JP2008139123A - Ultrasonic flaw detector and method - Google Patents

Ultrasonic flaw detector and method Download PDF

Info

Publication number
JP2008139123A
JP2008139123A JP2006324953A JP2006324953A JP2008139123A JP 2008139123 A JP2008139123 A JP 2008139123A JP 2006324953 A JP2006324953 A JP 2006324953A JP 2006324953 A JP2006324953 A JP 2006324953A JP 2008139123 A JP2008139123 A JP 2008139123A
Authority
JP
Japan
Prior art keywords
reception
delay time
focal position
transmission
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006324953A
Other languages
Japanese (ja)
Other versions
JP5118339B2 (en
Inventor
Seiichi Kawanami
精一 川浪
Masatake Azuma
正剛 東
Tadashi Kimura
是 木村
Kayoko Kawada
かよ子 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2006324953A priority Critical patent/JP5118339B2/en
Publication of JP2008139123A publication Critical patent/JP2008139123A/en
Application granted granted Critical
Publication of JP5118339B2 publication Critical patent/JP5118339B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic flaw detector using a phased-array ultrasonic flaw detection probe and a flaw detection method for performing flaw detection of high detection sensitivity, by preventing positional difference in focusing, between a transmission period and a reception period, where a transmitting position and a receiving position are shifted with a probe caused to scan. <P>SOLUTION: This ultrasonic flaw detector, using the phased-array ultrasonic flaw detection probe 1 made by linearly arranging a plurality of vibrators 3, is structured so that delay time is corrected in a transmission delay time calculation means 11 or a reception delay time calculation means 13, so that focus position on the receiving side corresponds to the focus position on the transmission side at an after-shift receiving position, when the probe 1 is shifted from a transmission point to a reception point by a scanning means 15 for shifting the probe 1 parallel to the surface of a tested body 7. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、各種プラント等の容器や配管の非破壊検査に用いられる超音波探傷装置および方法に関するものである。   The present invention relates to an ultrasonic flaw detection apparatus and method used for nondestructive inspection of containers and piping in various plants.

従来、溶接不良箇所や材料内部の欠陥等の検査に用いられる非破壊探傷装置として、超音波探傷装置が広く知られている。この超音波探傷装置とは、探触子から被検査体へ入射された超音波は欠陥があればそこから反射して戻ってくるので、欠陥を検出することができ、入射してから戻ってくるまでの時間を測定すれば、探触子から反射源までの距離を知ることができるものである。   2. Description of the Related Art Conventionally, an ultrasonic flaw detector is widely known as a non-destructive flaw detector used for inspecting a weld defect location or a defect in a material. With this ultrasonic flaw detector, the ultrasonic wave incident on the object to be inspected from the probe is reflected from there if there is a defect, so that the defect can be detected and returned after being incident. By measuring the time to come, the distance from the probe to the reflection source can be known.

通常の超音波探傷のプローブ(探触子)は、図15(a)に示すように、送信のビーム径dは大きいため、探触子を自動的に移動する自動探傷などでは、送信時の探触子の位置Aにおける送信のカバーエリアと、受信時の探触子の位置Bにおける受信のカバーエリアとがラップする範囲aも大きくなりなり、送受信の微妙なズレは感度低下にあまり問題とならない。   As shown in FIG. 15A, a normal ultrasonic flaw detection probe (probe) has a large transmission beam diameter d. Therefore, in automatic flaw detection that automatically moves the probe, transmission at the time of transmission is performed. The range a where the transmission cover area at the probe position A and the reception cover area at the probe position B at the time of reception wraps also increases, and subtle deviation in transmission / reception is a problem in reducing sensitivity. Don't be.

一方、フェーズドアレイ超音波探傷探触子や一般的なフォーカス型プローブでは、超音波のビーム径が小さく、そのため、図15(b)に示すように、送信時の探触子の位置Aにおける送信のカバーエリアと、受信時の探触子の位置Bにおける受信のカバーエリアとがラップする範囲aも小さく、しかも、送信時の焦点位置P1と受信時の焦点位置P2とがラップせず、送受信のズレが検出性に影響を与え感度低下をもたらす問題があった。   On the other hand, in a phased array ultrasonic flaw detector and a general focus type probe, the ultrasonic beam diameter is small. Therefore, as shown in FIG. 15B, transmission at the probe position A during transmission is performed. The coverage area a of the reception cover area at the reception position B of the probe at the time of reception is small, and the transmission focus position P1 and the reception focus position P2 do not wrap and transmit / receive There is a problem that the deviation of the influence affects the detectability and lowers the sensitivity.

特に、被検体の板厚が厚い場合、探触子を一定速度で移動させて自動探傷を行うと、板厚の端面または板厚内の欠陥部で反射波が戻ってくるまでの時間が長くかかりその間に探触子が大きく移動してしまい感度低下をもたらす問題があった。   In particular, when the thickness of the specimen is large, if the automatic flaw detection is performed by moving the probe at a constant speed, it takes a long time for the reflected wave to return at the end face of the thickness or the defective portion within the thickness. In the meantime, there has been a problem that the probe moves greatly and the sensitivity is lowered.

フェーズドアレイ超音波探傷探触子を用いた超音波探傷技術として、例えば、特開昭60−236062号公報(特許文献1)、および特開2001−305115号(特許文献2)が知られている。
この特許文献1には、所定位置に超音波ビームを集束させるために時間差を各振動子に与え、さらに受信信号は夫々送信時に対応して所定時間だけ遅延させた波形加算または遅延加算を行わず同時加算することが示されている。
さらに、特許文献2には、探傷面が平面でなく複雑形状の曲面をなす場合にも、超音波ビームを集束させるための遅延時間を算出する演算回路を備える構成が示されている。
特開昭60−236062号公報(公報第2頁左上欄14行〜第18行、公報第2頁右上欄19行〜左下欄3行) 特開2001−305115号公報
As an ultrasonic flaw detection technique using a phased array ultrasonic flaw detector, for example, Japanese Patent Application Laid-Open No. 60-236062 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2001-305115 (Patent Document 2) are known. .
In Patent Document 1, a time difference is given to each transducer in order to focus an ultrasonic beam at a predetermined position, and a received signal is not subjected to waveform addition or delay addition delayed by a predetermined time corresponding to the time of transmission. Simultaneous addition is shown.
Further, Patent Document 2 discloses a configuration including an arithmetic circuit that calculates a delay time for focusing an ultrasonic beam even when a flaw detection surface is not a flat surface but a curved surface having a complicated shape.
Japanese Patent Application Laid-Open No. 60-236062 (Gazette page 2, upper left column, line 14 to line 18, publication page 2, upper right column, line 19 to lower left column, line 3) JP 2001-305115 A

しかし、特許文献1に記載の超音波探傷装置は、受信時に遅延加算の集束や同時加算を行うことは示されているが、探触子の走査に伴う移動によって送信時の焦点位置と受信時の焦点位置のズレを防止することまでは示されてなく、探触子の走査に伴う感度低下を防止して検査精度を高めることはできない。
また、特許文献2においては、複雑形状の曲面をなす被検体に対して遅延時間を補正することは示されているものの、探触子の走査に伴う移動によって受信時の焦点位置のズレを防止することまでは示されてなく、探触子の走査に伴う感度低下を防止して検査精度を高めることはできない。
However, although the ultrasonic flaw detection apparatus described in Patent Document 1 has been shown to perform delay addition focusing and simultaneous addition at the time of reception, the focal position at the time of transmission and the time of reception by the movement accompanying the scanning of the probe are shown. This is not shown until the deviation of the focal position is prevented, and it is impossible to increase the inspection accuracy by preventing the decrease in sensitivity associated with the scanning of the probe.
Moreover, although Patent Document 2 shows that the delay time is corrected for a subject having a curved surface with a complicated shape, the shift of the focal position at the time of reception is prevented by the movement accompanying the scanning of the probe. However, it is not shown until it is done, and it is not possible to increase the inspection accuracy by preventing a decrease in sensitivity due to the scanning of the probe.

そこで、本発明は、このような背景に鑑みなされたものであり、探触子が走査されて送信位置と受信位置とが移動する場合に、特に、被検体の厚みが厚く欠陥が深い位置に存在する場合において、送信時と受信時との焦点のズレを防止して、検出感度の高い探傷を行うことができるフェーズドアレイ超音波探傷探触子を用いる超音波探傷装置および探傷方法を提供することを課題とするものである。   Therefore, the present invention has been made in view of such a background, and particularly when the probe is scanned and the transmission position and the reception position move, the subject is particularly thick and the defect is deep. Provided are an ultrasonic flaw detection apparatus and a flaw detection method using a phased array ultrasonic flaw detection probe capable of performing a flaw detection with high detection sensitivity by preventing a shift in focus between transmission and reception when present. This is a problem.

前記課題を解決するため、請求項1記載の発明は、複数個の振動子を列状に並べてなるフェーズドアレイ超音波探傷探触子を用いる超音波探傷装置において、前記各振動子によって発せられる超音波ビームを同時に被検体内の送信側の焦点位置に集束させるために前記各振動子に対する所要の遅延時間を算出する送信遅延時間算出手段と、被検体内の受信側の焦点位置に収束するように受信時の前記各振動子に対する所要の遅延時間を算出する受信遅延時間算出手段と、前記探触子を被検体の表面に沿って移動せしめる走査手段とを備え、該走査手段によって探触子が送信時点から受信時点まで移動したときの移動後の受信位置において前記受信側の焦点位置と前記送信側の焦点位置とが一致するように前記送信遅延時間算出手段または前記受信遅延時間算出手段の少なくとも一方において遅延時間が補正されるように構成してなることを特徴とする。   In order to solve the above-described problem, the invention described in claim 1 is directed to an ultrasonic flaw detection apparatus using a phased array ultrasonic flaw detector in which a plurality of vibrators are arranged in a line. A transmission delay time calculating means for calculating a required delay time for each transducer in order to simultaneously focus the sound beam on the transmitting side focal position in the subject, and so as to converge on the receiving side focal position in the subject. Receiving delay time calculating means for calculating a required delay time for each transducer during reception, and scanning means for moving the probe along the surface of the subject. The transmission delay time calculation means or the transmission side so that the reception-side focal position and the transmission-side focal position coincide with each other at the reception position after movement when moving from the transmission time to the reception time Delay time in at least one of the signal delay time calculating means is characterized by being configured to be corrected.

かかる発明によれば、探触子の移動後の受信位置において前記受信側の焦点位置と前記送信側の焦点位置とが一致するように前記送信遅延時間算出手段または前記受信遅延時間算出手段の少なくとも一方において遅延時間が補正されるため、走査による移動による送信時と受信時との焦点位置のズレが補正される。その結果、受信信号のSN比(信号雑音比)が向上し、欠陥の検出感度が向上する。   According to this invention, at least the transmission delay time calculating means or the reception delay time calculating means so that the reception-side focal position matches the transmission-side focal position at the reception position after the probe has moved. On the other hand, since the delay time is corrected, the shift of the focal position between transmission and reception due to movement by scanning is corrected. As a result, the SN ratio (signal-to-noise ratio) of the received signal is improved and the defect detection sensitivity is improved.

また、請求項2記載の発明は、前記探触子の移動量を前記走査手段による移動速度と探触子の送受信の時間差との積算によって算出する移動量算出手段を備え、前記移動量に基づいて受信時に前記受信側の焦点位置が前記送信側の焦点位置に一致するように受信遅延時間を補正することを特徴とする。
かかる請求項2記載の発明によれば、送信時から受信時までの探触子の移動量に応じて受信側の遅延時間を補正する。すなわち、移動量が求められれば、既に設定されている送信側の焦点位置に対して新たな屈折角、路程距離が算出でき、この新たな屈折角、路程距離を条件として受信側の遅延時間が再計算される。
従って、走査手段の移動速度と探触子の送受信の時間差との積算によって移動量を算出して、この移動量に基づいて、受信側の遅延時間、周波数が再計算されて受信遅延時間が設定され、探触子の移動による送信時と受信時との焦点位置のズレが補正される。
The invention according to claim 2 further comprises movement amount calculation means for calculating the movement amount of the probe by integrating the movement speed of the scanning means and the time difference between transmission and reception of the probe, based on the movement amount. The reception delay time is corrected so that the reception-side focal position matches the transmission-side focal position during reception.
According to the second aspect of the invention, the delay time on the receiving side is corrected in accordance with the amount of movement of the probe from the time of transmission to the time of reception. That is, if the amount of movement is obtained, a new refraction angle and path distance can be calculated with respect to the focus position on the transmission side that has already been set, and the delay time on the reception side is determined on the condition of this new refraction angle and path distance. Recalculated.
Therefore, the amount of movement is calculated by integrating the moving speed of the scanning means and the transmission / reception time difference of the probe, and based on this amount of movement, the reception side delay time and frequency are recalculated to set the reception delay time. Thus, the deviation of the focal position between the transmission and the reception due to the movement of the probe is corrected.

また、請求項3記載の発明は、前記探触子の移動量を位置検出センサからの検出信号によって算出する移動量算出手段を備え、前記移動量に基づいて受信時に前記受信側の焦点位置が前記送信側の焦点位置に一致するように受信遅延時間を補正することを特徴とする。
かかる請求項3記載の発明によれば、探触子の移動量を位置検出センサからの検出信号によって求めるため、探触子を走査する走査手段の速度制御が困難で速度を算出できない場合に有効であり、前記請求項2と同様に送信時から受信時までの探触子の移動量に応じて適正に受信遅延時間を算出することができ、探触子の移動による送信時と受信時との焦点位置のズレが補正される。
According to a third aspect of the present invention, there is provided movement amount calculating means for calculating the movement amount of the probe based on a detection signal from a position detection sensor, and the receiving-side focal position is determined based on the movement amount during reception. The reception delay time is corrected so as to match the focal position on the transmission side.
According to the third aspect of the invention, since the amount of movement of the probe is obtained from the detection signal from the position detection sensor, it is effective when the speed control of the scanning means for scanning the probe is difficult and the speed cannot be calculated. As in the second aspect, the reception delay time can be appropriately calculated according to the amount of movement of the probe from the time of transmission to the time of reception. The deviation of the focal position is corrected.

また、請求項4記載の発明は、前記探触子の移動速度が一定であり、受信時に前記受信側の焦点位置と前記送信側の焦点位置とが一致するように前記送信遅延時間算出手段または前記受信遅延時間算出手段の少なくとも一方に予め遅延時間が設定されることを特徴とする。
かかる請求項4記載の発明によれば、走査手段によって探触子を走査中一定速度で移動することで、探触子の移動量は探傷中一定となり、受信位置に達したときに、ちょうど送信側の焦点位置と受信側の焦点位置とが一致するように送信遅延時間と受信遅延時間の設定を予めしておくことが可能になる。従って、探触子の移動による送信時と受信時との焦点位置のズレが補正される。
また、探触子の移動量を算出したり、位置検出センサで検出する必要が無く、予め遅延時間を設定しておくだけでよいため、装置構成および制御が簡単化する。
According to a fourth aspect of the present invention, the moving speed of the probe is constant, and the transmission delay time calculating means or the transmission side focal position is matched so that the reception side focal position coincides with the transmission side focal position during reception. A delay time is preset in at least one of the reception delay time calculating means.
According to the fourth aspect of the present invention, by moving the probe at a constant speed during scanning by the scanning means, the amount of movement of the probe becomes constant during the flaw detection, and when the reception position is reached, the probe is just transmitted. The transmission delay time and the reception delay time can be set in advance so that the focal position on the side coincides with the focal position on the reception side. Accordingly, the deviation of the focal position between the transmission and reception due to the movement of the probe is corrected.
Further, since it is not necessary to calculate the amount of movement of the probe or to detect it with the position detection sensor, it is only necessary to set a delay time in advance, thereby simplifying the device configuration and control.

また、請求項5記載の発明は、前記探触子の移動位置を二次元的または三次元的に検出して、該位置情報から算出された変移量に基づいて受信時に前記受信側の焦点位置が前記送信側の焦点位置に一致するように受信遅延時間を補正することを特徴とする。
かかる請求項5記載の発明によれば、複雑な形状面を走査する場合でも、走査の移動に伴う送受信時の焦点位置のズレを防止して、感度が高く検出性の高い検査が可能となる。
According to a fifth aspect of the present invention, the moving position of the probe is detected two-dimensionally or three-dimensionally, and the focal position on the receiving side at the time of reception is determined based on a shift amount calculated from the position information. The reception delay time is corrected so as to match the focal position on the transmission side.
According to the fifth aspect of the present invention, even when scanning a complicated shape surface, it is possible to prevent the deviation of the focal position at the time of transmission / reception accompanying the movement of scanning, and to perform inspection with high sensitivity and high detectability. .

また、請求項6乃至請求項9記載の発明は、超音波探傷方法に係る発明であり、請求項6記載の発明は、複数個の振動子を列状に並べてなるフェーズドアレイ超音波探傷探触子を用いる超音波探傷方法において、前記各振動子によって発せられる超音波ビームを同時に被検体内の送信側の焦点位置に集束させるために前記各振動子に対する所要の遅延時間を算出し、被検体内の受信側の焦点位置に収束するように受信時の前記各振動子に対する所要の遅延時間を算出し、走査手段によって前記探触子を被検体の表面に沿って移動し、移動後の探触子の受信位置において前記受信側の焦点位置が前記送信側の焦点位置に一致するように前記送信の遅延時間または前記受信の遅延時間の少なくとも一方を補正することを特徴とする。   The inventions according to claims 6 to 9 relate to an ultrasonic flaw detection method, and the invention according to claim 6 relates to a phased array ultrasonic flaw detection in which a plurality of transducers are arranged in a line. In the ultrasonic flaw detection method using a child, a required delay time for each transducer is calculated in order to simultaneously focus the ultrasonic beam emitted by each transducer on the transmission-side focal position in the subject. A required delay time for each transducer at the time of reception is calculated so as to converge to the focal position on the receiving side, and the probe is moved along the surface of the subject by the scanning means. It is characterized in that at least one of the transmission delay time and the reception delay time is corrected so that the reception-side focal position coincides with the transmission-side focal position at the reception position of the touch element.

かかる請求項6記載の発明によれば、探触子の移動後の受信位置において前記受信側の焦点位置が前記送信側の焦点位置に一致するように送信の遅延時間または前記受信の遅延時間の少なくとも一方が補正されるため、走査によって移動される探触子の送信時と受信時との焦点位置のズレが補正される。その結果、受信信号のSN比(信号雑音比)が向上し、欠陥の検出感度が向上する。   According to the sixth aspect of the present invention, the transmission delay time or the reception delay time is set so that the reception-side focal position matches the transmission-side focal position at the reception position after the probe has moved. Since at least one of them is corrected, the deviation of the focal position between the transmission and reception of the probe moved by scanning is corrected. As a result, the SN ratio (signal-to-noise ratio) of the received signal is improved and the defect detection sensitivity is improved.

また、請求項7記載の発明は、前記探触子の移動量に基づいて受信時に前記受信側の焦点位置が前記送信側の焦点位置に一致するように受信の遅延時間を補正することを特徴とする。   The invention according to claim 7 is characterized in that the reception delay time is corrected based on the amount of movement of the probe so that the focal position on the reception side coincides with the focal position on the transmission side during reception. And

かかる請求項7記載の発明によれば、送信時から受信時までの探触子の移動量に応じて受信の遅延時間を補正する。すなわち、移動量が求められれば、既に設定されている送信側の焦点位置に対して新たな屈折角、路程距離が算出でき、この新たな屈折角、路程距離を条件として受信の遅延時間、周波数が再計算される。従って、この再計算後の受信の遅延時間によって受信することで、走査によって移動される探触子の送信時と受信時との焦点位置のズレが補正される。   According to the seventh aspect of the invention, the reception delay time is corrected in accordance with the amount of movement of the probe from the time of transmission to the time of reception. That is, if the amount of movement is obtained, a new refraction angle and path distance can be calculated for the focus position on the transmission side that has already been set, and the reception delay time and frequency are set on the condition of this new refraction angle and path distance. Is recalculated. Accordingly, by receiving with the reception delay time after this recalculation, the deviation of the focal position between the transmission and reception of the probe moved by scanning is corrected.

また、請求項8記載の発明は、前記探触子を一定の移動速度で移動し、受信時に前記受信側の焦点位置と前記送信側の焦点位置とが一致するように予め前記送信の遅延時間および前記受信の遅延時間が設定されることを特徴とする。   According to an eighth aspect of the present invention, the transmission delay time is previously set so that the probe is moved at a constant moving speed and the reception-side focal position coincides with the transmission-side focal position during reception. And a delay time of the reception is set.

かかる請求項8記載の発明によれば、走査手段によって探触子を走査中一定速度で移動することで、探触子の移動量は探傷中一定となり、受信位置に達したときに、ちょうど送信側の焦点位置と受信側の焦点位置とが一致するように送信遅延時間と受信遅延時間の設定を予めしておくことが可能になる。従って、探触子の移動による送信時と受信時との焦点位置のズレが補正される。
また、探触子の移動量を算出したり、位置検出センサで検出する必要が無く、予め遅延時間を設定しておくだけでよいため、装置構成および制御が簡単化する。
According to the invention described in claim 8, by moving the probe at a constant speed during scanning by the scanning means, the amount of movement of the probe becomes constant during the flaw detection, and when the reception position is reached, the probe is just transmitted. The transmission delay time and the reception delay time can be set in advance so that the focal position on the side coincides with the focal position on the reception side. Accordingly, the deviation of the focal position between the transmission and reception due to the movement of the probe is corrected.
Further, since it is not necessary to calculate the amount of movement of the probe or to detect it with the position detection sensor, it is only necessary to set a delay time in advance, thereby simplifying the device configuration and control.

また、請求項9記載の発明は、前記探触子の移動位置を二次元的または三次元的に検出して、該位置情報から算出された変移量に基づいて受信時に前記受信側の焦点位置が前記送信側の焦点位置に一致するように受信の遅延時間を補正することを特徴とする。
かかる請求項9記載の発明によれば、複雑な形状面を走査する場合でも、走査の移動に伴う送受信時の焦点位置のズレを防止して、感度が高く検出性の高い検査が可能となる。
According to the ninth aspect of the present invention, the moving position of the probe is detected two-dimensionally or three-dimensionally, and the focal position on the receiving side at the time of reception is determined based on a shift amount calculated from the position information. The reception delay time is corrected so as to match the focal position on the transmission side.
According to the ninth aspect of the present invention, even when a complicated shape surface is scanned, it is possible to perform a highly sensitive and highly detectable inspection by preventing a shift of the focal position at the time of transmission and reception accompanying the movement of scanning. .

本発明によれば、探触子が走査されて送信位置と受信位置とが移動する場合に、特に、被検体の厚みが厚く欠陥が深い位置に存在する場合において、送信時と受信時との焦点のズレを防止して、検出感度の高い探傷を行うことができるフェーズドアレイ超音波探傷探触子を用いる超音波探傷装置および方法を提供することができる。   According to the present invention, when the probe is scanned and the transmission position and the reception position move, especially when the subject is thick and the defect exists at a deep position, the transmission and reception It is possible to provide an ultrasonic flaw detection apparatus and method using a phased array ultrasonic flaw detection probe that can perform a flaw detection with high detection sensitivity while preventing focus deviation.

以下、図面を参照して本発明の好適な実施の形態を例示的に詳しく説明する。但しこの実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Only.

参照する図面において、図1は本発明に係る超音波探傷装置および方法の第1の実施形態を示す構成ブロック図であり、図2はフェーズドアレイ超音波探傷探触子の説明図であり(a)は直進方向の集束、(b)は斜め方向の集束の説明図である。また、図3は第1の実施形態の制御フロー図であり、図4は第1の実施形態の作用説明図である。図5は第2の実施形態の構成ブロック図であり、図6は第2の実施形態の制御フロー図である。図7は第3の実施形態の作用説明図であり、図8は第3の実施形態の構成ブロック図であり、図9は第3の実施形態の制御フロー図である。図10は第4の実施形態の説明図であり、(a)はラスタースキャンによる走査の説明図であり、(b)、(c)は異なる走査方向における超音波ビームの集束位置関および遅延時間タイミングの説明図である。図11は第5の実施形態の超音波ビームの集束位置関係を示す説明図であり、図12は第5の実施形態の座標関係の説明図であり、図13は第5の実施形態の構成ブロック図であり、図14は第5の実施形態の制御フロー図である。   In the drawings to be referred to, FIG. 1 is a block diagram showing a first embodiment of an ultrasonic flaw detection apparatus and method according to the present invention, and FIG. 2 is an explanatory view of a phased array ultrasonic flaw detection probe (a ) Is an illustration of focusing in a straight direction, and (b) is an explanatory view of focusing in an oblique direction. FIG. 3 is a control flow diagram of the first embodiment, and FIG. 4 is an operation explanatory diagram of the first embodiment. FIG. 5 is a configuration block diagram of the second embodiment, and FIG. 6 is a control flow diagram of the second embodiment. FIG. 7 is an operation explanatory diagram of the third embodiment, FIG. 8 is a block diagram of the configuration of the third embodiment, and FIG. 9 is a control flow diagram of the third embodiment. FIG. 10 is an explanatory diagram of the fourth embodiment, (a) is an explanatory diagram of scanning by raster scanning, (b), (c) are the focal position and delay time of an ultrasonic beam in different scanning directions. It is explanatory drawing of a timing. FIG. 11 is an explanatory diagram showing the focal position relationship of the ultrasonic beam of the fifth embodiment, FIG. 12 is an explanatory diagram of the coordinate relationship of the fifth embodiment, and FIG. 13 is a configuration of the fifth embodiment. FIG. 14 is a block diagram, and FIG. 14 is a control flow diagram of the fifth embodiment.

(第1の実施形態)
図1から図4を参照して第1の実施形態を説明する。図1に示すように、探触子1は複数の振動子3が1列に並んで配列されてなるフェーズドアレイ超音波探傷探触子である。超音波を効率よく被検体7中に伝搬させるために、探傷面にグリセリン等の接触媒体9が塗布されている。
(First embodiment)
The first embodiment will be described with reference to FIGS. As shown in FIG. 1, the probe 1 is a phased array ultrasonic flaw detector in which a plurality of transducers 3 are arranged in a line. In order to efficiently propagate ultrasonic waves into the subject 7, a contact medium 9 such as glycerin is applied to the flaw detection surface.

なお、フェーズドアレイ超音波探傷探触子は、図2に示すように複数の振動子3を1列に並べて配列し、夫々の振動子3から超音波を発進し、夫々の振動子3を独立に制御する。そして各振動子3からの超音波の合成波面を形成して、任意の点に超音波ビームを集束させたり、任意の角度に超音波ビームを振ったりすることが可能である。例えば、図2(a)は直進方向のP点に超音波ビームを集束させた場合であり、各振動子3の超音波発信時期、すなわち遅延時間のタイミングを棒グラフによって示す。図2(b)は斜め方向の点Pに超音波ビームを集束させた場合である。   In the phased array ultrasonic flaw detector, as shown in FIG. 2, a plurality of transducers 3 are arranged in a line, ultrasonic waves are emitted from the respective transducers 3, and the respective transducers 3 are made independent. To control. A combined wavefront of ultrasonic waves from each transducer 3 can be formed to focus the ultrasonic beam at an arbitrary point or to swing the ultrasonic beam at an arbitrary angle. For example, FIG. 2A shows a case where the ultrasonic beam is focused at a point P in the straight direction, and the ultrasonic wave transmission timing of each transducer 3, that is, the timing of the delay time is shown by a bar graph. FIG. 2B shows the case where the ultrasonic beam is focused on the point P in the oblique direction.

各振動子3によって発せられる超音波ビームを同時にターゲットに集束させるためには、各振動子3に対する所定の遅延時間を求める必要がある。この遅延時間は、集束すべきターゲットの位置と各振動子3との路程距離より算出され、またターゲットへの屈折角から各振動子3の振動周波数が算出される。   In order to simultaneously focus the ultrasonic beam emitted by each transducer 3 on the target, it is necessary to obtain a predetermined delay time for each transducer 3. This delay time is calculated from the distance of the target to be focused and the path distance between each transducer 3, and the vibration frequency of each transducer 3 is calculated from the refraction angle to the target.

図1の構成ブロック図に示すように、第1の実施形態では、各振動子3によって発せられる超音波ビームを同時に被検体7内の送信側の焦点位置P1(図15(b)参照)に集束させるために各振動子3に対する所要の遅延時間を算出する送信遅延時間算出手段11と、
被検体7内の受信側の焦点位置P2(図15(b)参照)に収束するように受信時の前記各振動子に対する所要の遅延時間を算出する受信遅延時間算出手段13と、探触子1を被検体7の表面に沿って移動せしめる走査手段15とを備えている。
As shown in the configuration block diagram of FIG. 1, in the first embodiment, the ultrasonic beam emitted by each transducer 3 is simultaneously applied to the focal position P1 on the transmitting side in the subject 7 (see FIG. 15B). Transmission delay time calculating means 11 for calculating a required delay time for each transducer 3 for focusing;
A reception delay time calculating means 13 for calculating a required delay time for each transducer at the time of reception so as to converge to a focal position P2 on the reception side in the subject 7 (see FIG. 15B), and a probe; And scanning means 15 for moving 1 along the surface of the subject 7.

さらに、走査手段15による探触子1の移動量を、走査手段15の移動速度V(t)と、探触子制御手段16から探触子1へ指示される探触子1の送信から受信までの時間差(Δt)との積算によって算出する移動量算出手段17を備え、移動量算出手段17によって算出された移動量に基づいて受信時に受信側の焦点位置P2が送信側の焦点位置P1に一致するように受信遅延時間を再計算して補正する補正手段19を有している。   Further, the amount of movement of the probe 1 by the scanning unit 15 is received from the moving speed V (t) of the scanning unit 15 and the transmission of the probe 1 instructed from the probe control unit 16 to the probe 1. Movement amount calculation means 17 that is calculated by integration with the time difference (Δt) until the reception-side focal position P2 is changed to the transmission-side focal position P1 based on the movement amount calculated by the movement amount calculation means 17 during reception. Correction means 19 is provided for recalculating and correcting the reception delay time so as to match.

次に、図3に示す制御フロー図を参照して、受信遅延時間の補正について説明する。まずステップS2で、送信遅延時間算出手段11によって各振動子3によって発せられる超音波ビームを同時に被検体7内の送信側の焦点位置P1に集束させるための所要の遅延時間を算出し、ステップS4でその遅延時間によって各振動子3から超音波を送信する。
次にステップS6で、被検体7から反射してくる超音波を受信する。そしてステップ8で、移動量算出手段17によって、走査手段15の移動速度V(t)と、探触子1の送信から受信までの時間差(Δt)との積算によって移動量を算出する。
Next, correction of the reception delay time will be described with reference to the control flowchart shown in FIG. First, in step S2, the transmission delay time calculating means 11 calculates a required delay time for simultaneously focusing the ultrasonic beam emitted by each transducer 3 on the transmission-side focal position P1 in the subject 7, and step S4. Then, ultrasonic waves are transmitted from each transducer 3 according to the delay time.
Next, in step S6, an ultrasonic wave reflected from the subject 7 is received. In step 8, the movement amount calculation means 17 calculates the movement amount by integrating the movement speed V (t) of the scanning means 15 and the time difference (Δt) from transmission to reception of the probe 1.

次に、ステップS10で、移動量算出手段17によって算出された移動量に基づいて受信時に受信側の焦点位置P2が送信側の焦点位置P1に一致するように受信遅延時間を算出する。具体的には、図4に示すように移動量fが求められれば、移動後の探触子1と既に設定されている送信側の焦点位置P1との間の新たな屈折角θ'、路程距離W'が算出できる。この新たな屈折角θ'、路程距離W'を条件として受信側の遅延時間が再計算される。なお、図4において矢印hは探触子1の移動方向を示し、屈折角θ、路程距離Wは送信側の屈折角、路程距離を示す。
そして、ステップS12では、受信信号処理手段20によって受信した超音波信号を前記の再計算された受信側の遅延時間によって合成して、受信信号を算出する。
Next, in step S10, based on the movement amount calculated by the movement amount calculation means 17, the reception delay time is calculated so that the reception-side focal position P2 coincides with the transmission-side focal position P1 during reception. Specifically, when the movement amount f is obtained as shown in FIG. 4, a new refraction angle θ ′, path length between the probe 1 after movement and the transmission-side focal position P1 that has already been set. The distance W ′ can be calculated. On the condition of this new refraction angle θ ′ and path distance W ′, the delay time on the receiving side is recalculated. In FIG. 4, an arrow h indicates the moving direction of the probe 1, and a refraction angle θ and a path distance W indicate a refraction angle and a path distance on the transmission side.
In step S12, the received signal is calculated by synthesizing the ultrasonic signal received by the received signal processing means 20 with the recalculated reception side delay time.

以上の第1の実施形態によれば、探触子の移動後の受信位置において受信側の焦点位置P2が送信側の焦点位置P1に一致するように受信遅延時間算出手段13において遅延時間が再計算されて、遅延時間が補正されるため、探触子の移動による送信時と受信時との焦点位置のズレが補正される。その結果、受信信号のSN比(信号雑音比)が向上し、欠陥の検出感度が向上する。   According to the first embodiment described above, the delay time is reset in the reception delay time calculation means 13 so that the reception-side focal position P2 coincides with the transmission-side focal position P1 at the reception position after the movement of the probe. Since the delay time is calculated and corrected, the shift of the focal position between transmission and reception due to movement of the probe is corrected. As a result, the SN ratio (signal-to-noise ratio) of the received signal is improved and the defect detection sensitivity is improved.

また、走査手段の移動速度と探触子の送受信の時間差との積算によって移動量を算出して、この移動量に基づいて、受信側の遅延時間、周波数が再計算されて受信遅延時間が設定され、走査による移動による送信時と受信時との焦点位置のズレが補正される。   Also, the amount of movement is calculated by integrating the moving speed of the scanning means and the transmission / reception time difference of the probe, and based on this amount of movement, the reception side delay time and frequency are recalculated to set the reception delay time. Thus, the deviation of the focal position between transmission and reception due to movement by scanning is corrected.

(第2の実施形態)
次に、図5、6を参照して、第2の実施形態について説明する。この第2の実施形態は、第1の実施形態の移動量算出手段17に変えて、位置センサであるエンコーダ21を用いて移動量を直接検出するものである。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIGS. In the second embodiment, the movement amount is directly detected using an encoder 21 which is a position sensor, instead of the movement amount calculation means 17 of the first embodiment.

図5に図1対応の構成ブロック図に示す。図1に対して位置センサのエンコーダ21が変更になったのみで他は第1の実施形態と同様であり同一符号付して説明は省略する。
また、図6に図3対応の制御フロー図を示す。ステップS16の超音波受信と、ステップS18の移動量受信が変更になったのみで他は第1の実施形態と同様であり同一符号付して説明は省略する。ステップS16では、被検体7から反射してくる超音波を受信し、ステップS18では、エンコーダ21からの移動量信号を入力する。これらステップS16、ステップS18は同時に処理し、その後ステップS10で、移動量算出手段17によって算出された移動量に基づいて受信時に受信側の焦点位置P2が送信側の焦点位置P1に一致するように受信遅延時間を算出する。
FIG. 5 is a block diagram corresponding to FIG. 1 is the same as that of the first embodiment except that the encoder 21 of the position sensor is changed, and the description thereof will be omitted.
FIG. 6 shows a control flow diagram corresponding to FIG. The only difference between the ultrasonic wave reception in step S16 and the movement amount reception in step S18 is the same as in the first embodiment. In step S16, an ultrasonic wave reflected from the subject 7 is received, and in step S18, a movement amount signal from the encoder 21 is input. These steps S16 and S18 are processed at the same time, and after that, in step S10, the reception-side focal position P2 coincides with the transmission-side focal position P1 during reception based on the movement amount calculated by the movement amount calculation means 17. Calculate the reception delay time.

以上の第2の実施形態によれば、探触子の移動量を位置検出センサのエンコーダ21からの検出信号によって求めるため、探触子を走査する走査手段の速度制御が困難で速度を算出できない場合に有効であり、前記第1の実施形態と同様に送信時から受信時までの探触子の移動量に応じて適正に受信遅延時間を算出することができ、探触子1の移動による送信時と受信時との焦点位置のズレが補正され、探傷感度が向上する。   According to the second embodiment described above, since the movement amount of the probe is obtained from the detection signal from the encoder 21 of the position detection sensor, it is difficult to control the speed of the scanning means for scanning the probe, and the speed cannot be calculated. As is the case with the first embodiment, the reception delay time can be appropriately calculated according to the amount of movement of the probe from the time of transmission to the time of reception. Deviation of the focal position between transmission and reception is corrected, and flaw detection sensitivity is improved.

(第3の実施形態)
次に、図7、8、9を参照して、第3の実施形態について説明する。この第3の実施形態は、第1、第2の実施形態では、探触子の移動による焦点位置のズレの補正を、受信側の遅延時間を移動量に基づいて再算出することによって行っていたのを、予め送信側もしくは受信側、または両方の遅延時間を設定することで補正を行うものである。
(Third embodiment)
Next, a third embodiment will be described with reference to FIGS. In the third embodiment, in the first and second embodiments, the correction of the focal position shift due to the movement of the probe is performed by recalculating the delay time on the reception side based on the movement amount. The correction is performed by setting the delay time of the transmission side or the reception side or both in advance.

すなわち、第3の実施形態は、探触子1を走査手段15によって一定速度で移動させるものであり、一定速度のため、受信時に受信側の焦点位置P2と送信側の焦点位置とが一致するように、予め送信遅延時間算出手段11と受信遅延時間算出手段13とにおいて遅延時間を設定しておくものである。
図7(a)に示すように、探触子1が停止しているときに、予め送信側の焦点位置P1と受信側の焦点位置P2とを送受信間の移動量fだけすらした位置に設定して、そのずらした位置P1、P2に集束するように遅延時間を設定する。この停止時のビーム形状は送信側を実線で示し、受信側を点線で示す。そして、矢印h方向に探触子1を走査して移動量fだけ移動した受信時に図7(b)に示すように一致させる。
この焦点位置のズレを補正するための遅延時間の設定は、送信側と受信側とをそれぞれ設定して行なってもよく、片側の受信側だけでも、送信側だけでもよい。
That is, in the third embodiment, the probe 1 is moved at a constant speed by the scanning unit 15, and because of the constant speed, the reception-side focal position P2 coincides with the transmission-side focal position at the time of reception. As described above, the delay time is set in advance in the transmission delay time calculation means 11 and the reception delay time calculation means 13.
As shown in FIG. 7A, when the probe 1 is stopped, the focal position P1 on the transmission side and the focal position P2 on the reception side are set in advance to a position that is even shifted by the movement amount f between transmission and reception. Then, the delay time is set so as to converge at the shifted positions P1 and P2. The beam shape at the time of stop is indicated by a solid line on the transmission side and a dotted line on the reception side. Then, as shown in FIG. 7B, the probe 1 is scanned in the direction of the arrow h and moved by the movement amount f so that they are matched as shown in FIG.
The delay time for correcting the shift of the focal position may be set by setting the transmitting side and the receiving side, respectively, and may be only one receiving side or only the transmitting side.

図8に図1対応の構成ブロック図を示す。移動量算出手段17を設けずに、送信遅延時間算出手段11に補正手段23と、受信遅延時間算出手段13に補正手段19を設けた点が変更になったのみで他は第1の実施形態と同様であり同一符号付して説明は省略する。   FIG. 8 shows a configuration block diagram corresponding to FIG. The movement amount calculation means 17 is not provided, but the point that the correction means 23 is provided in the transmission delay time calculation means 11 and the correction means 19 is provided in the reception delay time calculation means 13 is changed. The same reference numerals are used and description thereof is omitted.

また、図9に図3対応の制御フロー図を示す。ステップS21の送信遅延時間算出とステップS22の受信遅延時間算出が変更になったのみで他は第1の実施形態と同様であり同一符号付して説明は省略する。
ステップS21では、予め焦点位置のズレを補正するための送信遅延時間が算出されて設定され、ステップS22では予め焦点位置のズレを補正するための送信遅延時間が算出されて設定される。
そして、ステップS12では、受信信号処理手段20によって受信した超音波信号をステップS22で設定された受信側の遅延時間によって合成して、受信信号を算出する。
FIG. 9 shows a control flow diagram corresponding to FIG. Only the transmission delay time calculation in step S21 and the reception delay time calculation in step S22 are changed.
In step S21, a transmission delay time for correcting the deviation of the focal position is calculated and set in advance. In step S22, a transmission delay time for correcting the deviation of the focal position is calculated and set in advance.
In step S12, the ultrasonic signal received by the reception signal processing means 20 is synthesized by the delay time on the reception side set in step S22, and the reception signal is calculated.

以上第3の実施形態によれば、走査手段15によって探触子を走査中一定速度で移動することで、探触子の移動量は探傷中一定となり、受信位置に達したときに、ちょうど送信側の焦点位置と受信側の焦点位置とが一致するように送信遅延時間と受信遅延時間の設定が可能になる。従って、走査による移動による送信時と受信時との焦点位置のズレが補正され、探傷感度が向上する。
また、受信時の探触子1の移動量を算出したり、エンコーダ21等の位置検出センサで位置を検出する必要が無く、予め遅延時間を設定しておくだけでよいため、装置構成および制御が簡単化する。
As described above, according to the third embodiment, when the probe is moved at a constant speed during scanning by the scanning unit 15, the amount of movement of the probe becomes constant during the flaw detection, and when the reception position is reached, the probe is transmitted. The transmission delay time and the reception delay time can be set so that the focal position on the side coincides with the focal position on the reception side. Therefore, the shift of the focal position between transmission and reception due to movement by scanning is corrected, and the flaw detection sensitivity is improved.
Further, since it is not necessary to calculate the amount of movement of the probe 1 at the time of reception or to detect the position with a position detection sensor such as the encoder 21, it is only necessary to set a delay time in advance. Simplify.

(第4の実施形態)
次に、図10に第4の実施形態を示す。第4の実施形態は、第3の実施形態の変形例であり、広い範囲を探傷するラスタースキャン手法で走査手段15が探触子1を移動した時の、送信時と受信時との焦点位置のズレを補正する例である。
(Fourth embodiment)
Next, FIG. 10 shows a fourth embodiment. The fourth embodiment is a modification of the third embodiment, and the focal positions at the time of transmission and at the time of reception when the scanning means 15 moves the probe 1 by a raster scanning method for flaw detection over a wide range. This is an example of correcting the deviation.

このラスタースキャン手法とは、ある範囲内を往復走査して探傷することをいい、図10(a)に示すように、h1方向とh2方向とを繰り返して移動させる。このとき探触子1の前後はh1方向とh2方向とで進行方向に対して入れ替わる。
前記第3の実施形態で設定した送信遅延時間と受信遅延時間の設定関係を保ちつつ、すなわち送信時と受信時との焦点位置のズレが補正される遅延時間の設定関係を保ちつつ、さらに、例えば、h1方向のときの送信遅延時間の遅延タイミングパターンT1と受信遅延時間の遅延タイミングパターンR1に対し、逆方向のh2方向のときの送信遅延時間の遅延タイミングパターンT2と受信遅延時間の遅延タイミングパターンR2は、T2=R1、およびR2=T1の関係式にすることで、h1方向の走査からh2方向の走査へ対応することができる。
This raster scanning method refers to flaw detection by reciprocating scanning within a certain range. As shown in FIG. 10A, the h1 direction and the h2 direction are moved repeatedly. At this time, the front and rear of the probe 1 are switched with respect to the traveling direction in the h1 direction and the h2 direction.
While maintaining the setting relationship between the transmission delay time and the reception delay time set in the third embodiment, that is, while maintaining the setting relationship of the delay time in which the shift of the focal position between transmission and reception is corrected, For example, the transmission delay time delay timing pattern T2 and the reception delay time delay timing pattern T1 and the reception delay time delay timing pattern T1 and the reception delay time delay timing pattern R1 in the reverse h2 direction, respectively. The pattern R2 can correspond to the scan in the h2 direction from the scan in the h1 direction by using the relational expressions of T2 = R1 and R2 = T1.

図10(b)には、h1方向に走査するときの停止時の超音波ビームの焦点位置P1(送信側の集束位置、実線のビーム形状)と焦点位置P2(受信側の集束位置、点線のビーム形状)の関係を示す。
図10(c)には、h1とは逆のh2方向に走査するときの停止時の超音波ビームの焦点位置P1(送信側の集束位置、実線のビーム形状)と焦点位置P2(受信側の集束位置、点線のビーム形状)の関係を示す。
FIG. 10B shows the focal position P1 of the ultrasonic beam at the time of stopping when scanning in the h1 direction (the focusing position on the transmission side, the solid beam shape) and the focal position P2 (the focusing position on the reception side, the dotted line (Beam shape) relationship is shown.
FIG. 10C shows the focal position P1 (focusing position on the transmission side, beam shape of solid line) and focal position P2 (on the receiving side) of the ultrasonic beam when stopped when scanning in the h2 direction opposite to h1. The relationship between the focusing position and the dotted beam shape) is shown.

第4の実施形態によれば、広い範囲を探傷するラスタースキャン手法で走査手段15が探触子1を移動した時ときにおいても、送信時と受信時との焦点位置のズレが補正させて探傷感度が向上する。
また、往復走査に対して遅延タイミングパターンを逆の関係に置き換えるだけでよいため、簡単な制御で広い面積を感度よく探傷できるため探傷効率が向上する。
According to the fourth embodiment, even when the scanning unit 15 moves the probe 1 by a raster scanning method for flaw detection over a wide range, the deviation of the focal position between transmission and reception is corrected to detect flaws. Sensitivity is improved.
Further, since it is only necessary to replace the delay timing pattern with a reverse relationship with respect to the reciprocating scanning, a wide area can be detected with high sensitivity by simple control, so that flaw detection efficiency is improved.

(第5の実施形態)
次に、図11、12、13、14を参照して、第5の実施形態について説明する。この第5の実施形態は、曲面状の被検体7に対して焦点位置のズレを補正する例である。第1の実施形態と同一の構成については同一の符号を付して説明を省略する。
(Fifth embodiment)
Next, a fifth embodiment will be described with reference to FIGS. The fifth embodiment is an example in which the deviation of the focal position with respect to the curved subject 7 is corrected. The same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

図11に超音波ビームの集束状態を示す。図11(a)に示すように探触子1の移動による焦点位置のズレを補正するための遅延時間の設定を行わないと、曲面形状の場合には送信側の焦点位置P1と受信側の焦点位置P2とは平面上の探傷面に比べると大きくずれる。なお、図11(a)はh方向に移動し実線ビーム形状が送信時を示し、点線ビーム形状が受信時を示す。図11(b)は受信側の遅延時間を補正した場合を示し、送信側の焦点位置P1と受信側の焦点位置P2とが一致する。   FIG. 11 shows a focused state of the ultrasonic beam. If the delay time for correcting the shift of the focal position due to the movement of the probe 1 is not set as shown in FIG. 11A, in the case of a curved surface shape, the focal position P1 on the transmitting side and the receiving side are adjusted. The focal position P2 deviates greatly from a plane flaw detection surface. In FIG. 11 (a), the beam moves in the h direction, the solid line beam shape indicates the time of transmission, and the dotted line beam shape indicates the time of reception. FIG. 11B shows a case where the delay time on the reception side is corrected, and the focal position P1 on the transmission side coincides with the focal position P2 on the reception side.

図13に、図1対応の構成ブロック図を示す。変化量算出手段28が時間の関数として位置形状情報を取得し、この位置形状情報と、探触子制御手段16から探触子1へ指示される探触子1の送信から受信までの時間差(Δt)との積算によって位置変化量を算出する。また、変化量算出手段28によって算出された位置の変化量に基づいて受信時に受信側の焦点位置P2が送信側の焦点位置P1に一致するように受信遅延時間を再計算して補正する補正手段29を有している。   FIG. 13 shows a configuration block diagram corresponding to FIG. The change amount calculation means 28 acquires position shape information as a function of time, and this position shape information and a time difference from transmission to reception of the probe 1 instructed to the probe 1 from the probe control means 16 ( The position change amount is calculated by integration with Δt). Further, a correction unit that recalculates and corrects the reception delay time so that the reception-side focal position P2 coincides with the transmission-side focal position P1 based on the position variation calculated by the variation calculation unit 28. 29.

ここでは、図12に示すような、被検体7はX方向に対してZ座標が変化するが、Y方向に対してはZ座標が一定な曲面である場合について説明する。探触子1内でX方向に並べられた各振動子3が夫々Z方向に移動可能に取り付けられており、各振動子3が曲面状の探傷面に追従してZ方向に移動し、その移動量が探触子1内の検出手段30によって検出される。XY座標上の位置情報については、エンコーダ21によって検出される。
このように、検出手段30、およびエンコーダ21によって探触子1の位置情報を入手し、変化量算出手段28に与えている。
Here, as shown in FIG. 12, a case will be described in which the subject 7 is a curved surface whose Z coordinate changes in the X direction but has a constant Z coordinate in the Y direction. Each transducer 3 arranged in the X direction in the probe 1 is attached so as to be movable in the Z direction, and each transducer 3 moves in the Z direction following a curved flaw detection surface. The amount of movement is detected by the detection means 30 in the probe 1. The position information on the XY coordinates is detected by the encoder 21.
As described above, the position information of the probe 1 is obtained by the detection unit 30 and the encoder 21 and is given to the change amount calculation unit 28.

図14に図3対応の制御フロー図を示す。まずステップS32で、送信遅延時間算出手段11によって各振動子3によって発せられる超音波ビームを同時に被検体7内の送信側の焦点位置P1に集束させるための所要の遅延時間を算出する。このとき焦点位置P1は、形状変化があるため2次元の位置情報、本実施形態の例ではXZ面の位置情報を基に算出する。
そして、ステップS4でその遅延時間によって各振動子3から超音波を送信し、ステップS6で、被検体7から反射してくる超音波を受信する。そしてステップ34で、変化量算出手段28によって、送受信の時間差(Δt)と、検出手段30とエンコーダ21によって得られる位置情報との積算によって変化量を算出する。
FIG. 14 shows a control flow diagram corresponding to FIG. First, in step S32, the transmission delay time calculation means 11 calculates a required delay time for converging the ultrasonic beam emitted by each transducer 3 to the transmission-side focal position P1 in the subject 7 at the same time. At this time, the focal position P1 is calculated on the basis of two-dimensional position information because of the shape change, in the example of this embodiment, based on position information on the XZ plane.
In step S4, ultrasonic waves are transmitted from each transducer 3 according to the delay time, and in step S6, ultrasonic waves reflected from the subject 7 are received. In step 34, the change amount calculation means 28 calculates the change amount by integrating the transmission / reception time difference (Δt) and the position information obtained by the detection means 30 and the encoder 21.

次に、ステップS36では、変化量算出手段28によって算出された変化量に基づいて受信時に受信側の焦点位置P2が送信側の焦点位置P1に一致するように受信遅延時間を算出する。
具体的には、第1の実施形態と同様に、探触子1の変化量が求められれば、移動後の探触子1と既に設定されている送信側の焦点位置P1との間の新たな屈折角θ'、路程距離W'が算出できる。この新たな屈折角θ'、路程距離W'を条件として夫々の振動子3に対する受信側の遅延時間が再計算される。
そして、ステップS38では、受信信号処理手段20によって受信した超音波信号を前記の再計算された受信側の遅延時間によって合成して、受信信号を算出する。
Next, in step S36, based on the amount of change calculated by the amount-of-change calculator 28, the reception delay time is calculated so that the reception-side focal position P2 coincides with the transmission-side focal position P1 during reception.
Specifically, as in the first embodiment, if the change amount of the probe 1 is obtained, a new value between the moved probe 1 and the transmission-side focal position P1 that has already been set is obtained. A refraction angle θ ′ and a path distance W ′ can be calculated. On the condition of this new refraction angle θ ′ and path distance W ′, the delay time on the receiving side for each transducer 3 is recalculated.
In step S38, the received signal is calculated by synthesizing the ultrasonic signals received by the received signal processing means 20 with the recalculated delay time on the receiving side.

第5の実施形態によれば、探触子の移動後の受信位置において受信側の焦点位置P2が送信側の焦点位置P1に一致するように受信遅延時間算出手段13において遅延時間が再計算されて、遅延時間が補正されるため、探触子の移動による送信時と受信時との焦点位置のズレが補正される。その結果、受信信号のSN比(信号雑音比)が向上し、欠陥の検出感度が向上する。   According to the fifth embodiment, the delay time is recalculated in the reception delay time calculation means 13 so that the reception-side focal position P2 coincides with the transmission-side focal position P1 at the reception position after the movement of the probe. Thus, since the delay time is corrected, the deviation of the focal position between transmission and reception due to the movement of the probe is corrected. As a result, the SN ratio (signal-to-noise ratio) of the received signal is improved and the defect detection sensitivity is improved.

また、走査手段の移動速度と探触子の送受信の時間差との積算によって変化量を算出して、この変化量に基づいて、受信側の遅延時間、周波数が再計算されて受信遅延時間が設定され、走査による移動による送信時と受信時との焦点位置のズレが補正される。
従って、湾曲している複雑な形状面を走査する場合でも、送受信時の焦点位置のズレを防止して、感度が高く検出性の高い検査が可能となる。
Also, the amount of change is calculated by integrating the moving speed of the scanning means and the time difference between transmission and reception of the probe, and based on this amount of change, the delay time and frequency on the receiving side are recalculated to set the reception delay time. Thus, the deviation of the focal position between transmission and reception due to movement by scanning is corrected.
Therefore, even when scanning a complicated curved curved surface, it is possible to prevent the deviation of the focal position at the time of transmission and reception, and to perform inspection with high sensitivity and high detectability.

なお、以上の第5の実施形態の説明では、図12に示すような、被検体7はX方向に対してZ座標が変化するが、Y方向に対してはZ座標が一定な曲面である場合について説明した。すなわち2次元の変化について説明したが、被検体7がY方向に対してZ座標が変化する3次元の場合においても同様に、位置の変化量を求めて送信時と受信時との焦点位置のズレを補正することができる。例えば、マトリックスアレイの探触子を用いる場合には、3次元の位置情報を求めて送信時と受信時との焦点位置のズレを補正することができる。   In the above description of the fifth embodiment, as shown in FIG. 12, the subject 7 has a curved surface in which the Z coordinate changes in the X direction but the Z coordinate is constant in the Y direction. Explained the case. That is, the two-dimensional change has been described. Similarly, when the subject 7 is a three-dimensional object in which the Z coordinate changes with respect to the Y direction, the position change amount is similarly obtained to determine the focal position at the time of transmission and reception. Misalignment can be corrected. For example, in the case of using a matrix array probe, it is possible to obtain three-dimensional position information and correct a focus position shift between transmission and reception.

本発明によれば、探触子が走査されて送信位置と受信位置とが移動する場合に、特に、被検体の厚みが厚く欠陥が深い位置に存在する場合において、送信時と受信時との焦点のズレを防止して、検出感度の高い探傷を行うことができるので、フェーズドアレイ超音波探傷探触子を用いる超音波探傷装置への適用に際して有益である。   According to the present invention, when the probe is scanned and the transmission position and the reception position move, especially when the subject is thick and the defect exists at a deep position, the transmission and reception Since flaws can be prevented and flaw detection with high detection sensitivity can be performed, it is useful when applied to an ultrasonic flaw detection apparatus using a phased array ultrasonic flaw detection probe.

本発明に係る超音波探傷装置の第1の実施形態を示す構成ブロック図である。1 is a configuration block diagram showing a first embodiment of an ultrasonic flaw detector according to the present invention. フェーズドアレイ超音波探傷探触子の説明図であり、(a)は直進方向の集束、(b)は斜め方向の集束の説明図である。It is explanatory drawing of a phased array ultrasonic flaw detector, (a) is a straight direction focusing, (b) is an explanatory drawing of the diagonal focusing. 第1の実施形態の制御フロー図である。It is a control flow figure of a 1st embodiment. 第1の実施形態の作用説明図である。It is operation | movement explanatory drawing of 1st Embodiment. 第2の実施形態の構成ブロック図である。It is a block diagram of the configuration of the second embodiment. 第2の実施形態の制御フロー図である。It is a control flow figure of a 2nd embodiment. 第3の実施形態の作用説明図である。It is operation | movement explanatory drawing of 3rd Embodiment. 第3の実施形態の構成ブロック図である。It is a block diagram of the configuration of the third embodiment. 第3の実施形態の制御フロー図である。It is a control flow figure of a 3rd embodiment. 第4の実施形態の説明図であり、(a)はラスタースキャンによる走査の説明図であり、(b)、(c)は異なる走査方向における超音波ビームの集束位置関および遅延時間タイミングの説明図である。FIG. 10 is an explanatory diagram of a fourth embodiment, (a) is an explanatory diagram of scanning by a raster scan, and (b), (c) is an explanation of the focal position relationship and delay time timing of an ultrasonic beam in different scanning directions. FIG. 第5の実施形態の超音波ビームの集束位置関係を示す説明図である。It is explanatory drawing which shows the focusing position relationship of the ultrasonic beam of 5th Embodiment. 第5の実施形態の座標関係の説明図である。It is explanatory drawing of the coordinate relationship of 5th Embodiment. 第5の実施形態の構成ブロック図である。It is a block diagram of the configuration of the fifth embodiment. 第5の実施形態の制御フロー図である。It is a control flow figure of a 5th embodiment. 従来技術を説明する超音波ビームの集束状態を示す説明図であり、(a)は集束されないビーム径が大の場合、(b)は集束されるビーム径が小の場合を示す。It is explanatory drawing which shows the focusing state of the ultrasonic beam explaining a prior art, (a) shows the case where the beam diameter which is not focused is large, (b) shows the case where the beam diameter focused is small.

符号の説明Explanation of symbols

1 探触子
3 振動子
7 被検体
9 接触媒体
11 送信遅延時間算出手段
13 受信遅延時間算出手段
15 走査手段
17 移動量算出手段
19、23、29 補正手段
20 受信信号処理手段
21 エンコーダ
28 変化量算出手段
DESCRIPTION OF SYMBOLS 1 Probe 3 Vibrator 7 Subject 9 Contact medium 11 Transmission delay time calculation means 13 Reception delay time calculation means 15 Scanning means 17 Movement amount calculation means 19, 23, 29 Correction means 20 Received signal processing means 21 Encoder 28 Change amount Calculation means

Claims (9)

複数個の振動子を列状に並べてなるフェーズドアレイ超音波探傷探触子を用いる超音波探傷装置において、
前記各振動子によって発せられる超音波ビームを同時に被検体内の送信側の焦点位置に集束させるために前記各振動子に対する所要の遅延時間を算出する送信遅延時間算出手段と、
被検体内の受信側の焦点位置に収束するように受信時の前記各振動子に対する所要の遅延時間を算出する受信遅延時間算出手段と、
前記探触子を被検体の表面に沿って移動せしめる走査手段とを備え、
該走査手段によって探触子が送信時点から受信時点まで移動したときの移動後の受信位置において前記受信側の焦点位置と前記送信側の焦点位置とが一致するように前記送信遅延時間算出手段または前記受信遅延時間算出手段の少なくとも一方において遅延時間が補正されるように構成してなることを特徴とする超音波探傷装置。
In an ultrasonic flaw detector using a phased array ultrasonic flaw detector in which a plurality of transducers are arranged in a row,
A transmission delay time calculating means for calculating a required delay time for each transducer in order to simultaneously focus the ultrasonic beam emitted by each transducer on the focal position on the transmission side in the subject;
A reception delay time calculating means for calculating a required delay time for each of the transducers at the time of reception so as to converge to the focal position on the reception side in the subject;
Scanning means for moving the probe along the surface of the subject,
The transmission delay time calculating means or the transmission side focal position so that the reception side focal position coincides with the transmission side focal position at the reception position after movement when the probe is moved from the transmission time to the reception time by the scanning means. An ultrasonic flaw detection apparatus, wherein the delay time is corrected in at least one of the reception delay time calculation means.
前記探触子の移動量を前記走査手段による移動速度と探触子の送受信の時間差との積算によって算出する移動量算出手段を備え、
前記移動量に基づいて受信時に前記受信側の焦点位置が前記送信側の焦点位置に一致するように受信遅延時間を補正することを特徴とする請求項1記載の超音波探傷装置。
A moving amount calculating means for calculating the moving amount of the probe by integrating the moving speed by the scanning means and the time difference between transmission and reception of the probe;
2. The ultrasonic flaw detection apparatus according to claim 1, wherein the reception delay time is corrected based on the amount of movement so that the focal position on the reception side coincides with the focal position on the transmission side during reception.
前記探触子の移動量を位置検出センサからの検出信号によって算出する移動量算出手段を備え、
前記移動量に基づいて受信時に前記受信側の焦点位置が前記送信側の焦点位置に一致するように受信遅延時間を補正することを特徴とする請求項1記載の超音波探傷装置。
A movement amount calculating means for calculating a movement amount of the probe by a detection signal from a position detection sensor;
2. The ultrasonic flaw detection apparatus according to claim 1, wherein the reception delay time is corrected based on the amount of movement so that the focal position on the reception side coincides with the focal position on the transmission side during reception.
前記探触子の移動速度が一定であり、受信時に前記受信側の焦点位置と前記送信側の焦点位置とが一致するように前記送信遅延時間算出手段または前記受信遅延時間算出手段の少なくとも一方に予め遅延時間が設定されることを特徴とする請求項1記載の超音波探傷装置。   At least one of the transmission delay time calculation means and the reception delay time calculation means so that the moving speed of the probe is constant and the reception-side focal position matches the transmission-side focal position at the time of reception. 2. The ultrasonic flaw detector according to claim 1, wherein a delay time is set in advance. 前記探触子の移動位置を二次元的または三次元的に検出して、該位置情報から算出された変移量に基づいて受信時に前記受信側の焦点位置が前記送信側の焦点位置に一致するように受信遅延時間を補正することを特徴とする請求項1記載の超音波探傷装置。   The moving position of the probe is detected two-dimensionally or three-dimensionally, and the focal position on the receiving side coincides with the focal position on the transmitting side at the time of reception based on the amount of displacement calculated from the positional information. The ultrasonic flaw detector according to claim 1, wherein the reception delay time is corrected as described above. 複数個の振動子を列状に並べてなるフェーズドアレイ超音波探傷探触子を用いる超音波探傷方法において、
前記各振動子によって発せられる超音波ビームを同時に被検体内の送信側の焦点位置に集束させるために前記各振動子に対する所要の遅延時間を算出し、
被検体内の受信側の焦点位置に収束するように受信時の前記各振動子に対する所要の遅延時間を算出し、
走査手段によって前記探触子を被検体の表面に沿って移動し、
移動後の探触子の受信位置において前記受信側の焦点位置が前記送信側の焦点位置に一致するように前記送信の遅延時間または前記受信の遅延時間の少なくとも一方を補正することを特徴とする超音波探傷方法。
In an ultrasonic flaw detection method using a phased array ultrasonic flaw detector in which a plurality of transducers are arranged in a row,
Calculate the required delay time for each transducer in order to simultaneously focus the ultrasound beam emitted by each transducer on the focal position on the transmitting side in the subject,
Calculate the required delay time for each transducer at the time of reception so as to converge to the focal position on the receiving side in the subject,
Moving the probe along the surface of the subject by scanning means;
At least one of the transmission delay time and the reception delay time is corrected so that the reception-side focal position matches the transmission-side focal position at the probe reception position after movement. Ultrasonic flaw detection method.
前記探触子の移動量に基づいて受信時に前記受信側の焦点位置が前記送信側の焦点位置に一致するように受信の遅延時間を補正することを特徴とする請求項6に記載の超音波探傷方法。   The ultrasonic wave according to claim 6, wherein a reception delay time is corrected so that a focus position on the reception side coincides with a focus position on the transmission side based on an amount of movement of the probe. Flaw detection method. 前記探触子を一定の移動速度で移動し、受信時に前記受信側の焦点位置と前記送信側の焦点位置とが一致するように予め前記送信の遅延時間および前記受信の遅延時間が設定されることを特徴とする請求項6記載の超音波探傷装置。   The probe is moved at a constant moving speed, and the transmission delay time and the reception delay time are set in advance so that the reception-side focal position coincides with the transmission-side focal position during reception. The ultrasonic flaw detector according to claim 6. 前記探触子の移動位置を二次元的または三次元的に検出して、該位置情報から算出された変移量に基づいて受信時に前記受信側の焦点位置が前記送信側の焦点位置に一致するように受信の遅延時間を補正することを特徴とする請求項6記載の超音波探傷装置。
The moving position of the probe is detected two-dimensionally or three-dimensionally, and the focal position on the receiving side coincides with the focal position on the transmitting side at the time of reception based on the amount of displacement calculated from the positional information. The ultrasonic flaw detector according to claim 6, wherein the reception delay time is corrected as described above.
JP2006324953A 2006-11-30 2006-11-30 Ultrasonic flaw detection apparatus and method Expired - Fee Related JP5118339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006324953A JP5118339B2 (en) 2006-11-30 2006-11-30 Ultrasonic flaw detection apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006324953A JP5118339B2 (en) 2006-11-30 2006-11-30 Ultrasonic flaw detection apparatus and method

Publications (2)

Publication Number Publication Date
JP2008139123A true JP2008139123A (en) 2008-06-19
JP5118339B2 JP5118339B2 (en) 2013-01-16

Family

ID=39600755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006324953A Expired - Fee Related JP5118339B2 (en) 2006-11-30 2006-11-30 Ultrasonic flaw detection apparatus and method

Country Status (1)

Country Link
JP (1) JP5118339B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102099675B (en) * 2008-07-18 2013-07-31 国立大学法人东北大学 Method for imaging structure defect, device for imaging structure defect, method for imaging bubble or lesion, and device for imaging bubble or lesion
JP7022861B1 (en) 2021-06-25 2022-02-18 株式会社日立パワーソリューションズ Array type ultrasonic transmitter / receiver

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60236062A (en) * 1984-05-09 1985-11-22 Toshiba Corp Ultrasonic test equipment
JPH02228952A (en) * 1989-03-01 1990-09-11 Toshiba Corp Ultrasonic diagnostic apparatus
JP2001305115A (en) * 2000-04-20 2001-10-31 Mitsubishi Heavy Ind Ltd Phased array type ultrasonic flaw detector
JP2002058671A (en) * 2000-08-15 2002-02-26 Aloka Co Ltd Ultrasonic diagnostic apparatus
JP2003057214A (en) * 2001-08-10 2003-02-26 Nkk Corp Ultrasonic flaw detection method and apparatus in fillet welding section

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60236062A (en) * 1984-05-09 1985-11-22 Toshiba Corp Ultrasonic test equipment
JPH02228952A (en) * 1989-03-01 1990-09-11 Toshiba Corp Ultrasonic diagnostic apparatus
JP2001305115A (en) * 2000-04-20 2001-10-31 Mitsubishi Heavy Ind Ltd Phased array type ultrasonic flaw detector
JP2002058671A (en) * 2000-08-15 2002-02-26 Aloka Co Ltd Ultrasonic diagnostic apparatus
JP2003057214A (en) * 2001-08-10 2003-02-26 Nkk Corp Ultrasonic flaw detection method and apparatus in fillet welding section

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012003344; 川浪精一,外: 'フェーズドアレイUTによる溶接部の検査' 溶接技術 第54巻,第10号, 20061001, P.74-78 *
JPN6012003346; 川浪精一,外: '配管の非破壊検査技術の高度化' 配管技術 Vol.46,No.13, 20041101, P.40-43 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102099675B (en) * 2008-07-18 2013-07-31 国立大学法人东北大学 Method for imaging structure defect, device for imaging structure defect, method for imaging bubble or lesion, and device for imaging bubble or lesion
JP7022861B1 (en) 2021-06-25 2022-02-18 株式会社日立パワーソリューションズ Array type ultrasonic transmitter / receiver
WO2022270363A1 (en) * 2021-06-25 2022-12-29 株式会社日立パワーソリューションズ Array type ultrasonic wave transmitting and receiving device
JP2023004096A (en) * 2021-06-25 2023-01-17 株式会社日立パワーソリューションズ Array type ultrasonic transmitting/receiving apparatus

Also Published As

Publication number Publication date
JP5118339B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
RU2381497C2 (en) Method for ultrasonic flaw detection
JP5355660B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP4564286B2 (en) 3D ultrasonic imaging device
JP4884930B2 (en) Ultrasonic flaw detection apparatus and method
JP5003275B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for tubular body
JP2007163470A (en) Apparatus and method for ultrasonically detecting flaw of tube
JP2007046913A (en) Welded structure flaw detection testing method, and steel welded structure flaw detector
JP2008209356A (en) Method of calibrating ultrasonic flaw detection, and quality control method and manufacturing method of tube
JPWO2009041313A1 (en) Ultrasonic flaw detection method and apparatus
JP2008209364A (en) Apparatus and method for ultrasonically detecting flaw of tube
JP2008151626A (en) Ultrasonic flaw detector and wedge for ultrasonic flaw detection
JP3861833B2 (en) Ultrasonic inspection method and apparatus
US10197535B2 (en) Apparatus and method for full-field pulse-echo laser ultrasonic propagation imaging
JP2006308566A (en) Ultrasonic flaw detection method and apparatus
JP5574731B2 (en) Ultrasonic flaw detection test method
JP2009097942A (en) Noncontact-type array probe, and ultrasonic flaw detection apparatus and method using same
JP2001305115A (en) Phased array type ultrasonic flaw detector
JP2014077708A (en) Inspection device and inspection method
JP5118339B2 (en) Ultrasonic flaw detection apparatus and method
JP2005351718A (en) Omnidirectional flaw detection probe
JP2005274583A (en) Ultrasonic flaw detection method and its system
JP2007178186A (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
US20110126628A1 (en) Non-destructive ultrasound inspection with coupling check
JP6081028B1 (en) Ultrasonic measuring device
JP2008286639A (en) Coupling check method of ultrasonic oblique angle flaw detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees