JPS5951666B2 - cylinder number control engine - Google Patents

cylinder number control engine

Info

Publication number
JPS5951666B2
JPS5951666B2 JP7175879A JP7175879A JPS5951666B2 JP S5951666 B2 JPS5951666 B2 JP S5951666B2 JP 7175879 A JP7175879 A JP 7175879A JP 7175879 A JP7175879 A JP 7175879A JP S5951666 B2 JPS5951666 B2 JP S5951666B2
Authority
JP
Japan
Prior art keywords
air
cylinder
engine
fuel ratio
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7175879A
Other languages
Japanese (ja)
Other versions
JPS55164744A (en
Inventor
利明 田中
幸寛 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP7175879A priority Critical patent/JPS5951666B2/en
Publication of JPS55164744A publication Critical patent/JPS55164744A/en
Publication of JPS5951666B2 publication Critical patent/JPS5951666B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 本発明はエンジン軽負荷時に一部気筒の作動を停止して
いる部分気筒運転を行う気筒数制御エンジンに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cylinder number control engine that performs partial cylinder operation in which operation of some cylinders is stopped when the engine is under light load.

一般に、エンジンを高い負荷状態で運転すると燃費が良
好になる傾向があり、このため多気筒エンジンにおいて
エンジン負荷の小さいときに、一部気筒への燃料供給を
カットして作動を休止させ、この分だけ残りの稼動気筒
の負荷を相対的に高め、全体として軽負荷領域の燃費を
改善するようにした気筒数制御エンジンが考えられた。
In general, fuel efficiency tends to improve when an engine is operated under a high load. Therefore, in a multi-cylinder engine, when the engine load is low, fuel supply to some cylinders is cut to stop operation, and the fuel consumption is reduced. An engine with controlled number of cylinders was devised that relatively increases the load on the remaining operating cylinders, thereby improving overall fuel efficiency in the light load range.

従来、このエンジンでは、第1図に示すように、絞り弁
1の下流に設けた遮断弁2を部分気筒運転時に閉じて休
止気筒への新気の供給をカットすると同時に、排気還流
弁3を開いて休止気筒側の排気通路4aから排気還流通
路5を経て、休止気筒の吸気系に略大気圧の排気を還流
して、作動体止中の休止気筒におけるポンピングロスを
低減し一層の燃費改善を図っている。
Conventionally, in this engine, as shown in FIG. 1, a cutoff valve 2 provided downstream of a throttle valve 1 is closed during partial cylinder operation to cut off the supply of fresh air to the idle cylinders, and at the same time, an exhaust recirculation valve 3 is closed. When opened, exhaust gas at approximately atmospheric pressure is recirculated from the exhaust passage 4a on the idle cylinder side to the exhaust gas recirculation passage 5 to the intake system of the idle cylinder, reducing pumping loss in the idle cylinder when the working body is inactive, further improving fuel efficiency. We are trying to

また、稼動気筒側と休止気筒側の両排気通路4a、4b
の合流点4C下流に空燃比センサ6を配設して、該セン
サ6からの空燃比信号に応じて、混合気が理論空燃比と
なるように、エアフローメータ7で計測した吸入空気流
量等に基づいて決定した燃料噴射量を制御回路8を介し
てフィードバック補正して、三元触媒9の転換効率を高
め排気の浄化を最良にすると同時に、さらに燃費の改善
を図っている。
In addition, both exhaust passages 4a and 4b on the operating cylinder side and the idle cylinder side
An air-fuel ratio sensor 6 is disposed downstream of the confluence point 4C of The fuel injection amount determined based on the fuel injection amount is feedback-corrected via the control circuit 8, thereby increasing the conversion efficiency of the three-way catalyst 9 and achieving the best purification of exhaust gas, and at the same time further improving fuel efficiency.

ところで、このような従来のエンジンにあっては、部分
気筒運転時において、相対的な負荷の高まりにより稼動
気筒でのNOx生産量が増加する一分、休止気筒から排
出された低温の還流排気が三元触媒9に漏入して、触媒
9の温度を低下させその転換効率を低減する結果、排気
の浄化度が悪くなるといった問題が起こる。
By the way, in such a conventional engine, during partial cylinder operation, the amount of NOx produced in the operating cylinders increases due to the relative increase in load, while the low-temperature recirculated exhaust gas discharged from the idle cylinders increases. This leaks into the three-way catalyst 9, lowering the temperature of the catalyst 9 and reducing its conversion efficiency, resulting in a problem that the degree of purification of exhaust gas deteriorates.

本発明は、上記にかんがみてなされたもので、特に部分
気筒運転時においても排気を良好に浄化できる気筒数制
御エンジンを得ることを目的とする。
The present invention has been made in view of the above, and an object of the present invention is to obtain a cylinder number controlled engine that can satisfactorily purify exhaust gas even during partial cylinder operation.

以下図面によって説明する。This will be explained below with reference to the drawings.

第2図に本発明の実施例を示す。FIG. 2 shows an embodiment of the present invention.

10は休止気筒側の排気系に空気を導入するための空気
導入パイプ(エアギヤラリ)で、途中にチェックバルブ
11が介装されており、その下流において気筒数に対応
した三本の二次エア導入パイプ12a、12b、12C
が接続している。
10 is an air introduction pipe (air gear) for introducing air into the exhaust system on the side of the idle cylinder, and a check valve 11 is interposed in the middle, and three secondary air introduction pipes corresponding to the number of cylinders are installed downstream of the check valve 11. Pipes 12a, 12b, 12C
is connected.

各パイプブ12a、12b、12Cは、パイプ12aを
例にとって示せば、第3図のように、排気ポー1−’
13 aの出1」付近の中心部に開口している。
Taking the pipe 12a as an example, each pipe block 12a, 12b, 12C has an exhaust port 1-' as shown in FIG.
It opens in the center near the exit 1 of 13a.

なお、第3図において、14aは排気弁、15aは吸気
ポート、16aは吸気弁、17aは休止気筒側の排気通
路4aのブランチ、18aはピストンである。
In FIG. 3, 14a is an exhaust valve, 15a is an intake port, 16a is an intake valve, 17a is a branch of the exhaust passage 4a on the side of the idle cylinder, and 18a is a piston.

その他の構成は第1図と同様であり、同一部材には同一
符号を付しである。
The rest of the structure is the same as in FIG. 1, and the same members are given the same reference numerals.

ところで、部分気筒運転時には体Iト気筒は作動を休止
するので、高圧の燃焼排気が吐出されることはなく、し
たがって各二次エア導入パイプ12a、12b、12C
の開1」部は全気筒運転時に比べて相対的に圧力が低下
する。
By the way, during partial cylinder operation, the cylinders are inactive, so high-pressure combustion exhaust gas is not discharged, and therefore each secondary air introduction pipe 12a, 12b, 12C
The pressure at the open 1'' portion is relatively reduced compared to when all cylinders are operated.

またこの部分気筒運転時には、略大気圧の排気が還流さ
izるものの、実際には、各パイプ12a、12b、1
2Cの開口部の圧力は、弁の開閉やピストンの運動にし
たがって略大気圧を中心としてその上下を周期的に変動
している。
Also, during this partial cylinder operation, although the exhaust gas at approximately atmospheric pressure is recirculated, in reality, each pipe 12a, 12b, 1
The pressure at the opening of 2C periodically fluctuates above and below approximately atmospheric pressure in accordance with the opening and closing of the valve and the movement of the piston.

このため、上記の開口部の圧力はクランプ回転に同期し
て周期的に負圧となるときがありそしてその負圧の大き
さも爆発行程で圧力上昇がない為全気筒運転時に比べて
大きいので、結局部分気筒運転時には全気筒運転時に比
べて相対的に多量の空気が、エアギヤラリ10、各パイ
プ12a、12b、12Cを経て、休止気筒側の排気通
路4aに導入される。
For this reason, the pressure in the opening mentioned above sometimes becomes negative pressure periodically in synchronization with the rotation of the clamp, and the magnitude of the negative pressure is also larger than when operating all cylinders because there is no pressure increase during the explosion stroke. After all, during partial cylinder operation, a relatively large amount of air is introduced into the exhaust passage 4a on the idle cylinder side through the air gear gallery 10 and the pipes 12a, 12b, 12C, compared to when the full cylinder operation is performed.

この導入された多量の空気は、稼動気筒側と休止気筒側
の両排気通路4a、4bの合流点4Cにおいて、稼動気
筒側から排出された燃焼排気に混入してそれを希釈する
This introduced large amount of air mixes with the combustion exhaust discharged from the active cylinder side and dilutes it at the confluence point 4C of both the exhaust passages 4a, 4b on the active cylinder side and the idle cylinder side.

この希釈された排気が空燃比センサ6へ流れ込むと、そ
の希釈分だけ該センサ6は薄い空燃比検出信号を出力す
るので、空燃比を濃くすべく、稼動気筒における燃料噴
射量が増加し、この結果、排気の希釈分に対応して部分
気筒運転時には、稼動気筒に濃い混合気が供給される。
When this diluted exhaust gas flows into the air-fuel ratio sensor 6, the sensor 6 outputs a weaker air-fuel ratio detection signal by the amount of dilution, so the fuel injection amount in the operating cylinder increases in order to enrich the air-fuel ratio. As a result, during partial cylinder operation, a rich air-fuel mixture is supplied to the active cylinders in accordance with the dilution of the exhaust gas.

したがって、理論空燃比のときに最も多くなるNOxの
生成量が、混合気の濃化によって低減する。
Therefore, the amount of NOx generated, which is highest when the air-fuel ratio is stoichiometric, is reduced by enriching the air-fuel mixture.

また、稼動気筒からの濃混合気の燃焼排気には未燃物質
が豊富に含まれ、さらにこれに希釈空気から多量の酸素
が添加された後これが三元触媒9へ流入するので、空気
による希釈化等により温度が低下したこのような排気で
゛あっても、三元触媒9で゛は容易に酸化反応が起こり
その反応熱で該触媒9が高温に保持される。
In addition, the rich mixture combustion exhaust from the operating cylinders contains a rich amount of unburned substances, and after a large amount of oxygen is added from the diluted air, this flows into the three-way catalyst 9, so it is diluted with air. Even with such exhaust gas whose temperature has decreased due to oxidation, etc., an oxidation reaction easily occurs in the three-way catalyst 9, and the catalyst 9 is maintained at a high temperature by the reaction heat.

一方、排気の希釈化に対応して、その排気が理論空燃比
の燃焼排気となるように混合気を濃化することから、触
媒9に流入するこのような排気は理論空燃比の混合気の
燃焼排気に相当している。
On the other hand, in response to the dilution of the exhaust gas, the air-fuel mixture is enriched so that the exhaust gas becomes the combustion exhaust gas at the stoichiometric air-fuel ratio. It corresponds to combustion exhaust.

この結果、前述の触媒9の高温化とあいまって、触媒9
の転換効率か゛極めて良好に保たれ、さらに前述のNO
x生産量の低減化と合わせて、部分気筒運転時であって
も排気は十分に浄化される。
As a result, combined with the above-mentioned high temperature of the catalyst 9, the catalyst 9
The conversion efficiency was maintained extremely well, and the above-mentioned NO
In addition to the reduction in production volume, the exhaust gas is sufficiently purified even during partial cylinder operation.

なお、各パイプ12a、12b、12Cから流入する空
気の量は各パイプの内部断面積等に著しく依存するので
、最適な流入量となるようにそれらの内部断面積等を決
定する必要がある。
Note that the amount of air flowing in from each of the pipes 12a, 12b, and 12C significantly depends on the internal cross-sectional area, etc. of each pipe, so it is necessary to determine the internal cross-sectional area, etc., so as to obtain the optimum inflow amount.

また、チェックバルブ11は排気の逆流を防止する働き
をする。
Furthermore, the check valve 11 functions to prevent backflow of exhaust gas.

ところで、全気筒運転時には、前述したように、各パイ
プ12a、12b、12Cから流入する空気の量は微量
であり、混合気は正確に理論空燃比にフィードバック制
御されるが、これを一層確実にするために、チェックバ
ルブ11の上流に全気筒運転時にのみエアギヤラリ10
を遮断する弁を設けてもよい。
By the way, during all-cylinder operation, as mentioned above, the amount of air flowing in from each pipe 12a, 12b, 12C is very small, and the air-fuel mixture is accurately feedback-controlled to the stoichiometric air-fuel ratio. In order to
A valve may be provided to shut off the

以上説明したように、本発明によれば、休止気筒側の排
気系に部分気筒運転時に空気を導入する簡単な機構を設
けるだけで、部分気筒運転時であっても排気を十分に浄
化することが可能となる。
As explained above, according to the present invention, exhaust gas can be sufficiently purified even during partial cylinder operation by simply providing a simple mechanism for introducing air into the exhaust system on the idle cylinder side during partial cylinder operation. becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のエンジンを示す概略断面図、第2図は本
発明のエンジンの実施例要部を示す概略断面図、第3図
は第2図の実施例における二次エア導入パイプの開「]
部を詳細に示す断面図である。 ]・・・紋り弁、2・・・遮断弁、3・・・排気還流弁
、4a、4b・・・排気通路、4C・・・合流点、5・
・・排気還流通路、6・・・空燃比センサ、7・・・エ
アフローメータ、計・・制御回路、9・・・三元触媒、
10・・・エアギヤラリ、11・・・チェックバルブ、
12a、12b、12C・・・二次エア導入パイプ、1
3a・・・排気ポート、14a・・・排気弁、15a・
・・吸気ポート、16a・・・吸気弁、17a・・・排
気通路のブランチ、18a・・・ビス1〜ン。
FIG. 1 is a schematic sectional view showing a conventional engine, FIG. 2 is a schematic sectional view showing main parts of an embodiment of the engine of the present invention, and FIG. "]
It is a sectional view showing a part in detail. ]...Finger valve, 2...Shutoff valve, 3...Exhaust recirculation valve, 4a, 4b...Exhaust passage, 4C...Confluence point, 5...
...Exhaust recirculation passage, 6...Air-fuel ratio sensor, 7...Air flow meter, meter...Control circuit, 9...Three-way catalyst,
10...Air gear rally, 11...Check valve,
12a, 12b, 12C...Secondary air introduction pipe, 1
3a...Exhaust port, 14a...Exhaust valve, 15a...
... Intake port, 16a... Intake valve, 17a... Exhaust passage branch, 18a... Screws 1 to 1.

Claims (1)

【特許請求の範囲】 1 エンジン軽負荷時に一部気筒への燃料の供給を遮断
して作動を停止し部分気筒運転を行う手段と、排気ポー
ト下流の排気通路に設けられた空燃比センサの検出値に
応じて混合気が理論空燃比となるように燃料供給量をフ
ィードバック制御する手段と、空燃比センサの下流にて
排気通路に配設された三元触媒とを有する多気筒エンジ
ンにおいて、部分気筒運転時に作動が停止する気筒の排
気ポートに一端が開口しかつ他端が大気と連通した空気
導入パイプと、空気導入パイプに介装されたチェックバ
ルブとを備えた気筒数制御エンジン。 2 空気導入パイプは、チェックバルブ上流にて部分気
筒運転時のみ開く遮断弁が介装されている特許請求の範
囲第1項記載の気筒数制御エンジン。
[Scope of Claims] 1. Means for performing partial cylinder operation by cutting off fuel supply to some cylinders to stop operation when the engine is under light load, and detection by an air-fuel ratio sensor provided in the exhaust passage downstream of the exhaust port. In a multi-cylinder engine having a means for feedback controlling the fuel supply amount so that the air-fuel mixture reaches the stoichiometric air-fuel ratio according to the air-fuel ratio sensor, and a three-way catalyst disposed in the exhaust passage downstream of the air-fuel ratio sensor, This engine is equipped with an air introduction pipe having one end open to the exhaust port of the cylinder whose operation is stopped during cylinder operation and the other end communicating with the atmosphere, and a check valve interposed in the air introduction pipe. 2. The cylinder number control engine according to claim 1, wherein the air introduction pipe is provided with a cutoff valve that opens only during partial cylinder operation upstream of the check valve.
JP7175879A 1979-06-07 1979-06-07 cylinder number control engine Expired JPS5951666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7175879A JPS5951666B2 (en) 1979-06-07 1979-06-07 cylinder number control engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7175879A JPS5951666B2 (en) 1979-06-07 1979-06-07 cylinder number control engine

Publications (2)

Publication Number Publication Date
JPS55164744A JPS55164744A (en) 1980-12-22
JPS5951666B2 true JPS5951666B2 (en) 1984-12-15

Family

ID=13469753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7175879A Expired JPS5951666B2 (en) 1979-06-07 1979-06-07 cylinder number control engine

Country Status (1)

Country Link
JP (1) JPS5951666B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59115420A (en) * 1982-12-22 1984-07-03 Mazda Motor Corp Secondary air feeder for cylinder number control engine

Also Published As

Publication number Publication date
JPS55164744A (en) 1980-12-22

Similar Documents

Publication Publication Date Title
US4036014A (en) Method of reducing emission of pollutants from multi-cylinder engine
US4337740A (en) Internal combustion engine
JPS6030450Y2 (en) Exhaust pipe of engine with cylinder number control
RU2009101965A (en) 6-STROKE ENGINE AND ENGINE VALVE CONTROL SYSTEM
JPS5951667B2 (en) cylinder number control engine
RU2013134477A (en) METHOD FOR ENGINE (OPTIONS)
US11111864B2 (en) Intake oxygen concentration control system suitable for engine with lean NOx trapping technology
AU2012330248B2 (en) Gas engine, gas heat pump device and cogeneration device that use gas engine, and method for controlling gas engine
JPS6146421A (en) Engine
JPS5951666B2 (en) cylinder number control engine
JP2639000B2 (en) Oxygen-enriched air control device for oxygen-enriched engine
JPH0740667Y2 (en) Split operation control device for two-cycle internal combustion engine
JPS6318765Y2 (en)
JPS5664115A (en) Exhaust gas purifier for internal combustion engine
JPS6023480Y2 (en) cylinder number control engine
JP2007177656A (en) Internal combustion engine
JPS59543A (en) Cylinder number controlled engine
JPS5812466B2 (en) Exhaust gas recirculation device
JPS6145054B2 (en)
JPS58222938A (en) Engine controlled in number of operating cylinders
JPS5982516A (en) Exhaust gas treatment device of operating cylinder number controlled engine
JPS5833371B2 (en) engine supercharging device
JPH03202668A (en) Oxygen concentration control device for engine with auxiliary chamber
JPS6111480Y2 (en)
JPS6027768Y2 (en) Secondary air supply device for exhaust gas purification