると、第2図Cに示すよう
に狭い分離部2人上および広い分離部3A上に最小約0
.27xm程度の厚さでレジスト膜6Bおよび6Cが残
る。なお広い分離部3Aのエッヂ部3Cにはより厚くレ
ジスト膜6Cが残る(第2図C)。
Next, a silicon tinide film 8 that is resistant to a hydrogen fluoride-based etching solution is deposited to a thickness of about 0.04 μm using a low-pressure CVD method, and then a quinone diato-based positive resist 6 that has fluidity is deposited. is applied to a thickness of approximately 1 μm (Fig. 2B). At this time, the resist film 6 above the two narrow separation areas is almost completely flattened, and the resist film e above the wide separation area 3A is almost completely flattened.
Aij: Although it does not become flat, it becomes about 20% thicker. This is because the resist film having high viscosity and fluidity has the effect of alleviating the level difference. Next, this resist film 6 is
After heat treatment for 10 minutes at 0'C, the entire surface of the resist film 6 is etched in the 02 plasma atmosphere 9, and when the silicon nitride film 8 is exposed, two narrow separation areas are formed as shown in FIG. 2C. Minimum approximately 0 on top and wide separation section 3A
.. Resist films 6B and 6C remain with a thickness of about 27xm. Note that a thicker resist film 6C remains on the edge portion 3C of the wide separation portion 3A (FIG. 2C).

次にCF4,02およびN2雰囲気中でチン化ケイ素膜
8を上記レジスト膜6Bおよび6CをマスクとしてC,
DJ(ケミカルドライエツチング)により選択除去する
(第2図D)。
Next, in a CF4,02 and N2 atmosphere, the silicon tinide film 8 is coated with C, C, and C using the resist films 6B and 6C as masks.
It is selectively removed by DJ (chemical dry etching) (FIG. 2D).

次に分離部に残ったレジスト膜6Bお・よび6C1およ
びチン化ケイ素膜8人、および8Bをマスクとしてフッ
化水素およびフン化アンモニウム水溶液によりNSCS
C上エツチングし選択的に除去する。この場合エツチン
グは等方的に起こるため第2図fElに示すように狭い
分離部2人上のNSCSC上ほぼ完全に除去されチソ化
ケイ素膜8Aとレジスト6Bけリフトオフさ九て同時に
除去さハる。また広い分離部3人のエッヂ近傍は等方性
エツチングによ剪1ぼ平坦に除去される。
Next, using the resist films 6B and 6C1 and the silicon tinide film 8 and 8B remaining in the separation part as masks, NSCS was applied using an aqueous solution of hydrogen fluoride and ammonium fluoride.
Etch on C and selectively remove. In this case, since the etching occurs isotropically, as shown in FIG. 2, the NSCSC above the two narrow separation areas is almost completely removed, and the silicon nitride film 8A and the resist 6B are lifted off and removed at the same time. . In addition, the vicinity of the edges of the three wide separated parts are removed by isotropic etching to make them nearly flat.

次に広い分離部3A上のチツ化ケイ素膜8Bおよびレジ
スト膜6Cを02ンリズマ中、続いてOF 4 i02
、 N2雰囲気中にてC,D、に法によシ除去すること
で半導体基板1の表面はほぼ完全に平坦になりしかも狭
い分離領域と広い分離領域を同時にマスクを使用するこ
となくセルファライ的に形成することが可能となる。ま
たレジスト膜6に換えて、シリカフィルムやポリイミド
等の流動性を有する材料を用いることも可能である。本
発明者らは上記方法によシ分離幅約200I1mでも同
様ににぼ平坦に埋め込み分離形成可能であることを確認
した。
Next, the silicon dioxide film 8B and the resist film 6C on the wide separation part 3A are subjected to 02 rinsing, and then OF 4 i02
By removing C and D in an N2 atmosphere, the surface of the semiconductor substrate 1 becomes almost completely flat, and a narrow isolation region and a wide isolation region can be simultaneously formed in a self-alignment manner without using a mask. It becomes possible to form. Furthermore, instead of the resist film 6, it is also possible to use a fluid material such as silica film or polyimide. The inventors of the present invention have confirmed that it is possible to similarly form a flat embedding separation even when the separation width is about 200 I1 m using the above method.

発明の効果 上記の様に、本発明によればマスク工程を一度経るだけ
の単純な工程により、セルファライ的に狭い分離のみで
なく広い分離も同時にしかも表面を平坦にした状態で形
成できるので、高集積度のLSIの製造に重要な価値を
発揮するものである。
Effects of the Invention As described above, according to the present invention, not only a narrow separation but also a wide separation can be formed simultaneously with a flat surface using a simple process that requires only one mask process, so that high efficiency can be achieved. It exhibits important value in manufacturing highly integrated LSIs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(Al−(If)は従来の素子分離法の工程断面
図、第2図(A)〜(F)は本発明の実施例の素子分離
法の二■二程断面図である。 1・・・・・シリコン基板、2.3・・分離溝、4 ・
・・・絶RpH,,8・・チツ化ケイ素膜、6 ・・レ
ジスト膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第1図 第2図 第2−
FIG. 1 (Al-(If)) is a process cross-sectional view of a conventional device isolation method, and FIGS. 2(A) to (F) are cross-sectional views of a device isolation method according to an embodiment of the present invention. 1...Silicon substrate, 2.3...Isolation groove, 4.
...Absolute RpH, 8...Silicon film, 6...Resist film. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 1 Figure 2 Figure 2-

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に絶縁分離形成用の溝を形成する工程と、
前記基板上に第1層目の絶縁物薄膜を堆積する工程と、
前記第1層目絶縁物薄膜を選択除去するための耐エツチ
ング特性を有する第2層目薄膜を堆積する工程と、流動
性を有する第3層目の有機薄膜を塗布する工程と、前記
第3層目の有機薄膜を前記絶縁分離形成用の溝および断
差部周辺に残して選択除去する工程と、前記有機薄膜を
マスクとして前記第2層目薄膜を選択除去する工程と、
前記有機薄膜および第2層目薄膜をマスクとして前記第
1層目絶縁物薄膜に等方性エツチングを施して前記溝部
のみに平坦に前記絶縁物を残す工程と、前記第2および
第3層目の2層からなる薄膜を除去する工程を含むこと
を特徴とする半導体装置の製造方法。
forming a groove for forming insulation isolation on the semiconductor substrate;
depositing a first layer of insulating thin film on the substrate;
a step of depositing a second layer thin film having etching resistance for selectively removing the first layer insulating thin film; a step of applying a third layer organic thin film having fluidity; a step of selectively removing the organic thin film of the second layer while leaving it around the groove and the gap for forming the insulation isolation; a step of selectively removing the second layer thin film using the organic thin film as a mask;
isotropically etching the first insulating thin film using the organic thin film and the second thin film as masks to leave the insulating material flat only in the groove; A method for manufacturing a semiconductor device, comprising the step of removing a thin film consisting of two layers.
JP9233484A 1984-05-09 1984-05-09 Manufacture of semiconductor device Pending JPS60236244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9233484A JPS60236244A (en) 1984-05-09 1984-05-09 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9233484A JPS60236244A (en) 1984-05-09 1984-05-09 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60236244A true JPS60236244A (en) 1985-11-25

Family

ID=14051491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9233484A Pending JPS60236244A (en) 1984-05-09 1984-05-09 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60236244A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4876217A (en) * 1988-03-24 1989-10-24 Motorola Inc. Method of forming semiconductor structure isolation regions
US5173439A (en) * 1989-10-25 1992-12-22 International Business Machines Corporation Forming wide dielectric-filled isolation trenches in semi-conductors
US5294562A (en) * 1993-09-27 1994-03-15 United Microelectronics Corporation Trench isolation with global planarization using flood exposure
WO2002095819A3 (en) * 2001-05-24 2003-11-20 Ibm Structure and method to preserve sti during etching

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4876217A (en) * 1988-03-24 1989-10-24 Motorola Inc. Method of forming semiconductor structure isolation regions
US5173439A (en) * 1989-10-25 1992-12-22 International Business Machines Corporation Forming wide dielectric-filled isolation trenches in semi-conductors
US5294562A (en) * 1993-09-27 1994-03-15 United Microelectronics Corporation Trench isolation with global planarization using flood exposure
WO2002095819A3 (en) * 2001-05-24 2003-11-20 Ibm Structure and method to preserve sti during etching
JP2004527916A (en) * 2001-05-24 2004-09-09 インターナショナル・ビジネス・マシーンズ・コーポレーション Structure and method for retaining STI during etching
JP2009094547A (en) * 2001-05-24 2009-04-30 Internatl Business Mach Corp <Ibm> Structure and method of preserving sti during etching

Similar Documents

Publication Publication Date Title
US5807660A (en) Avoid photoresist lifting by post-oxide-dep plasma treatment
JPH06216085A (en) Method of forming contact hole of semiconductor device
JPS60236244A (en) Manufacture of semiconductor device
JPH0697297A (en) Semiconductor element provided with contact and its manufacture
JP2757919B2 (en) Method for manufacturing semiconductor device
JPS60246675A (en) Manufacture of semiconductor device
US6352908B1 (en) Method for reducing nitride residue in a LOCOS isolation area
JPS6387741A (en) Manufacture of semiconductor device
JP3059749B2 (en) Method for manufacturing semiconductor device
JPH04317357A (en) Manufacture of semiconductor device
KR100281269B1 (en) Gate electrode formation method of semiconductor device
JPS583244A (en) Manufacture of semiconductor device
JPS63257244A (en) Semiconductor device and manufacture thereof
JPH0260213B2 (en)
JPH0458538A (en) Manufacture of semiconductor device
JPS61290737A (en) Manufacture of semiconductor device
JPH05198571A (en) Semiconductor device and its manufacture
JPS6265437A (en) Manufacture of semiconductor device
JPH09260664A (en) Manufacture of semiconductor device
JPS62185315A (en) Manufacture of semiconductor integrated circuit
JPH01244636A (en) Manufacture of semiconductor device
JPH0448644A (en) Manufacture of semiconductor device
JPS61276371A (en) Manufacture of semiconductor device
JPH04324681A (en) Semiconductor device and its manufacture
JPS63257248A (en) Manufacture of semiconductor device