JPS6023480Y2 - cylinder number control engine - Google Patents
cylinder number control engineInfo
- Publication number
- JPS6023480Y2 JPS6023480Y2 JP2481080U JP2481080U JPS6023480Y2 JP S6023480 Y2 JPS6023480 Y2 JP S6023480Y2 JP 2481080 U JP2481080 U JP 2481080U JP 2481080 U JP2481080 U JP 2481080U JP S6023480 Y2 JPS6023480 Y2 JP S6023480Y2
- Authority
- JP
- Japan
- Prior art keywords
- cylinder
- air
- idle
- fuel ratio
- exhaust passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Output Control And Ontrol Of Special Type Engine (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Description
【考案の詳細な説明】
本考案は、エンジン軽負荷時に一部気筒の作動を休止さ
せて部分気筒運転を行う気筒数制御エンジンの改良に関
する。[Detailed Description of the Invention] The present invention relates to an improvement in a cylinder number control engine that performs partial cylinder operation by suspending the operation of some cylinders when the engine is under light load.
一般に、エンジンを高い負荷状態で運転すると燃費が良
好になる傾向があり、このため多気筒エンジンにおいて
、エンジン負荷の小さいときに、一部気筒への燃料の供
給をカットして作動を休止させ、この分だけ残りの稼動
側気筒の負荷を相対的に高め、全体として軽負荷領域の
燃費を改善するようにした気筒数制御エンジンが考えら
れた。In general, fuel efficiency tends to improve when an engine is operated under a high load.For this reason, in a multi-cylinder engine, when the engine load is low, the fuel supply to some cylinders is cut to stop operation. An engine with controlled number of cylinders was devised that relatively increases the load on the remaining active cylinders by this amount and improves overall fuel efficiency in the light load range.
この種のエンジンでは通常、軽負荷時に作動の停止する
側の休止気筒と、他の常に作動する側の稼動気筒につい
て、燃料供給手段と排気系とを独立あるいは分割的に構
成している。In this type of engine, the fuel supply means and exhaust system are usually configured independently or separately for a dormant cylinder that stops operating under light load, and for other active cylinders that are always active.
そして、休止気筒および稼動気筒の排気系にそれぞれ空
燃比センサ(酸素濃度センサ)を配置して、これら空燃
比センサの出力信号に基づき、各燃料供給手段をコント
ロールして、休止気筒と稼動気筒の空燃比をそれぞれ独
立して目標値(通常は理論空燃比)にフィードバック制
御している。Then, air-fuel ratio sensors (oxygen concentration sensors) are placed in the exhaust systems of the dormant cylinders and working cylinders, and each fuel supply means is controlled based on the output signals of these air-fuel ratio sensors. The air-fuel ratio is independently feedback-controlled to a target value (usually the stoichiometric air-fuel ratio).
ところがこの場合、良好な作動を確保するためには比較
的高い所定の温度以上に保つ必要のある休止気筒側の空
燃比センサが、休止気筒の作動が停止する部分気筒運転
状態になると、休止気筒側の排温低下により冷却されて
、その温度が作動不能域にまで低下することがある。However, in this case, the air-fuel ratio sensor on the deactivated cylinder side, which needs to be kept at a relatively high predetermined temperature or higher to ensure good operation, detects the air-fuel ratio sensor in the deactivated cylinder when the deactivated cylinder enters a partial cylinder operation state in which the operation of the deactivated cylinder stops. Due to the drop in exhaust temperature on the side, the temperature may drop to an inoperable range.
そこで従来は、休止気筒の作動再開時、すなわち全気筒
運転への移行時には、休止気筒側の空燃比センサが充分
に暖まるまでは休止気筒側の空燃比フィードバック制御
を止めて、この間は吸入空気量などに応じて休止気筒側
の燃料供給手段をコントロールして、空燃比を目標値に
オープン制御している。Conventionally, when restarting operation of a dormant cylinder, that is, transitioning to full-cylinder operation, the air-fuel ratio feedback control of the dormant cylinder is stopped until the air-fuel ratio sensor on the dormant cylinder side warms up sufficiently, and during this period, the intake air amount is The fuel supply means on the idle cylinder side is controlled according to the situation, and the air-fuel ratio is maintained at the target value.
このため、このような部分気筒運転から全気筒運転への
移行時には、休止気筒側の空燃比制御精度が粗く、例え
ば理論空燃比に制御するような場合には、その分燃費の
悪化を招いている。Therefore, when transitioning from partial cylinder operation to full cylinder operation, the air-fuel ratio control accuracy on the idle cylinder side is rough, and if the air-fuel ratio is controlled to the stoichiometric air-fuel ratio, for example, fuel efficiency will deteriorate accordingly. There is.
本考案はこのような従来の実状にかんがみてなされたも
ので、稼動気筒側の排気通路に分岐通路を設けて、これ
を空燃比センサ配設部にて休止気部側の排気通路に接続
し、部分気筒運転時にはこの分岐通路を経て稼動気筒か
らの高温排気を休止気筒側の空燃比センサに吹きつけ、
これによってその冷却を防ぎ、部分気筒運転時でも良好
な作動温度域に前記空燃比センサを維持し、全気筒運転
への移行時に休止気筒側の空燃比をすぐにフィードバッ
ク制御できるようにした気筒数制御エンジンを得ること
を目的とする。The present invention was developed in view of the conventional situation, and includes providing a branch passage in the exhaust passage on the side of the active cylinder, and connecting this to the exhaust passage on the side of the resting cylinder at the air-fuel ratio sensor installation part. During partial cylinder operation, high-temperature exhaust from the active cylinder is blown through this branch passage to the air-fuel ratio sensor on the idle cylinder side.
This prevents its cooling, maintains the air-fuel ratio sensor in a good operating temperature range even during partial cylinder operation, and enables immediate feedback control of the air-fuel ratio on the idle cylinder side when transitioning to full-cylinder operation. The aim is to obtain a controlled engine.
以下、本考案を■型6気筒エンジンに適用した実施例に
つき、図面によって説明する。Hereinafter, an embodiment in which the present invention is applied to a type 6 six-cylinder engine will be described with reference to the drawings.
図において、#1.#3.#5は右側のバンク1に設け
られた気筒で、休止気筒を構威し、他方#2.#4.#
6は左側のバンク2に設けられた気筒で、稼動気筒を構
成する。In the figure, #1. #3. #5 is a cylinder provided in bank 1 on the right side and serves as a rest cylinder, while #2. #4. #
6 is a cylinder provided in bank 2 on the left side and constitutes an operating cylinder.
稼動気筒#2°、#4.#6と休止気筒#1゜#3.
#5とに対応して、絞り弁3の下流において吸気通路4
は稼動吸気通路5と休止吸気通路6とに分割されている
。Operating cylinders #2°, #4. #6 and deactivated cylinder #1゜#3.
#5, the intake passage 4 is located downstream of the throttle valve 3.
is divided into an active intake passage 5 and a rest intake passage 6.
同様にして、排気通路7も稼動排気通路8と休止排気通
路9とに途中まで分割されている。Similarly, the exhaust passage 7 is also divided halfway into an active exhaust passage 8 and a rest exhaust passage 9.
このうち、休止吸気通路6の上流部には遮断弁10が介
装され、この遮断弁下流の休止吸気通路6は、排気環流
通路11を介して休止排気通路9と結ばれている。A cutoff valve 10 is interposed at an upstream portion of the paused intake passage 6 , and the paused intake passage 6 downstream of the cutoff valve is connected to the paused exhaust passage 9 via an exhaust gas recirculation passage 11 .
また、この排気環流通路11には排気環流弁12が介装
されている。Further, an exhaust gas recirculation valve 12 is interposed in the exhaust gas recirculation passage 11 .
遮断弁10は、部分気筒運転時になるとダイヤフラムを
備えた負圧アクチュエータ13の作用により閉じて、作
動停止中の休止気筒#1. #3゜#5への新気供給を
遮断する。During partial cylinder operation, the shutoff valve 10 is closed by the action of a negative pressure actuator 13 equipped with a diaphragm, and the shutoff valve 10 closes when the cylinder #1 is inactive. #3゜Cut off the fresh air supply to #5.
これに連動して、排気環流弁12は負圧アクチュエータ
14の作用により開いて、休止気筒#1. #3. #
5に略大気圧の排気を吸入させ、作動停止中の休止気筒
#1. #3. #5におけるポンピングロスを低減す
る。In conjunction with this, the exhaust recirculation valve 12 is opened by the action of the negative pressure actuator 14, and the exhaust gas recirculation valve 12 is opened by the action of the negative pressure actuator 14. #3. #
5 is made to inhale exhaust gas at approximately atmospheric pressure, and the inactive cylinder #1. #3. Reduce pumping loss in #5.
これにより、気筒数制御エンジンとしての燃費改善効果
に加えて、一層の燃費改善が図れる。As a result, in addition to the effect of improving fuel efficiency as an engine with controlled number of cylinders, further improvement in fuel efficiency can be achieved.
一方、稼動排気通路8と休止排気通路9には、それぞれ
稼動側空燃比センサ(酸素濃度センサ)15と休止側空
燃比センサ16が配設されている。On the other hand, an active air-fuel ratio sensor (oxygen concentration sensor) 15 and an inactive air-fuel ratio sensor 16 are disposed in the active exhaust passage 8 and the idle exhaust passage 9, respectively.
これら空燃比センサ15,16からの空燃比信号は、入
コントロール回路17.18を経て燃料噴射制御回路1
9へ送られており、該制御回路19では、エアフローメ
ータ20からの吸入空気量信号により決定した基本燃料
噴射信号をこれらの空燃比信号で補正して、稼動側と休
止側とに対応した2つの補正燃料噴射信号を得ている。The air-fuel ratio signals from these air-fuel ratio sensors 15 and 16 are sent to the fuel injection control circuit 1 through input control circuits 17 and 18.
In the control circuit 19, the basic fuel injection signal determined based on the intake air amount signal from the air flow meter 20 is corrected using these air-fuel ratio signals, and the control circuit 19 corrects the basic fuel injection signal determined by the intake air amount signal from the air flow meter 20, Two corrective fuel injection signals are obtained.
このうち休止側の補正信号は、休止気筒#1゜#3.
#5に対応して休止吸気通路6のブランチ部に配設され
た燃料噴射弁g L g 3t g 5へ気筒数制御回
路21を経て送られ、他方稼動側の補正信号は、稼動気
筒#2. #4. #6に対応して稼動吸気通路5のブ
ランチ部に配設された燃料噴射弁g L g 4! g
6へ直接送られている。Of these, the correction signals on the deactivated side are for deactivated cylinders #1, #3, and so on.
Corresponding to #5, the correction signal is sent to the fuel injection valve g L g 3t g 5 disposed in the branch part of the idle intake passage 6 via the cylinder number control circuit 21, while the correction signal on the operating side is sent to the fuel injection valve g .. #4. Fuel injection valve g L g 4 arranged in the branch part of the working intake passage 5 corresponding to #6! g
It is sent directly to 6.
各燃料噴射弁g1〜g6はこれらの補正信号に応じて燃
料を噴射するが、部分気筒運転時になると気筒数制御回
路21が燃料噴射弁gl、g3゜g5への補正信号をカ
ットして、そこからの燃料噴射を遮断し、休止気筒#1
. #3. #5の作動を停止させる。Each of the fuel injection valves g1 to g6 injects fuel according to these correction signals, but during partial cylinder operation, the cylinder number control circuit 21 cuts the correction signals to the fuel injection valves gl, g3, g5, Cutting off fuel injection from cylinder #1
.. #3. Stop the operation of #5.
これによって気筒数制御エンジンとしての基本的な作動
が行われ、燃費の改善効果が発揮される。This performs the basic operation of an engine that controls the number of cylinders, resulting in improved fuel efficiency.
また、各燃料噴射弁g1〜g6から噴射される燃料量は
、空燃比センサ15,16からの信号に基づく燃料噴射
制御回路19での補正によって、常に混合気が理論空燃
比となるように、休止気筒側と稼動気筒側と互いに独立
してフィードバック制御されており、これによって混合
気の最も良好な燃焼が確保される。Further, the amount of fuel injected from each of the fuel injection valves g1 to g6 is corrected by the fuel injection control circuit 19 based on signals from the air-fuel ratio sensors 15 and 16 so that the air-fuel mixture always has the stoichiometric air-fuel ratio. Feedback control is performed independently on the idle cylinder side and the active cylinder side, thereby ensuring the best combustion of the air-fuel mixture.
稼動排気通路8と休止排気通路9の合流部下流の排気通
路7には三元触媒22が配設されている。A three-way catalyst 22 is disposed in the exhaust passage 7 downstream of the confluence of the active exhaust passage 8 and the idle exhaust passage 9.
この触媒22は理論空燃比の混合気の燃焼排気に対して
最も浄化特性が良好となるので、上記の空燃比フィード
バック機構の作用と相まって、触媒22は排気中の有害
物質を効果的に除去することができる。This catalyst 22 has the best purification characteristics for the combustion exhaust of the air-fuel mixture at the stoichiometric air-fuel ratio, so in combination with the action of the air-fuel ratio feedback mechanism described above, the catalyst 22 effectively removes harmful substances in the exhaust. be able to.
ところで、稼動排気通路8と休止排気通路9とは、それ
らの途中において分岐通路23によっても結ばれている
。Incidentally, the active exhaust passage 8 and the idle exhaust passage 9 are also connected by a branch passage 23 in the middle thereof.
分岐通路23は休止排気通路9に対し、休止側空燃比セ
ンサ16の付近、または上流近傍にて、それに対向する
側の通路壁面に持続開口しており、休止排気通路9の排
気圧力が低下する部分気筒運転時に、稼動気筒#2.
#4. #6からの高温排気の一部がこの分岐通路23
を通って、その開口部24から休止側空燃比センサ16
へと吹き当たるようになっている。The branch passage 23 is continuously open to the wall surface of the passage opposite to the idle exhaust passage 9 near or upstream of the idle air-fuel ratio sensor 16, so that the exhaust pressure of the idle exhaust passage 9 decreases. During partial cylinder operation, operating cylinder #2.
#4. A part of the high temperature exhaust from #6 flows into this branch passage 23.
through the opening 24 of the idle side air-fuel ratio sensor 16.
It's like it's blowing at you.
分岐通路23の稼動排気通路8への接続開口部25を仮
りに稼動側空燃比センサ15の上流側に設けると、稼動
気筒#2.#4.#6からの排気のうち分岐通路23へ
流出した分だけ、稼動側空燃比センサ15の近傍を通過
する排気量の割合が減少し、その空燃比検出精度の悪化
を招くので、図に示すように上記の開口部25は稼動側
空燃比センサ15の下流側に設けられている。If the connection opening 25 of the branch passage 23 to the working exhaust passage 8 is provided upstream of the working air-fuel ratio sensor 15, the working cylinder #2. #4. The proportion of the exhaust that passes near the operating side air-fuel ratio sensor 15 decreases by the amount of exhaust gas from #6 that flows into the branch passage 23, causing a deterioration of the air-fuel ratio detection accuracy, so as shown in the figure. The opening 25 is provided downstream of the operating air-fuel ratio sensor 15.
今、気筒数制御回路21が燃料噴射弁gLg3、g5か
らの燃料噴射を遮断制御して、休止気筒#1.#3.#
5の作動を停止し、したがってエンジンが部分気筒運転
を行っているとする。Now, the cylinder number control circuit 21 controls to cut off fuel injection from the fuel injection valves gLg3 and g5, and the cylinder number control circuit 21 controls the fuel injection from the fuel injection valves gLg3 and g5 to stop the cylinder #1. #3. #
5 has been deactivated and the engine is therefore in partial cylinder operation.
この時には、作動中の稼動気筒#2.#4゜#6の排気
圧力が作動停止中の休止気筒#1゜#3.#5の排気圧
力よりも高くなるので、稼動気筒#2. #4. #6
からの高温排気は一部が分岐通路23を経て、休止排気
通路9へと流出する。At this time, the active cylinder #2 is in operation. The exhaust pressure of #4゜#6 is inactive cylinder #1゜#3. Since the exhaust pressure is higher than that of #5, the operating cylinder #2. #4. #6
A part of the high-temperature exhaust gas flows out through the branch passage 23 to the idle exhaust passage 9.
その際、分岐通路23の開口部24から流入する高温排
気は、休止側空燃比センサ16へと吹き当たるので、休
止気筒側の排温低下による休止側空燃比センサ16の冷
却が抑制され、部分気筒運転時であっても休止側空燃比
センサ16を作動良好な温度域に保持することが可能と
なる。At this time, the high-temperature exhaust gas flowing in from the opening 24 of the branch passage 23 blows against the idle air-fuel ratio sensor 16, so cooling of the idle air-fuel ratio sensor 16 due to a decrease in exhaust temperature on the idle cylinder side is suppressed, and the Even during cylinder operation, it is possible to maintain the idle-side air-fuel ratio sensor 16 in a temperature range that allows good operation.
したがって、気筒数制御回路21が燃料噴射弁gL g
3t g5からの燃料噴射の遮断を解除して、エンジン
が全気筒運転に移行した時に、休止側空燃比センサ16
は正確な空燃比信号を出し続けているので、燃料噴射の
遮断解除と同時にこの空燃比信号でもって休止気筒側の
空燃比に対°して正確なフィードバック制御を開始する
ことができる。Therefore, the cylinder number control circuit 21 controls the fuel injection valve gL g
3t When the cutoff of fuel injection from g5 is released and the engine shifts to all-cylinder operation, the idle side air-fuel ratio sensor 16
Since the cylinder continues to output an accurate air-fuel ratio signal, accurate feedback control for the air-fuel ratio of the idle cylinder can be started using this air-fuel ratio signal at the same time as the fuel injection cut-off is released.
すなわち、従来と異なりこの全気筒運転への移行時に休
止気筒側の空燃比をオープン制御する必要がなく、即座
に正確なフィードバック制御を開始できるので、この時
に休止気筒側の空燃比を極めて正確に理論空燃比に制御
することが可能となり、従来に比べて燃費を改善できる
。In other words, unlike conventional methods, there is no need to open control the air-fuel ratio on the idle cylinder side when transitioning to all-cylinder operation, and accurate feedback control can be started immediately. It is now possible to control the air-fuel ratio to the stoichiometric ratio, improving fuel efficiency compared to conventional methods.
しかもこの正確な理論空燃比制御は、三元触媒22の良
好な浄化作用をもたらし、従来に比べて排気中の有害物
質の除去率を高めることができる。Moreover, this accurate stoichiometric air-fuel ratio control brings about a good purification effect of the three-way catalyst 22, and can improve the removal rate of harmful substances in the exhaust gas compared to the conventional method.
休止気筒#1. #3. #5の作動が再開して全気筒
運転が始まり、分岐通路23を経て高温排気が休止側空
燃比センサ16へと吹き当たらなくなったとしても、今
度は休止気筒#1. #3. #5からの高温排気が直
接暖めるので、休止側空燃比センサ16の温度はいかな
る場合でも作動良好域に保持することができる。Deactivated cylinder #1. #3. Even if the operation of #5 resumes and all cylinders start operating, and high-temperature exhaust gas no longer blows to the idle air-fuel ratio sensor 16 via the branch passage 23, the idle cylinder #1. #3. Since the high-temperature exhaust gas from #5 directly warms the air-fuel ratio sensor 16, the temperature of the idle-side air-fuel ratio sensor 16 can be maintained within a good operating range in any case.
以上説明したように本考案によれば、部分気筒運転時で
あっても休止側空燃比センサの温度を作動良好域に保つ
ことができるので、全気筒運転への移行と同時に休止気
筒の空燃比に対する正確なフィードバック制御を開始で
きる。As explained above, according to the present invention, the temperature of the air-fuel ratio sensor on the idle side can be maintained within a good operating range even during partial cylinder operation. Accurate feedback control can be started.
したがって全気筒運転への移行時に、例えば燃費や三元
触媒による排気中の有害物質の除去率を改善することが
できる。Therefore, when transitioning to all-cylinder operation, it is possible to improve, for example, fuel efficiency and the removal rate of harmful substances in the exhaust gas by the three-way catalyst.
なお、本考案は同じ様にして直列気筒配置の同種エンジ
ンにも適用できることは言うまでもない。It goes without saying that the present invention can also be applied to similar engines with in-line cylinder arrangement.
図面は本考案の実施例を示す概略断面図である。
7・・・・・・排気通路、8・・・・・・稼動排気通路
、9・・・・・・休止排気通路、15・・・・・・稼動
側空燃比センサ、16・・・・・・休止側空燃比センサ
、17,18・・・・・・入コントロール回路、19・
・・・・・燃料噴射制御回路、21・・・・・・気筒数
制御回路、23・・・・・・分岐通路、24.25・・
・・・・開口部、#1. #3. #5・・・・・・休
止気筒、#2. #4. #6・・・・・・稼動気筒、
g1〜g6・・・・・・燃料噴射弁。The drawing is a schematic cross-sectional view showing an embodiment of the present invention. 7... Exhaust passage, 8... Working exhaust passage, 9... Dormant exhaust passage, 15... Working side air-fuel ratio sensor, 16... ...Stop side air-fuel ratio sensor, 17, 18...Input control circuit, 19.
... Fuel injection control circuit, 21 ... Cylinder number control circuit, 23 ... Branch passage, 24.25 ...
...Opening, #1. #3. #5... Deactivated cylinder, #2. #4. #6...Operating cylinder,
g1 to g6...Fuel injection valves.
Claims (1)
する休止気筒と、他の常に作動する稼動気筒と、休止気
筒と稼動気筒とに対応して休止排気通路と稼動排気通路
とに分割された排気通路と、休止気筒の作動停止時に休
止気筒へのみ休止排気通路から排気を還流する手段と、
休止排気通路と稼動排気通路に配設された休止気筒側と
稼動気筒側の空燃比センサとを備え、雨空燃比センサ出
力信号に基づいて休止気筒側と稼動気筒側の空燃比を独
立してフィードバック制御するようにした多気筒エンジ
ンにおいて、休止排気通路と稼動排気通路とを結ぶ分岐
通路を設けるとともに、分岐通路の稼動排気通路への接
続開口部を稼動側空燃比センサ配設部の下流側に、他方
休止排気通路への接続開口部を休止側空燃比センサ配設
部近傍にそれぞれ設定した気筒数制御エンジン。The exhaust gas is divided into a dormant cylinder whose fuel supply is cut and the operation is stopped when the engine is lightly loaded, an operating cylinder which is always operated, and a dormant exhaust passage and an operating exhaust passage corresponding to the dormant cylinder and the operating cylinder. a passage, and means for recirculating exhaust from the idle exhaust passage only to the idle cylinder when the idle cylinder is deactivated;
Equipped with air-fuel ratio sensors for the idle cylinder side and the active cylinder side, which are arranged in the idle exhaust passage and the active exhaust passage, and independently feeds back the air-fuel ratio of the idle cylinder side and the active cylinder side based on the rain air-fuel ratio sensor output signal. In a multi-cylinder engine that is controlled, a branch passage connecting the idle exhaust passage and the working exhaust passage is provided, and an opening for connecting the branch passage to the working exhaust passage is located downstream of the working side air-fuel ratio sensor arrangement part. , and a cylinder number control engine in which the connection opening to the other idle exhaust passage is set near the air-fuel ratio sensor arrangement part on the idle side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2481080U JPS6023480Y2 (en) | 1980-02-27 | 1980-02-27 | cylinder number control engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2481080U JPS6023480Y2 (en) | 1980-02-27 | 1980-02-27 | cylinder number control engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56127343U JPS56127343U (en) | 1981-09-28 |
JPS6023480Y2 true JPS6023480Y2 (en) | 1985-07-12 |
Family
ID=29620880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2481080U Expired JPS6023480Y2 (en) | 1980-02-27 | 1980-02-27 | cylinder number control engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6023480Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6050214A (en) * | 1983-08-31 | 1985-03-19 | Mazda Motor Corp | Exhauster for engine |
-
1980
- 1980-02-27 JP JP2481080U patent/JPS6023480Y2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS56127343U (en) | 1981-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6030450Y2 (en) | Exhaust pipe of engine with cylinder number control | |
JPS5951667B2 (en) | cylinder number control engine | |
JPS5853180B2 (en) | cylinder number control engine | |
JPS5853178B2 (en) | cylinder number control engine | |
JPS6023480Y2 (en) | cylinder number control engine | |
JPS6256346B2 (en) | ||
JPH11101144A (en) | Fuel supply control device for internal combustion engine | |
JPS6128033Y2 (en) | ||
JPH0261326A (en) | Intake controller for internal combustion engine | |
JPS595169Y2 (en) | cylinder number control engine | |
JPS6139065Y2 (en) | ||
JP2639000B2 (en) | Oxygen-enriched air control device for oxygen-enriched engine | |
JPH11107828A (en) | Air-fuel ratio controller for internal combustion engine | |
JP3161248B2 (en) | Air-fuel ratio control device for internal combustion engine with EGR device | |
JPS6318765Y2 (en) | ||
JPH0460135A (en) | Control device of engine | |
JPS5813085Y2 (en) | cylinder number control engine | |
JP3536580B2 (en) | Internal combustion engine | |
JPH021473Y2 (en) | ||
JPS5898639A (en) | Engine capable of changing number of cylinder to be operated | |
JPH077560Y2 (en) | Engine fuel injection amount control device | |
JPS6342095B2 (en) | ||
JPS62191628A (en) | Intake path device for multicylinder internal combustion engine | |
JPS5951666B2 (en) | cylinder number control engine | |
JPH02176138A (en) | Air-fuel ratio control device for internal combustion engine |