JPS60236062A - Ultrasonic test equipment - Google Patents

Ultrasonic test equipment

Info

Publication number
JPS60236062A
JPS60236062A JP59092454A JP9245484A JPS60236062A JP S60236062 A JPS60236062 A JP S60236062A JP 59092454 A JP59092454 A JP 59092454A JP 9245484 A JP9245484 A JP 9245484A JP S60236062 A JPS60236062 A JP S60236062A
Authority
JP
Japan
Prior art keywords
ultrasonic
vibrator
focusing
array
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59092454A
Other languages
Japanese (ja)
Inventor
Kuniharu Uchida
内田 邦治
Kiyoshi Kakihara
柿原 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59092454A priority Critical patent/JPS60236062A/en
Publication of JPS60236062A publication Critical patent/JPS60236062A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/221Arrangements for directing or focusing the acoustical waves

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To eliminate an aberration in an ultrasonic focusing, and to improve a flaw detecting resolution by giving a delay to a transmission timing of each vibrator of an array type probe, and also adding simultaneously a receiving signal. CONSTITUTION:A transmission timing of a vibrator 9 being in a distance (ai) from a center point P of a probe aperture size A by a selected vibrator group of an array type probe 1 is set based on an ultrasonic refractive angle phi of a body to be inspected 8 and an ultrasonic contact medium 7. As a result, an ultrasonic focusing is executed to a desired position. A scan of a vibrator is executed by moving it by N/M of a vibrator array pitch P' in the vibrator array direction. At the time of reception, an ultrasonic beam is considered to be a parallel beam, and a receiving signal is added without giving a delay time between each vibrator. According to such a constitution, there is the same effect that a reflected echo from an area of the ultrasonic beam brought to ultrasonic focusing is received by one usual probe, and the focusing accuracy is high, therefore, the azimuty resolution is improved comparing with a conventional one.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はアレイI−リ探触子を用いh IK了ノ1(I
r)−〇の超音波探傷装置の「に良に関J’6゜〔発明
の技術的背甲と−tの間1−11)、1.4.1電子走
査型の超1イ波探傷装隨ヲ」、l+lλげ・Vルス反射
法では、複数個の超音波ビームを的純状、曲線状或いは
平面状に配列しlF−γレイQll探触rを用い、各振
動イを夫々HIIrrJさ0て励Jtrjl−1彼検体
中に形成される超音波ビームを11自り県中制御すると
共に名振動子で受信(7て得た超ii波受信信号を夫々
遅延させて加勢することVとより、被検体の所望領域内
から超音δν情報を選V〈的に収集し、被検体の探陽に
供するようにしたものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention uses an array I-reprobe to
r)-〇 ultrasonic flaw detection equipment ``Niryo related J'6゜ [Technical back shell of the invention and -t 1-11)], 1.4.1 Electronic scanning type ultra-1 wave flaw detection In the l+lλ Ge/V Luss reflection method, multiple ultrasonic beams are arranged in a pure, curved, or planar shape and a lF-γ ray Qll probe r is used. Now, the ultrasonic beam formed in the excitation Jtrjl-1 specimen is controlled by the 11 prefecture itself, and received by a high-performance transducer (the ultra-II wave reception signals obtained in step 7 are delayed and boosted). Therefore, ultrasonic δν information is selectively collected from within a desired area of the subject and used for the detection of the subject.

ここで、アレイ型探触子の送受面にアクリル、水等の接
触媒体を介して探傷する場合について第1図を参照して
説明する。即ち、アレイ1−リ探触子1の中央部から送
信される超音波主ビーム2に注目し、所望の集束点3(
距tlif17−z)から図中のように演算される仮想
集中点4(N[Ittz XC2/C+ )を中心とし
た円筒面5と各掘動子の距離差6に対応した時間差を各
振動子にtjえて夫々励振する。このように励振すると
各振動子からの超音波ビームは所望の集束点3に集束せ
ず、所謂集差を生じる。この集差は、接触媒体(距離t
I :音速CI)7と被検体(音速CI )Sの音速差
C1−C言が大きく、また、被検体8中の超音波集束距
離1.が、アレイ型探触子の開口寸法Aに比較して十分
大きくない場合に著しく生じるものである。
Here, a case where flaw detection is performed on the transmitting/receiving surface of an array type probe via a contact medium such as acrylic or water will be described with reference to FIG. That is, focus on the ultrasound main beam 2 transmitted from the center of the array 1-li probe 1, and focus on the desired focal point 3 (
The time difference corresponding to the distance difference 6 between each excavator and the cylindrical surface 5 centered on the virtual concentration point 4 (N[Ittz XC2/C+) calculated from the distance tlif17-z) as shown in the figure is and tj respectively. When excited in this manner, the ultrasonic beams from each vibrator are not focused on the desired focusing point 3, resulting in so-called convergence. This focusing difference is caused by the contact medium (distance t
I: The sound speed difference C1-C between the sound speed CI7 and the object (sound speed CI) S is large, and the ultrasound focusing distance in the object 8 is 1. However, this will occur significantly if the aperture size A is not sufficiently large compared to the aperture size A of the array type probe.

従って上記接触媒体7を用いた探傷では各振動子に遅延
時間を与えて励振しても、十分な超音波集束が得られず
、よって良好な超音波探傷ケま行なえなかった。
Therefore, in flaw detection using the contact medium 7, even if each vibrator is excited by giving a delay time, sufficient ultrasonic focusing cannot be obtained, and therefore good ultrasonic flaw detection cannot be performed.

また、上述した電子走査型の超音波探傷装置では、名振
動子に対応させて送信器が必要である。また受信信号は
夫々送信時に対応して所定の時間だけ遅延させ波形加算
することが必要である。この場合、この受信信号の遅延
方式とし−(け、遅延線を組合わせたアナログ遅延方式
や、CCn素r−、アナログ/デジタル変換によるデジ
タル遅延方式等があるが、こJ+らの遅匂冒j式では上
記送信器の設置個数の必’&P1と相iって構成が複雑
であり、(gす処理が掬#(lであるという不具合があ
った。
Further, in the electronic scanning type ultrasonic flaw detection device described above, a transmitter is required in correspondence with the vibrator. Further, it is necessary to delay the received signals by a predetermined time corresponding to the time of transmission and add the waveforms. In this case, there are various delay methods for this received signal, such as an analog delay method combining delay lines, a CCn element r-, and a digital delay method using analog/digital conversion. In the j type, the configuration is complicated due to the required number of transmitters to be installed, and there is a problem in that the (g process is performed in the number of steps).

〔発明の目的〕[Purpose of the invention]

本発明は」−二記小情に基づいr−なさ!1にもので、
その目的とするところは、東i髪町び)ない−イ11″
t17シ集束を得、また、超音波送信器のtIIを少<
−1−るとともに、受イ8信りの〃々1しを簡素化゛す
ることがlli能な超音波探傷装置fIM供することに
ある。
The present invention is based on the following considerations. 1st thing,
The purpose of this is to
Obtain t17 focusing and also reduce tII of the ultrasound transmitter.
-1- It is an object of the present invention to provide an ultrasonic flaw detection device fIM which is capable of simplifying each of the eight receivers.

〔発明の概曹〕[Outline of the invention]

本発明による超t(岐If1%ツノ/I1.:を、11
、局Els本σ法等のように、アレイ型探触子と被険体
との間VC超音波接触媒体を介し7て探傷する−0に、
?’+ lb4動子の送信タイミングを、−1・h11
波神体表1〕記超音波接触媒体との超音波屈折色黒に基
づ^設定し、超音波送信時の超庁波集中人j、Iを、振
即1rの配列ピッチの整数部の1毎に」!+6 !II
I+−f配列ノブ向に移動させて電子走査゛I“るに際
し、14h己送信タイミングを規定する遅延時間を超音
波送信器だけにe ’zj: l/、受信時には、各振
動子からの受信信号を・同時廂詩゛するようにしたこと
を特徴としてい、6.。
According to the present invention, the supert(branch If1% horn/I1.: 11
, the flaws are detected through a VC ultrasonic contact medium between the array type probe and the object, as in the σ method, etc.
? '+ Change the transmission timing of lb4 mover to -1・h11
Based on the ultrasonic refraction color black with the ultrasonic contact medium described in Wave God Table 1, the ultrasonic waves concentrated at the time of ultrasonic transmission j, I are set to 1 of the integer part of the array pitch of 1r. Every"! +6! II
When moving toward the I+-f array knob and performing electronic scanning, the delay time that defines the 14-hour transmission timing is set only for the ultrasonic transmitter: l/, and when receiving, the reception from each transducer is 6. It is characterized by transmitting signals at the same time.

〔発明の′夾施例〕[Examples of the invention]

」゛ノ下本)へ明に係る超音波探傷装置を、第2図に7
1<す一実施例に従い説明する。第2図においで、7&
:を枚数の振動子9から構成されたプレイQli接触子
である。10は各振動子9夫々に対応さJ+た?tf数
の超音波送信器で構成される送信器/IT+である。1
1は各撮動子9夫々からの受信信号を選定する市1子ス
イッチである。12は電子スイソゴIIを通過した受信
信号が取込まれる[りの受(H器で構成される受信器群
である。
Fig. 2 shows the ultrasonic flaw detection device according to Akira Ishimoto,
Description will be made based on an example. In Figure 2, 7&
: is a play Qli contactor composed of 9 transducers. 10 corresponds to each vibrator 9, J+? This is a transmitter/IT+ consisting of tf number of ultrasonic transmitters. 1
Reference numeral 1 denotes a switch for selecting a received signal from each camera element 9. Reference numeral 12 denotes a receiver group composed of receivers (H receivers) into which the received signal that has passed through the electronic switchboard II is taken in.

131、J、受イd器群12の夫々の受信器の出力を取
iへみ、それらを加勢する加算器である。
131, J is an adder that receives the outputs of the respective receivers of the receiver group 12 and adds them to i.

14を1送信器群10I7)名送信器に送信遅延時間(
it ’−i(+:4え、受信器群I2の各受信器に上
記1’i 1j4 ijd 4+l;時間信号に同期し
た受信遅延時間信号を・l)える% 4Q□時間設定器
である。15はデータ+j寸In、:器16からの18
号に基づき、遅延時間設定5− 器14、電子スイッチ1ノおよび加η器t ’tへ制御
信号を与えると共に信月処j’ql器17と11)号の
入出力を行なうコンピュータである。t: Ii+::
 ニおいてデータ設定器161J伯号処理器17Q)f
−夕読取りを制御する(M )j’c jR> ’zi
、(するものである。18は、信号処理器17の出力を
六小−fる画像表示器であり、この画1ψ六/1〈器7
 s C,(1られた信号は信号処理器I7に人力され
る。
14 to 1 transmitter group 10I7) name transmitter to transmission delay time (
It'-i (+: 4, %4Q□ is a time setting device that applies a reception delay time signal synchronized with the time signal to each receiver of the receiver group I2. 15 is data + j dimension In: 18 from vessel 16
This computer provides control signals to the delay time setting unit 14, the electronic switch 1 and the adder t't, and also performs input/output to the signal generators 17 and 11). t: Ii+::
Data setting device 161J number processing device 17Q) f
- Control evening reading (M)j'c jR>'zi
, (.18 is an image display device that displays the output of the signal processor 17, and this image 1ψ6/1〈device 7
s C, (1) The resulting signal is input to the signal processor I7.

次に上記構成の詳却1について第2図:L’ 、hび第
を受けることにより対応する振動子9に励掘月1単発波
を与えるものである。遅延時間設定器14は、コンピー
タノ5からの遅延時間7°−タを受取り、内部のレゾス
ターに7リセ、ト叶能としており、さらに所定のレジス
ターのr−タデリセットが終了すると遅延時間設定z4
itの内部発振器が作動しゾリセ、トされた値に応じて
送信器群10ヘノ9ルス信号を送(+Tするもの6− である。
Next, regarding the detailed explanation 1 of the above configuration, FIG. 2 shows that by receiving the L' and hth waves, a single excited monthly wave is given to the corresponding vibrator 9. The delay time setter 14 receives the delay time 7° from the computer 5, resets the internal register to 7°, and sets the delay time setting to 7°, and further sets the delay time setting z4 when the reset of the predetermined register is completed.
The internal oscillator of it operates and sends a pulse signal to the transmitter group 10 according to the input value (+T).

なお、遅延時間設定器14内のレジスターの選定は、電
子スイッチ1ノのセットと加算器13の加算信号の選定
と信号処理器17への選定された振動子群データの送信
とをコンピュータ15より出力されるものである。
Note that the selection of the register in the delay time setting device 14 is performed by setting the electronic switch 1, selecting the addition signal of the adder 13, and transmitting the selected transducer group data to the signal processor 17 from the computer 15. This is what is output.

次に、電子スイッチ11で選定された振動子群9からの
受信信号群は夫々受信機群12で増幅された後、加算器
13に入力されこの加算器13内でアナログ加算される
。ここで加算器13は人力された受信信号を非遅延加算
又は遅延加算するもであり、この加算受信信号は加算器
I3が内蔵する減衰器及び増幅器によって適正信号レベ
ルにまで調整した後信号処理器17に入力される。
Next, the received signals from the transducer group 9 selected by the electronic switch 11 are each amplified by the receiver group 12 and then input to the adder 13 where they are analog-added. Here, the adder 13 performs non-delayed addition or delayed addition of manually input received signals, and this added received signal is adjusted to an appropriate signal level by the attenuator and amplifier built in the adder I3, and then sent to the signal processor. 17.

信号処理器17に入力された加算受信信号は、信号処[
11!器!7内で検波された後、任意に設定できる信号
処理器17内のディスクリレベルによってCRT (陰
極線管)を有した画像表示器18への輝度変調用信号を
生成する。この輝度変調用信号は、所定の信号レベルを
100俤とすれば、100%以上、100〜50チ、5
0%〜20チ、20%以下の各段階に対して階駐・1を
持った信号出力であり、もちろん超1’を波のに’11
離減衰特性を考慮した輝度変調用411 ’jとなって
いる。また、信号処理器17け、コンビ、−タJ5から
の選定された振動子群のデータと超i″1波集束位置の
データを受り、面白ψ衣示器18への画像掃引速度りを
作成して出力する。3Nらに、画像表示器18からは後
述rるカーソル11°l醒111号を受け、画像掃引速
度との対応から、カーソル位置を超音波ビーム伝播距離
長さに換NL’Cコンピュータへ出力する。々」、・±
六:、1?!弓処理器17は、画f象衣が器I 8から
、1曲1象宍21り月17L査線群を選択したデータ出
力(r受+j、AスI −ゾ衣示群を選定し、これらの
Aス:7− f表小用の波形信号群を画像表示器114
へ出力17ている。
The addition received signal input to the signal processor 17 is processed through signal processing [
11! vessel! After the signal is detected in the signal processor 7, a signal for brightness modulation to an image display 18 having a CRT (cathode ray tube) is generated according to a discretization level in the signal processor 17, which can be set arbitrarily. If the predetermined signal level is 100 degrees, this brightness modulation signal is 100% or more, 100 to 50 degrees, 5 degrees
It is a signal output with hierarchical 1 for each stage from 0% to 20% and below 20%, and of course it is a signal output with 1' for super 1' wave.
411'j for brightness modulation taking into consideration separation and attenuation characteristics. In addition, the signal processor 17 receives the data of the selected transducer group and the super i''1 wave focusing position data from the combination controller J5, and adjusts the image sweep speed to the white ψ display device 18. 3N and others receive a cursor 11°111, which will be described later, from the image display 18, and convert the cursor position into the ultrasonic beam propagation distance length based on the correspondence with the image sweep speed. 'Output to C computer.',・±
Six:,1? ! The bow processing unit 17 outputs data in which one song, one image, 21, 17, and 17 L scan line groups are selected from the picture f, I, I, and I8 (r + j, AS I - zo, These A/S:7-f table waveform signal groups are displayed on the image display 114.
Output 17 to

画像表示a 1 B &1 sll述り、# 、t: 
’) K CRT yl alofv!掃引上の任意に
移動設定可能なカーソルと^スフ−1表示用のyIl査
線群の選シ1“カーソル31一台−表示するとともに、
これらのカーソル位置信号を信号処理器17へ出力して
いる。また、信号処理17から画像表示用の掃引信号と
輝度変調信号を受け、被探傷材のBスコープ像(断面画
像)を表示するとともに、Aスフ−1表示の波形信号群
を受け、Aスフ−1表示をCRTに行う。
Image display a 1 B & 1 sll description, #, t:
') K CRT yl alofv! A cursor that can be moved arbitrarily on the sweep and a group of scan lines for displaying 1 "cursor 31" is displayed.
These cursor position signals are output to the signal processor 17. It also receives a sweep signal and a brightness modulation signal for image display from the signal processing 17, displays a B scope image (cross-sectional image) of the material to be tested, receives a group of waveform signals displayed in A-1, and receives a group of waveform signals displayed in A-1. 1 display on the CRT.

次にデータ設定器16は、例えば第4図に示すようにデ
ジタルスイッチ19等によシ、外部から電子走査の設定
に必要な、超音波接触媒体での音速CIと、被検体での
音速C2と、アレイ型探触子1の振動子配列ピッチPと
送受信時の振動子9の組合せの数と、電子走査線のピッ
チとをデコーダ20およびインポート21を介してデー
タパスラインによりコンピュータ15へ与えるものであ
る。コンピュータ15は、これらの数値データと、前記
した信号処理器17からのカーソル位置に対応した超音
波伝播距離によって超音波接触媒体長さと被検体中の超
音波集束距離とを用いて、所定の各振動子に設定すべき
遅延時間を演算する。また、コンビュ、−9− タ15は、1g号処理器I7から出JJさtする曲白ψ
掃引用信号に同期してタイミング(rt ’j ’K 
4g ’3 姐理器17から受け、このコンピュータI
 5p411(あらかじめ設足場ねたプログラム&(’
Irtい次回に走査すべき振動子群の絹合せを選定し7
てJ!′1ヘク11一時間設定器14、電子スイ、fl
 I、加’pE l:; t 3および信号処理器I7
へ出力すイ、ものである。
Next, as shown in FIG. 4, the data setting device 16 uses a digital switch 19 or the like to set the sound velocity CI in the ultrasonic contact medium and the sound velocity C2 in the subject, which are necessary for externally setting the electronic scanning. , the transducer arrangement pitch P of the array type probe 1 , the number of combinations of transducers 9 during transmission and reception, and the pitch of the electronic scanning line are provided to the computer 15 via the data path line via the decoder 20 and the import 21 It is something. The computer 15 uses these numerical data and the ultrasonic coupling medium length and the ultrasonic focusing distance in the subject based on the ultrasonic propagation distance corresponding to the cursor position from the signal processor 17 to calculate each predetermined value. Calculate the delay time that should be set for the vibrator. In addition, the computer-9-ta 15 is the tune white ψ output from the 1g processor I7.
The timing (rt 'j 'K
4g '3 Received from sister 17, this computer I
5p411 (Program that was set up in advance &('
Select the silk combination of the transducer group to be scanned next time.7
TeJ! '1 hex 11 1 hour setting device 14, electronic switch, fl
I, addition'pE l:; t3 and signal processor I7
It's easy to output to.

次に本実施例の作用(探傷力θ、)を列挙(7−(順に
説明する。
Next, the effects (flaw detection force θ,) of this embodiment are listed (7-(explained in order).

第1の方法は、第4図に21:すようVこ、γし・イ型
探触子1の選定式れた振動子群によイ、探M’l’ f
開口寸法人の中央点Pから距離a−(ある揚動−r9に
与える遅延時間ΔT1は次のように定められ。
The first method is shown in FIG.
Aperture size Distance a-(delay time ΔT1 given to a certain lift r9 from the center point P of the person is determined as follows.

る。ここでアレイ型探触子1と徘検体8とが角度θで傾
いて設定さねているとする。この場自には、超音波接触
媒体7の音速C,と被検体8の音速C意とから下記式(
1) −CyHeさJするスネル・の法則によって被検
体8への超音波ビーム屈折角ψが容易にめられる。さら
に中央点Pからの超音波ビームが超音波接触IN体7中
をM+1離1110− だけ伝播し、被検体8中を集束点31で距離t1だけ伝
播することを知り、下記式(2)で決定される。
Ru. Here, it is assumed that the array type probe 1 and the wandering specimen 8 are set to be tilted at an angle θ. In this case, the following formula (
1) The refraction angle ψ of the ultrasonic beam to the subject 8 can be easily determined by Snell's law where −CyHe is J. Furthermore, we know that the ultrasonic beam from the center point P propagates in the ultrasonic contact IN body 7 by a distance of M+1 and 1110-, and in the object 8 by a distance t1 at the focal point 31. It is determined.

J−θ/自 −8石ψ/C! ・・・(1)ΔT、 =
 (+ (84−blcos)2+(tI −blsl
nθ)2)/CI(1+ /自+t@/CZ) ・・・
(2)ここで、b、は第4図に示されるように、I11
位置の1λ!動子からの超音波ビームと中央点Pからの
超音波ビームとが被検体8の表面上でなす距離であり、
スネルの法則により下記(3)でめられる。
J-θ/self -8 stone ψ/C! ...(1) ΔT, =
(+ (84-blcos)2+(tI-blsl
nθ)2)/CI(1+/self+t@/CZ)...
(2) Here, b is I11 as shown in FIG.
1λ of position! is the distance between the ultrasonic beam from the moving element and the ultrasonic beam from the center point P on the surface of the subject 8,
This can be determined by the following (3) according to Snell's law.

(t1slnθ十al(XISθ−+) l )/ (
〆(aI−1)ICO8θ)2+(tI−b l5in
θ)2×c1)ここで、blは式(3)で陰関数となっ
ており、一般に、閉じた形ではめることは困難である。
(t1slnθ0al(XISθ−+) l )/(
〆(aI-1)ICO8θ)2+(tI-b l5in
θ)2×c1) Here, bl is an implicit function in equation (3), and it is generally difficult to fit it into a closed form.

この第1の方法でを、1、式(3)を変形し、’t’V
式(4)のように表わし、(4)式のルート内に7バさ
J+るb を、式(5)のbl車で近似的に〜えている
。即ち、第5図に示すように仮想集中虚4’f−岐検1
1・Hの表面から距離1 * X C* ICll1r
 ’it?c時前N+: (17$1a1の振動子9か
らの超音波ビームが被検体80表面−Fで中央点Pから
の超音波ビームとなす距離であり、 b *= a −14C2/(1+ C1+lI C2
)cmθ −(5)1 従って式(4)と式(5)とからblが下記式(6)か
ら容易に決定され、式(2)から遅延時間Δ′r1力中
ら7しる。
In this first method, 1, transform equation (3) and 't'V
It is expressed as in equation (4), and 7 bars J + b in the route of equation (4) is approximated by the bl car of equation (5). That is, as shown in FIG.
Distance from the surface of 1.H 1 * X C * ICll1r
'it? Before c time N+: (17 This is the distance between the ultrasonic beam from the transducer 9 of $1a1 and the ultrasonic beam from the center point P on the surface -F of the object 80, b *= a -14C2/(1+ C1+lI C2
)cmθ-(5)1 Therefore, from equations (4) and (5), bl can be easily determined from equation (6) below, and from equation (2), the delay time Δ'r1 is calculated.

・・・(6) 一方、アレイ型探触子1が被検体8と平行に配置された
場合には簡略となシ、夫々(2)1式および(6)1式
で示される。
...(6) On the other hand, when the array type probe 1 is arranged parallel to the subject 8, it is simplified and expressed by equation (2) 1 and equation (6) 1, respectively.

ΔT17 /(aH−bρ2+t+ 2/cI vbl
 2+t2’/Cz−(4/cI +に/Cs)・・・
(2)′ あっても式(2) 、 (3)を用いて厳密にめた値の
1チ以1の精度で一致し、従来式(5)と式(2)から
めた遅延時間ΔT1の値が厳密値と10%以上の誤差を
生じていたのに較べ、極めて高精度となる。
ΔT17 / (aH−bρ2+t+ 2/cI vbl
2+t2'/Cz-(4/cI+/Cs)...
(2) Even if there is a match, the values obtained strictly using equations (2) and (3) match with an accuracy of 1 or more, and the delay time ΔT1 obtained from the conventional equations (5) and (2) Compared to the previous case where the value had an error of 10% or more from the exact value, the accuracy is extremely high.

13− 以上述べたように、本例で(」、r−タfly) 5i
4器16からの出力に基づき容易にMIn波ピームル(
折角ψがめらJl、この超音波屈折角ψにより遅延時間
ΔT、(送信タイミング)が設定されるので、所望の位
置に超音波集中がなされ、良好な探傷画像(Aスコープ
、Bスコープ)が114られる。
13- As mentioned above, in this example ('', r-ta fly) 5i
Based on the output from the quadrupler 16, it is easy to generate the MIn wave beamle (
Since the delay time ΔT (transmission timing) is set by this ultrasonic refraction angle ψ, the ultrasonic waves are concentrated at the desired position and a good flaw detection image (A scope, B scope) is obtained. It will be done.

次に、本実施例における第2の方法である電子走査方向
へ超音波集束点を振動子配列ピッチのN7M(N、Md
整数、N≦(M/2))だけ移動させて電子走査する場
合の作用例をd9明する。即ち、第6図(a)に示すよ
うに、所定の振動子の組合せを同一としfCまま、超音
波主ビーム2が、被検体8の所定の集束深を位W l 
mで振動子ピッチPのN7Mだけ移動する。1−うに遅
延時間ΔT、を設定するものであり、式(6) を左目
、(6)′によって与えられるalに超音波集束点の移
動数PX(N7M)だけ加算、或いは減衰した値を用い
てb[を演算し、式(2)または(2)′から存延時間
ΔT1が得られる。第6図(b)には振動子ピッチPの
14− 1/3だけ超音波集束点を左右に移動させた例を示した
が、振動子の組合せAI とA!とAIとで夫々・印、
○印およびX印で示されるように超音波集束点が移動さ
れ、超音波の走査線密度が振動子♂ッチPの3倍となる
ことが認められる。なお、第6図(、) (b)は簡単
のために超音波接触媒体を有さない場合について示した
ものであるが、もちろん、第1の方法の如く超音波接触
媒体7を用いた場合にも適用できる。
Next, in the second method of this example, the ultrasonic focusing point is moved in the electronic scanning direction to a transducer array pitch of N7M (N, Md
An example of the operation when electronic scanning is performed by moving an integer (N≦(M/2)) will be explained below. That is, as shown in FIG. 6(a), with the predetermined combination of transducers kept the same and fC, the ultrasound main beam 2 reaches a predetermined focal depth of the subject 8 at a position W l
It moves by N7M of the vibrator pitch P at m. 1 - To set the delay time ΔT, use equation (6) for the left eye, add the number of movements of the ultrasound focal point PX (N7M) to al given by (6)', or use an attenuated value. b[ is calculated, and the survival time ΔT1 is obtained from equation (2) or (2)'. FIG. 6(b) shows an example in which the ultrasonic focal point is moved left and right by 14-1/3 of the transducer pitch P, but the transducer combinations AI and A! and AI, respectively.
It is observed that the ultrasonic focusing point is moved as indicated by the O mark and the X mark, and the scanning line density of the ultrasonic wave becomes three times that of the female transducer pitch P. Although FIG. 6(,)(b) shows the case without the ultrasonic coupling medium for simplicity, it is of course possible to use the ultrasonic coupling medium 7 as in the first method. It can also be applied to

第7図は上述した方法によって、電子走査する例を示し
たものである。即ち、超音波主ビーム2を第7図中の一
点鎖線のSノ方向へ傾は電子走査22した後、次に実線
S2方向へ傾け、電子走査し、さらに破線S3方向に傾
けて電子走査している。このように電子走査毎に超音波
主ビーム2の傾き方向を変更することによシ、−回の電
子走査時には、第8図に示すように被検体8への超音波
屈折角が特定化されるため、被検体8内部の欠陥23の
傾き角に応じた超音波反射を生じる。したがって特定化
された超音波屈折角に応じた超音波探傷id+i像が得
ら71、傾斜欠陥に対するf−11断も容易となる。
FIG. 7 shows an example of electronic scanning using the method described above. That is, after tilting the ultrasonic main beam 2 in the direction of the dashed line S in FIG. ing. By changing the inclination direction of the main ultrasonic beam 2 for each electronic scan in this way, the angle of refraction of the ultrasonic wave toward the object 8 can be specified as shown in FIG. 8 during the -th electronic scan. Therefore, ultrasonic waves are reflected in accordance with the inclination angle of the defect 23 inside the object 8. Therefore, an ultrasonic flaw detection id+i image corresponding to the specified ultrasonic refraction angle can be obtained 71, and f-11 cutting for inclined defects can be easily performed.

上記においては、第1の方法と第2の方法とを併用して
行う場合、また個別に行なう場合とがあり随時選定でき
るものである。
In the above, the first method and the second method may be used in combination or individually, and can be selected at any time.

次に本実施例の第3の力rJ:、である超音波送信時に
超音波ビームの集中と集束点の移411ノとを行い、受
信時には超昌波ビームを平行ビームとして、すなわち各
撮動:f間での11Y帆時間をりえずムの送信および受
信時の様相を図軍したものである。第8図において超音
波送波ビーム24fJ遅延時間のfli制御により集束
さ1t−C欠陥23に入射されるが、反射された超餡θ
シビームt、I欠陥の反射指向性に従う。したがって、
本)Jメツ、に工れば超音波集束さJlたdf(音波ビ
ームの領IJ1.かC)の反射エコーを適格の−J13
触子で受波すると同時の効果を生じる。これにより通′
畠の一探触r−による超音波の送fi jflび受信に
比較し本ノJθくによれげ集束精度が従来より高いため
方位分解能が格段に向上するものである。第9図は、人
工的な横穴の欠陥23を探傷しアレイ型探触子を用い送
信と受信を超音波集束させた場合、送信だけ超音波集束
させ、受信は集束させない場合、送信と受信をともに集
束させない場合の超音波受信波形を示したものである。
Next, the third force rJ of this embodiment: , during ultrasound transmission, the ultrasound beam is concentrated and the focal point is shifted 411, and during reception, the ultrasound beam is made into a parallel beam, that is, for each imaging : This is a diagram of the 11Y sail time during the transmission and reception of the 11Y sail time between f. In FIG. 8, the ultrasonic transmission beam 24fJ is focused by fli control of the delay time and is incident on the 1t-C defect 23, but the reflected ultrasonic beam θ
The beam follows the reflection directivity of the t,I defect. therefore,
If the ultrasound beam is focused, the reflected echo of the ultrasound beam (IJ1. or C) will be reflected by the -J13.
The same effect occurs when the waves are received by the tentacles. This allows for
Compared to the transmission and reception of ultrasonic waves by Hatake's probe r-, this Jθ has a higher deflection focusing accuracy than the conventional one, so the azimuth resolution is significantly improved. Figure 9 shows that when a defect 23 in an artificial side hole is detected and an array type probe is used to focus ultrasonic waves for transmission and reception, only transmission is focused, but reception is not focused. This shows the received ultrasonic waveform when neither of the two images are focused.

この第9図からも超音波集束が送信時だけ行なわれても
十分な探傷性能があることが認められる。なお第9図は
超音波媒体を介さない時の例であシ、第9図(a)は探
傷の様相を示しており、第9図(b)においてElは送
(8時及び受信時共に超音波集束でない場合の欠陥23
(A)の反射エコーのAクコ−1表示であり、Elは送
信時には超音波集束で受信時には超音波集束がない場合
の欠陥2.9(A)の反射エコーのAスコー7″表示で
あり、E3は送信、受信時共に超音波集束の場合の欠陥
23(A)の反射エコーのAクコ−1表示である。
It can also be seen from FIG. 9 that sufficient flaw detection performance is achieved even if ultrasonic focusing is performed only during transmission. Note that Fig. 9 is an example when no ultrasonic medium is used. Fig. 9 (a) shows the flaw detection mode, and in Fig. 9 (b) El is transmitted (both at 8 o'clock and during reception). Defects 23 when ultrasound is not focused
(A) is an A-sco-1 display of the reflected echo of (A), and El is an A-scoe 7'' display of the reflected echo of (A), which is defect 2.9 when the ultrasound is focused during transmission and is not focused during reception. , E3 is an A Kuko-1 representation of the reflected echo of defect 23(A) when ultrasound is focused during both transmission and reception.

第9図(−) (b)に示される如く、超音波接触媒体
を用いた場合でも同様な効果が得られることは17− 明らかである。よって、アナログ(a ′r!Jの11
≠帆加算を行なう複雑な構成が省略できる。に制のおい
ては、第1、第2、第3の方法を併用り、てhなう場合
、また個別に行なう場合とがあり随時選定できるもので
ある。
As shown in FIG. 9(-)(b), it is clear that similar effects can be obtained even when an ultrasonic contact medium is used. Therefore, analog (a ′r!J's 11
≠ A complicated configuration for performing sail addition can be omitted. In the system, the first, second, and third methods may be used in combination, or may be performed individually, and can be selected at any time.

本実施例は以下のダ11挙した如く変形(7て実施して
もよい。即ち、 ■ 本実施例では、被検体8の表面とアレイ型探触子1
の振動配列方向と直行E7た方向が平行に配置された場
合を示したが、も1〕ろん第1()図に示すように傾け
て配置ff してもよい。
This embodiment may be modified (7) as listed below. In this embodiment, the surface of the object 8 and the array type probe 1 are
Although the case is shown in which the vibration arrangement direction and the perpendicular direction E7 are arranged parallel to each other, it is of course possible to arrange the arrangement at an angle as shown in Fig. 1().

■ 本実施例では送信用振動子群と受伯用据動子群を同
一としたが、受信月1振動子群と送信用振動子群とを異
ならせて実施してもよい。この場合には第11図(a)
に示すように受信用4ki !l!+子群を固定し、送
信用Di動子群だけを′1攬子ル査22させ、第11図
(11)に小すように送波用4に* Ik14子群を固
定し、受波用」辰動子群だ+jを′酊r−ノl:査22
させたりすることが+r丁能となる。し友がって、従来
、タンガム探1易法を本’t! hiIN VC上りり
!18− に精度よく実現できるものである。
(2) In this embodiment, the transmitting transducer group and the receiver stationary group are the same, but the receiving monthly transducer group and the transmitting transducer group may be different. In this case, Fig. 11(a)
As shown in 4ki for reception! l! The + child group is fixed, and only the transmitting Di group is set to the 1st wave loop 22, and the *Ik14 child group is fixed to the wave transmitting 4 as shown in Fig. 11 (11), and the receiving wave is For ``drunk group +j'' ``drunk r-nol: test 22
It is a +r function to do something like that. Friends, I've never written an easy method for finding tan gum! hiIN VC up! 18- can be realized with high accuracy.

(3) 送信用振動子群の遅延時間をプログラム的に順
次変更し、所謂セクタ走査(扇形走査)方式で超音波ビ
ームを送信することもできる。なお、上記■の場合には
、例えばCRT上のBスコーゾ衣示は、第12図に示す
ように受信用振動子群3、ツと送信用振動子群34の主
ビーム間の距離1〕と、遅延時間制御による送波ビーム
設定角度αと、アレイ型探触子と、被検体との距離ts
を知ることにより、受信信号のビーム伝播時間■、を用
い下記式(7)によって画像掃引信号Tを作成すれをj
”よい。
(3) It is also possible to sequentially change the delay time of the transmitting transducer group programmatically and transmit the ultrasonic beam in a so-called sector scanning (fan-shaped scanning) method. In the case of (2) above, for example, the B scozo display on the CRT is determined by the distance 1 between the main beams of the receiving transducer group 3 and the transmitting transducer group 34, as shown in FIG. , the transmission beam setting angle α by delay time control, and the distance ts between the array type probe and the subject.
By knowing the beam propagation time of the received signal, the image sweep signal T is created by the following equation (7).
"good.

但しc、’(c2 ・・・(7) ここ〒、C2’+C2は夫々被検体への超音波ビーム送
イ1時および受信時の音速であシ、L −んC!=C2
′の場合より簡略化された式となることは明らかである
However, c,'(c2...(7) where 〒, C2'+C2 are the sound velocities at the time of transmitting and receiving the ultrasonic beam to the subject, respectively, and L-nC!=C2
It is clear that the formula is simpler than in the case of .

上記式(″)によ・て・+r!+i像掃り1イ阿号1は
7−E2”乙となり、ビーム伝播時間りに応じて作成す
ればよい。さらに画像掃引(M号Tから超音波に°−ム
集束のための遅延時間を演算するためにt、t 7i+
 Mピした画像掃引1.xのカーソルからl’ m:式
に、L: ツーC1t、およびt2をめ式(2) −4
h−r、J一式(2)′を月1いJlばよい。
According to the above formula (''), +r!+i image sweeping 1 is 7-E2'', which can be created according to the beam propagation time. Furthermore, the image sweep (t, t 7i+ to calculate the delay time for focusing the ultrasonic wave from the M number T)
M-piped image sweep 1. From the cursor of x, l' m: to the formula, L: to C1t, and t2 to the formula (2) -4
You only need to purchase hr, J set (2)' once a month.

なお、t3は送悄用振動子/+Fと受信用振動子群を十
分近づけて被検体の異面からのl’j−mJ JLココ
−検出することにより、容易にcrtTtile像りの
カーソルを設定してめらハる。また、送信時と受信時の
被検体中の1[を速C2’ + C* V′、i、送波
ビーム設定角度αからスネルの法則により−(超音波ビ
ームのモード(縦波、横波、表面波ギト)を選定するこ
とによって決定できる。なお、送信ビーム設定角度αに
よっては、被検体に1M A&の超音波モードが生じる
が、送波ビームnu >i:角度αが定′まれは被検体
中への屈折角βは超音波モードによって定まるため、超
音波エコーがいずれの送信時の超音波モードによってい
るものであるかは、第12図に示した幾何学的関係から
容易に判定できる。なおまた、送波ビーム設定角をαと
して場合には、各振動子の遅延時間設定は式(2)又は
式(2)′の値に、前記設定角に対応した部延時間が付
加される。例えばai位置の振動子については141d
llθ/ Csの遅延時間が加算さJするものであるこ
とは言うまでもない。
In addition, at t3, the cursor of crtTtile image can be easily set by bringing the sending transducer/+F and the receiving transducer group sufficiently close and detecting l'j-mJ JL Coco from a different surface of the subject. Shimera haru. In addition, the velocity of 1[ in the subject at the time of transmission and reception is calculated by C2' + C* V', i, and from the transmitting beam setting angle α, - (by Snell's law) the mode of the ultrasonic beam (longitudinal wave, transverse wave, Depending on the transmitting beam setting angle α, a 1M A & ultrasonic mode will occur in the subject, but if the transmitting beam nu > i: the angle α is constant, Since the refraction angle β into the specimen is determined by the ultrasonic mode, it can be easily determined which ultrasonic mode the ultrasonic echo is transmitted in from the geometric relationship shown in Figure 12. Furthermore, when the transmission beam setting angle is α, the delay time setting of each transducer is calculated by adding the delay time corresponding to the setting angle to the value of equation (2) or equation (2)'. For example, for the vibrator at the ai position, 141d
It goes without saying that the delay time of llθ/Cs is added by J.

土H【:方式以外に本発明ではその要旨を逸脱しない範
囲で欅々変形して実施できるものである。
In addition to the method, the present invention can be modified and implemented without departing from the gist thereof.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、以下の如くの効果を
奏する超音波探傷装置が提供できる。
As described above, according to the present invention, it is possible to provide an ultrasonic flaw detection device that has the following effects.

即ち、超音波ビームの集束が高精度に実施できる。−ま
た、「モ意の超音波ビーム集束距離で超音波ビームを電
子操作方向に微小に移動できるため、少い超音波振動数
で高い電子走査密度を得ることが可能となり探傷分解能
が向上する。
That is, the ultrasonic beam can be focused with high precision. - Also, since the ultrasonic beam can be moved minutely in the electronic operation direction at a desired ultrasonic beam focusing distance, it is possible to obtain a high electron scanning density with a small ultrasonic frequency, improving flaw detection resolution.

21− さらに、超音波ビームを送48する時だけ各振動子の励
振時点に遅延時間を持たせ、受信時には各振動子間に遅
延時間を持た亡ないため、アナログ信号の遅延加算とい
う複雑4回路が不要となる他、装置の小型化が可能とな
る。さらに、受信信号の遅延加算を行なわず平行ビーム
として受信するため、受信時も集束を行うに比べ、広範
囲の領域を見逃しなく探傷できる。
21- Furthermore, in order to provide a delay time at the excitation point of each transducer only when transmitting an ultrasonic beam, and to maintain a delay time between each transducer during reception, a complex 4-circuit circuit called delay addition of analog signals is required. In addition to eliminating the need for , it is possible to downsize the device. Furthermore, since the received signal is received as a parallel beam without delay addition, it is possible to detect flaws in a wider area without missing anything, compared to when the signal is focused during reception.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超音波集束における集差を説明する図、
第2図は本発明に係る超音波探傷装置の一実施例を示す
プロ、り図、第3図は第2図におけるデータ設定器の一
例を示す図、第4図は本実施例の超音波集束を説明する
図、第5図は本実施例の超音波集束のためのd[算方式
を説明する図、第6図は本実施例の超音波集束点の移動
を説明する図、第7図は本実施例の方法によって電子走
査を行う例を説明する図、第8図は本実施例の送信時の
集束と受信時の集束無しによる効果を説明する図、第9
図は本実施例22− の超音波集束の効果を説明する図、第10図及び第11
図は夫々本発明の他の実施例を説明する図、第12図は
第11図における適用法を説明する図である。 1・・・アレイ型探触子、10・・・送信器群、1ノ・
・・電子スイッチ、I2・・・受信器群、13・・・加
算器、14・・・遅妙時間設定器、15・・・コンピュ
ータ、16・・・データ設定器、I7・・・信号処理器
、18・・・画像表示器。 出願人代理人 弁理士 鈴 江 武 彦第3図 21 第4図 、−1A −へ−/ −−−、///h、〜1、・i I P7 7〜 ・ ・°“、′ぐ’−!扇;が J 、/ /////。 7′/ 8〜 //!2・7−/ //−/ L”f’25図 第7図 z3 第8図 (a) (b) ン3 23 第9図 (a)
Figure 1 is a diagram explaining the focusing difference in conventional ultrasound focusing;
Fig. 2 is a diagram showing an embodiment of the ultrasonic flaw detection device according to the present invention, Fig. 3 is a diagram showing an example of the data setting device in Fig. 2, and Fig. 4 is a diagram showing an example of the ultrasonic flaw detection device according to the present invention. FIG. 5 is a diagram explaining the d [calculation method] for ultrasound focusing in this embodiment. FIG. 6 is a diagram explaining the movement of the ultrasound focusing point in this embodiment. The figures are diagrams illustrating an example of performing electronic scanning using the method of this embodiment, FIG.
The figures are diagrams explaining the effect of ultrasonic focusing in Example 22-, Figures 10 and 11.
The figures are diagrams explaining other embodiments of the present invention, and FIG. 12 is a diagram explaining an application method to FIG. 11. 1... Array type probe, 10... Transmitter group, 1...
...Electronic switch, I2...Receiver group, 13...Adder, 14...Delay time setter, 15...Computer, 16...Data setter, I7...Signal processing Device, 18... Image display device. Applicant's representative Patent attorney Takehiko Suzue Figure 3 21 Figure 4, -1A -To-/ ---, ///h, ~1, ・i I P7 7~ ・ ・°",'gu' -! Fan; is J, / //////. 7'/ 8~ //!2・7-/ //-/ L"f'25 Figure 7 z3 Figure 8 (a) (b) Figure 9 (a)

Claims (1)

【特許請求の範囲】[Claims] 被検体との間に超音波接触媒体を配置したアレイ型探触
子を用いて電子走査する超音波探傷装置において、送信
時には、上記被検体と上記超音波接触媒体との超音波屈
折角度を算定して上記アレイ型探触子の各振動子の送信
タイミングを設定することにより上記被検体の所望の領
域(・C超音波集束を生じせしめ、上記アレイ型探触子
の振動子配列方向に振動子配列ピッチPの1/N(Nは
整数)だけ集束位置をずらせる毎に走置し、上記振動子
配列ピッチPのAを越えない範囲まで集束位置を順次移
動させ、受信時には、上記各振動子からの受信信号を遅
延させることなく加算するように構成したことを特徴と
する超音波探傷装置。
In an ultrasonic flaw detection device that performs electronic scanning using an array type probe with an ultrasonic coupling medium placed between it and the object to be inspected, at the time of transmission, the ultrasonic refraction angle between the object to be inspected and the ultrasonic coupling medium is calculated. By setting the transmission timing of each transducer of the array type probe, a desired area of the object (-C) is generated, and the ultrasonic waves are focused in the direction of the array of the transducers of the array type probe. Each time the focusing position is shifted by 1/N of the transducer array pitch P (N is an integer), the focusing position is sequentially moved to a range that does not exceed A of the transducer array pitch P, and at the time of reception, each of the above An ultrasonic flaw detection device characterized by being configured to add signals received from a vibrator without delay.
JP59092454A 1984-05-09 1984-05-09 Ultrasonic test equipment Pending JPS60236062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59092454A JPS60236062A (en) 1984-05-09 1984-05-09 Ultrasonic test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59092454A JPS60236062A (en) 1984-05-09 1984-05-09 Ultrasonic test equipment

Publications (1)

Publication Number Publication Date
JPS60236062A true JPS60236062A (en) 1985-11-22

Family

ID=14054835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59092454A Pending JPS60236062A (en) 1984-05-09 1984-05-09 Ultrasonic test equipment

Country Status (1)

Country Link
JP (1) JPS60236062A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139123A (en) * 2006-11-30 2008-06-19 Mitsubishi Heavy Ind Ltd Ultrasonic flaw detector and method
CN113777165A (en) * 2021-09-06 2021-12-10 哈尔滨工业大学 Synthetic aperture dynamic focusing-based ultrasonic detection method for R region component defects and stress

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139123A (en) * 2006-11-30 2008-06-19 Mitsubishi Heavy Ind Ltd Ultrasonic flaw detector and method
CN113777165A (en) * 2021-09-06 2021-12-10 哈尔滨工业大学 Synthetic aperture dynamic focusing-based ultrasonic detection method for R region component defects and stress
CN113777165B (en) * 2021-09-06 2022-06-17 哈尔滨工业大学 Synthetic aperture dynamic focusing-based ultrasonic detection method for R region component defects and stress

Similar Documents

Publication Publication Date Title
US4070905A (en) Ultrasonic beam scanning
JPH11344566A (en) Fish finder
US10524763B2 (en) Ultrasound inspection device, ultrasound image data generation method, and recording medium
WO2015145836A1 (en) Acoustic wave processing device, method for processing signals in acoustic wave processing device and program
US3898608A (en) Acoustic camera apparatus
JP4787400B2 (en) Detecting device
JP2001224589A (en) Ultrasonic image pickup system and method therefor
JPS60236062A (en) Ultrasonic test equipment
JP5247330B2 (en) Ultrasonic signal processing apparatus and ultrasonic signal processing method
JPH1043185A (en) Method and device for ultrasonic imaging
JPH08201569A (en) Ultrasonic inspection equipment
JP2001228128A (en) Sizing ultrasonic flaw detector and sizing flaw detecting method
US10925578B2 (en) Acoustic wave image generating apparatus and control method thereof
JPS58113746A (en) Electronic scanning type ultrasonic test equipment
JPS5937940A (en) Ultrasonic diagnostic apparatus
JP2007275354A (en) Ultrasonic diagnostic apparatus and its signal processing program
JP2001212140A (en) Ultrasonic diagnosing device
JPS5977839A (en) Ultrasonic tomographic apparatus
KR100543736B1 (en) Ultrasonic imaging method
JPH0115830B2 (en)
JPH06154218A (en) Ultrasonic diagnosing apparatus
JPS597260A (en) Method and device for ultrasonic flaw detection
JP2013255599A (en) Apparatus and method for ultrasonic diagnosis
JPS60220857A (en) Ultrasonic flaw detecting device
JPH0331787A (en) Method and device for verifying water depth