JPS59543A - Cylinder number controlled engine - Google Patents

Cylinder number controlled engine

Info

Publication number
JPS59543A
JPS59543A JP10938282A JP10938282A JPS59543A JP S59543 A JPS59543 A JP S59543A JP 10938282 A JP10938282 A JP 10938282A JP 10938282 A JP10938282 A JP 10938282A JP S59543 A JPS59543 A JP S59543A
Authority
JP
Japan
Prior art keywords
air
cylinders
engine
fuel
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10938282A
Other languages
Japanese (ja)
Inventor
Shizuo Ishizawa
石澤 静雄
Mitsumasa Inoue
井上 光正
Takashi Fujii
敬士 藤井
Shigeru Kamegaya
亀ケ谷 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP10938282A priority Critical patent/JPS59543A/en
Publication of JPS59543A publication Critical patent/JPS59543A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/02Cutting-out

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To stablilize combustion and to suppress the fluctuation of engine cycle by a method wherein oxygen sensors are provided in exhaust gas passages and when the multicylinder engine performing an air-fuel ratio control is operated with partial cylinders, the density of a air-fuel mixture supplied into the operating cylinders is made higher than the theoretical air- fuel ratio. CONSTITUTION:Calatysts 14 and 15 are provided in the exhaust passage 6 and the downstream side of a junction of the exhaust passages 6 and 7 on the operating side of the multicylinder engine comprising the non-operating side cylinders D-F and the operating side cylinders A-C and the O2 sensors 16 and 17 are provided in the exhaust passages 6 and 7, respectively, so that the signals of the O2 sensors are inputted to a control device 19 which transmits an injection pulse to fuel injection valves (a-f) on the bases of the quantity of sucked air, the engne r.p.m. and the like. When the engine is operated with the partial cylinders, a cotrol means 20 corrects sharply the pulse width of the injection pulse signal by a predetemined ratio and the density of the air-fuel mixture supplied to the operating cylinders is made somewhat higher than the theoretical air-fuel ratio so that the actual air-fuel ratio does not become lower than the theoretical air-fuel ratio even when a hunting phenomenon takes place and it is possible to control the fluctuation of engine cycle irrespective of the lengths of combustion intervals among the cylinders A-C, to thereby improve the operation characteristic of the engine.

Description

【発明の詳細な説明】 この発明は、エンジン軽負荷域等で一部気筒の作動を休
止させて部分気筒運転を行なう気筒数制御エンジンの改
良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a cylinder number control engine that performs partial cylinder operation by suspending the operation of some cylinders in a light engine load range or the like.

一般に、エンジンを高い負荷状態で運転すると燃費が良
好になる傾向があり、このため多気筒エンジンにおいて
、エンジン負荷の小さいときに一部気筒への燃料の供給
をカットして作動を休止させ、この分だけ残りの稼動側
気筒の負荷を相対的に高め、全体として軽負荷領域の燃
費を改善するようにした気筒数制御エンジンが考えられ
た。(特開昭55−131540等) 本出願人が先に出願したこの種のエンジンでは、第1図
に示すように、稼動側の気筒A−eと休止側の気筒D−
Fに対応して吸気通路2が絞弁1の下流にて稼動側吸気
通路3と休止側吸気通路4とに分割され、排気通路5も
途中まで稼動側排気通路6と休止側排気通路7とに分割
されている。
In general, fuel efficiency tends to improve when an engine is operated under a high load. For this reason, in a multi-cylinder engine, fuel supply to some cylinders is cut to stop operation when the engine load is light. An engine with controlled number of cylinders was devised that relatively increases the load on the remaining active cylinders by that amount, thereby improving overall fuel efficiency in the light load range. (Japanese Unexamined Patent Publication No. 55-131540, etc.) In this type of engine, which was previously filed by the present applicant, as shown in FIG.
Corresponding to F, the intake passage 2 is divided downstream of the throttle valve 1 into a working side intake passage 3 and a resting side intake passage 4, and the exhaust passage 5 is also divided halfway into a working side exhaust passage 6 and a resting side exhaust passage 7. It is divided into.

そして、エンジンの軽負荷時や無負荷時に気筒り、Fの
作動を休止させるときには、例えばエア70−メータ8
からの吸入空気量信号やイグニッションコイル9からの
回転数信号に基づき、制御装置10が気筒り、Fに対応
する燃料噴射弁d〜ft−全ft−して燃料の供給をカ
ットすると共に、休止側吸気通路4の上流部に介装され
た遮断弁11を閉じ、同時にエアフローメータ8および
絞弁1をバイパスする新気供給通路12の弁13を開い
てこれらの上流側の新気を休止側気筒D−Fへ十分に供
給する。
When stopping the operation of cylinders and F when the engine is under light load or no load, for example, the air 70-meter 8
Based on the intake air amount signal from the ignition coil 9 and the rotational speed signal from the ignition coil 9, the control device 10 turns on the cylinder, cuts the fuel supply by switching the fuel injection valve d~ft-total ft- corresponding to F, and stops the fuel injection valve. The shutoff valve 11 installed at the upstream side of the side intake passage 4 is closed, and at the same time, the valve 13 of the fresh air supply passage 12 that bypasses the air flow meter 8 and the throttle valve 1 is opened to supply fresh air on the upstream side to the rest side. Sufficiently supplies cylinders D-F.

これにより、休止側気筒り、、 Fにおけるボンピング
ロスを低減しつつ部分気筒運転を行なっている。
As a result, partial cylinder operation is performed while reducing the pumping loss in the cylinders on the idle side.

ただし、この場合エンジンの出力を全気筒運転時と同一
に保つため、稼動側気筒A、−Cでは燃料噴射弁axc
の噴射定数が2倍になるように切換えられる。
However, in this case, in order to keep the engine output the same as when operating all cylinders, the fuel injection valve axc in the operating cylinders A and -C is
is switched so that the injection constant is doubled.

ところで、このエンジンにあっては、全気筒運転時に稼
動側気筒A、、=Cおよび休止側気筒り、Fとも同様に
燃焼した排気ガスを排出するが、部分気筒運転時には稼
動側気筒A、Cから同じく燃焼ガスが、休止側気筒り、
−Fからは比較的低温(はぼ常温)の新気がそのまま排
出される。
By the way, in this engine, during full-cylinder operation, the active cylinders A, C and the idle cylinders, F, emit combusted exhaust gas in the same way, but during partial cylinder operation, the active cylinders A, C Similarly, combustion gas flows from the cylinder on the idle side,
Fresh air at relatively low temperature (almost room temperature) is directly discharged from -F.

したがって、この排気処理装置として三元触媒を用いる
場合には、図のように稼動側気筒A、−Cからの排気の
みを浄化する第1の触媒14と、主に全気筒運転時に休
止側気筒り、Fからの排気を浄化する第2の触媒15と
が、稼動側排気通路6の下流と、両排気通路6,70合
流部下流とに分割設置される。
Therefore, when using a three-way catalyst as this exhaust treatment device, as shown in the figure, the first catalyst 14 purifies only the exhaust from the active cylinders A and -C, and the inactive cylinder mainly when all cylinders are operated. A second catalyst 15 for purifying the exhaust gas from F is separately installed downstream of the working side exhaust passage 6 and downstream of the confluence of both exhaust passages 6 and 70.

また、これらの触媒14−、15の上流側には、それぞ
れ酸素センサ(0,センサ)16.17が設置され、そ
の空燃比検出信号は前述の制御装置10に送られる。
Furthermore, oxygen sensors (0, sensor) 16 and 17 are installed upstream of these catalysts 14- and 15, respectively, and their air-fuel ratio detection signals are sent to the control device 10 described above.

そして、部分気筒運転時には、稼動側気筒A〜Cで理論
空燃比の混合気が得られるように、第1の酸素センサ1
6の検出信号に応じて、燃料噴射弁a−Cの噴射量が補
正され、全気筒運転時には、第2の酸素センサ17の検
出信号に応じて、全燃料噴射弁a−fの噴射量を補正し
、理論空燃比となるように制御している。これによシ、
触媒14゜15での転換効率を高めている。
During partial cylinder operation, the first oxygen sensor 1
In response to the detection signal of the second oxygen sensor 17, the injection amount of the fuel injection valves a to C is corrected, and during all-cylinder operation, the injection amount of all the fuel injection valves a to f is corrected in accordance with the detection signal of the second oxygen sensor 17. The air-fuel ratio is corrected and controlled to reach the stoichiometric air-fuel ratio. For this,
Conversion efficiency with catalyst 14°15 is increased.

なお、燃料噴射弁a −fの基本噴射量は、やはり制御
装置10によシ、吸入空気量信号、回転数信号等に基づ
いてコントロールされる。
Note that the basic injection amount of the fuel injection valves a to f is also controlled by the control device 10 based on the intake air amount signal, the rotation speed signal, etc.

しかしながら、このような従来の気筒数制御エンジンに
あっては、部分気筒運転時にも酸素センサ16からの検
出信号に応じて稼動側気筒A、Cの空燃比をフィードバ
ック制御しているが、部分気筒運転時には気筒A、Cの
燃焼間隔が長くなるから酸素濃度の検出に応答遅れが生
じていた。
However, in such a conventional cylinder number controlled engine, the air-fuel ratio of the active cylinders A and C is feedback-controlled according to the detection signal from the oxygen sensor 16 even during partial cylinder operation. During operation, the combustion interval between cylinders A and C becomes long, resulting in a delay in response to oxygen concentration detection.

フィードバック制御している関係上、混合気は理論空燃
比を境にしてわずかづつであるが変動し濃薄を繰返すが
、この濃薄の検出情報が燃焼気筒数の少ない分だけ間隔
がおいて遅れてしまう。このため、部分気筒運転時には
、全気筒運転時と比べて燃焼混合気の空燃比のノ1ンチ
ングが大きくなってサイクル変動が増加し、運転性が悪
化するという問題があった。
Due to feedback control, the air-fuel mixture changes slightly from the stoichiometric air-fuel ratio and repeats richness and leanness, but the detection information of this richness and leanness is delayed due to the small number of combustion cylinders. It ends up. Therefore, during partial cylinder operation, there is a problem in that the air-fuel ratio of the combustion mixture becomes larger than during full cylinder operation, cycle fluctuations increase, and drivability deteriorates.

この発明は、このような従来の問題点に着目してなされ
たもので、部分気筒運転時に稼動側気筒の混合比をいく
らか濃いめに設定することにより、空燃比のハンチング
を回避して稼動側気筒の燃焼を全体的に安定させ、サイ
クル変動を抑制して運転性の向上を図った気筒数制御エ
ンジンの提供を目的とする。
This invention was made by focusing on such conventional problems, and by setting the mixture ratio of the active cylinder to be somewhat rich during partial cylinder operation, hunting of the air-fuel ratio can be avoided and the active cylinder The objective is to provide an engine with controlled number of cylinders that stabilizes overall combustion, suppresses cycle fluctuations, and improves drivability.

以下、本発明を図面に基づいて説明する。Hereinafter, the present invention will be explained based on the drawings.

第2図は本発明の一実施例を示すもので、この実施例で
は軽負荷時等に作動を休止(燃焼を中止)する休止側気
筒D−Fと、常時作動を継続する稼動側気筒A、Cの位
置が第1図と入れ替えである。
FIG. 2 shows an embodiment of the present invention. In this embodiment, the inactive cylinder D-F stops operating (stops combustion) during light loads, etc., and the operating cylinder A continues to operate at all times. , C are interchanged with those in FIG.

また、axc¥i稼動側気筒A、−Cに対応する燃料噴
射弁、d、fは休止側気筒り、Fに対応する燃料噴射弁
で、排気中の酸素濃度を検出する酸素センサ16,17
はそれぞれ触媒14.15(三元触媒)上流の稼動側排
気通路6と休止側排気通路7に設置されている。
In addition, axc\i is a fuel injection valve corresponding to the operating cylinders A and -C, d and f are fuel injection valves corresponding to the idle cylinder and F, and oxygen sensors 16 and 17 detect the oxygen concentration in the exhaust gas.
are installed in the active side exhaust passage 6 and the idle side exhaust passage 7 upstream of the catalysts 14 and 15 (three-way catalyst), respectively.

エアフローメータ8からの信号と、イグニッションコイ
ル(図示しない)からの信号、それに絞弁スイッチ18
等からの信号は制御装置19に入力され、これらの信号
に基づきエンジンの軽負荷時や無負荷時になると、制御
装置19は燃料噴射弁d、fを全閉保持して休止側気筒
り、Fへの燃料供給を遮断すると共に、休止側吸気通路
4上流の遮断弁11f、閉じ、エアフローメータ8およ
び絞弁1をバイパスする新気供給通路12の弁13を開
いて気筒D−Fの作動を休止させ、稼動側気筒A、、−
Cのみの作動による部分気筒運転を行なり。
A signal from an air flow meter 8, a signal from an ignition coil (not shown), and a throttle valve switch 18.
Signals from etc. are input to the control device 19, and based on these signals, when the engine is under light load or no load, the control device 19 keeps the fuel injection valves d and f fully closed, and closes the fuel injection valves d and f to switch to the idle cylinder and F. At the same time, the shutoff valve 11f upstream of the intake passage 4 on the idle side is closed, and the valve 13 of the fresh air supply passage 12 that bypasses the air flow meter 8 and throttle valve 1 is opened to operate cylinders D-F. Stop, working cylinder A, -
Perform partial cylinder operation by operating only C.

他方、エンジン軽負荷時、無負荷時以外のときには、制
御装置19は上記とは逆の指令を出し、気筒り、、=F
の作動を復帰して全気筒運転が行なわれる。
On the other hand, when the engine is not under light load or when there is no load, the control device 19 issues a command opposite to the above, and the cylinder pressure is...=F.
operation is restored and all-cylinder operation is performed.

この全気筒運転時には、制御装置19にフィードバック
される酸素センナ16.17の検出信号に応じて、それ
ぞれ対応する燃料噴射弁arc。
During this all-cylinder operation, the corresponding fuel injection valves arc are activated in response to detection signals from the oxygen sensors 16 and 17 that are fed back to the control device 19.

d、fの噴射量が補正され、各気筒A、C、D〜Fとも
理論空燃比の混合気が得られるようにコントロールされ
る。
The injection amounts of d and f are corrected, and each cylinder A, C, and D to F are controlled so that a mixture at the stoichiometric air-fuel ratio is obtained.

一方、部分気筒運転時には、酸素センサ16の検出信号
に基づき、稼動側気筒A、CK対応する燃料噴射弁ax
cの噴射量が補正され空燃比がコントロールされるが、
このときその混合気を理論空燃比よりいくらか過濃に設
定する制御手段2゜が設けられる。
On the other hand, during partial cylinder operation, based on the detection signal of the oxygen sensor 16, the fuel injection valve ax corresponding to the operating cylinders A and CK is
The injection amount of c is corrected and the air-fuel ratio is controlled, but
At this time, a control means 2° is provided for setting the air-fuel mixture to be somewhat richer than the stoichiometric air-fuel ratio.

この制御手段20のブロック構成を第3図に示すと、2
1は制御装置19内の気筒数検出部で運転状態に応じて
全気筒運転信号、部分気筒運転信号を出力する。
The block configuration of this control means 20 is shown in FIG.
Reference numeral 1 denotes a cylinder number detection section in the control device 19, which outputs a full cylinder operation signal and a partial cylinder operation signal according to the operating state.

燃料噴射パルス巾演算部2zは、これらの信号と共に入
力されるエアフローメータ8と酸素センサ16からの信
号に応じて、燃料噴射弁axcを駆動するパルス信号の
適正パルス巾を演算する。
The fuel injection pulse width calculation section 2z calculates the appropriate pulse width of the pulse signal that drives the fuel injection valve axc, according to the signals from the air flow meter 8 and the oxygen sensor 16 that are input together with these signals.

そして、この駆動パルス信号は噴射弁駆動部nを介して
燃料噴射弁a−Cに与えられ、稼動側気筒A、、−Cで
の噴射量をコントロールするが、気筒数検出部21から
部分気筒運転信号が出力されている間、前記制御手段2
0としての燃料増量回路24が動作して駆動パルス信号
のパルス巾を所定比で大きくするように指令する。
This drive pulse signal is given to the fuel injection valves a-C via the injection valve drive section n to control the injection amount in the working cylinders A, -C. While the operation signal is being output, the control means 2
The fuel increase circuit 24 as 0 operates to instruct the pulse width of the drive pulse signal to be increased by a predetermined ratio.

これにより、燃料噴射弁a 、−Cの噴射量を多くして
部分気筒運転時に稼動側気筒A−Cに供給する混合気を
理論空燃比よりいくらか過濃にする。
As a result, the amount of injection from the fuel injection valves a and -C is increased to make the air-fuel mixture supplied to the active cylinders A to C during partial cylinder operation somewhat richer than the stoichiometric air-fuel ratio.

死・ この場合、その空燃比は燃焼にあまり繋影響を及ぼさな
い程度に設定される。
In this case, the air-fuel ratio is set to a level that does not significantly affect combustion.

なお、第2図中25は、排気還流通路、26はEGR弁
を示す。
In addition, in FIG. 2, 25 indicates an exhaust gas recirculation passage, and 26 indicates an EGR valve.

このように構成したので、部分気筒運転時に、稼動側気
筒A、Cに供給されたやや濃いめの混合気は、良く燃焼
した後排出され、排り中のNO!(窒素酸化物)の量は
極めて少ないものとなる。
With this configuration, during partial cylinder operation, the slightly richer air-fuel mixture supplied to the active cylinders A and C is exhausted after being well combusted, and NO! The amount of (nitrogen oxides) becomes extremely small.

そして、この排気は稼動側排気通路6t−介して触媒1
4へ導びかれる。
Then, this exhaust gas passes through the operating side exhaust passage 6t to the catalyst 1.
Leads to 4.

したがって、常にやや濃空燃比を目標に制御するため、
ハンチングを起しても空燃比が理論空燃比よりも薄くな
ることはほとんどなく、その結果気筒A、、=Cの燃焼
間隔が長くても部分気筒運転時のサイクル変動を十分に
抑制でき、運転性を向上することができる。
Therefore, in order to always aim for a slightly richer air-fuel ratio,
Even if hunting occurs, the air-fuel ratio will almost never become leaner than the stoichiometric air-fuel ratio, and as a result, even if the combustion interval of cylinders A, , = C is long, cycle fluctuations during partial cylinder operation can be sufficiently suppressed, and the operation can improve sexual performance.

また、触媒14内では還元雰囲気となっているから、排
気は触媒14を通る際にNOxが完全に還元され、その
後休止側気筒り、Fから排出された新気と合流1−なが
ら下流の触媒15に導びかれる。
In addition, since there is a reducing atmosphere inside the catalyst 14, the NOx in the exhaust gas is completely reduced when it passes through the catalyst 14, and then it joins the fresh air discharged from the idle cylinder and the downstream catalyst. 15.

このため、触媒15内では酸化雰囲気となって、排気中
のC0(−酸化炭素)やHC(炭化水素)が十分に浄化
され、これKよシ清浄排気を得ることができる。
Therefore, an oxidizing atmosphere is created within the catalyst 15, and CO (-carbon oxide) and HC (hydrocarbons) in the exhaust gas are sufficiently purified, making it possible to obtain exhaust gas that is much cleaner than K.

グを回避するようやや濃混合気に設定して、稼動側気筒
A、Cの燃焼を安定に維持し、排気清浄化を図りつつエ
ンジンの円滑な運転を確保することができる。
By setting a slightly rich air-fuel mixture to avoid this, it is possible to maintain stable combustion in the active cylinders A and C, thereby ensuring smooth operation of the engine while purifying the exhaust gas.

なお、全気筒運転時には、従来例と同様圧各気筒A、、
、C、D、Fとも理論空燃比に制御して、機関性能、排
気性能を良好に維持することができる。
In addition, during all-cylinder operation, the pressure of each cylinder A, .
, C, D, and F can all be controlled to the stoichiometric air-fuel ratio to maintain good engine performance and exhaust performance.

第4図は本発明の他の実施例で、全気筒運転時のみ酸素
センサ27からの信号に応じて空燃比のフィードバック
制御を行ない、部分気筒運転時にはエアフローメータ8
等からの信号に対応して燃料噴射弁a −cの噴射量を
所定量増゛量し、オープン制御するものである。
FIG. 4 shows another embodiment of the present invention, in which feedback control of the air-fuel ratio is performed according to the signal from the oxygen sensor 27 only during full cylinder operation, and the air flow meter 8 is used during partial cylinder operation.
The injection amount of fuel injection valves a to c is increased by a predetermined amount in response to signals from the fuel injection valves a to c, and the opening control is performed.

この場合の制御手段28は、第5図に示すように、エア
フローメータ8の信号にのみ基づき燃料噴射パルス巾演
算部22で演算された駆動パルス信号のパルス巾を所定
比で増加修正し、もちろん部分気筒運転中は常に稼動側
気筒A−Cでやや濃混合気となるように制御される。た
だし、前記実これによれば、空燃比のハンチングを防止
してサイクル変動を抑制することができると共に、制御
系統が一つで良いため、コスト低減が図れる。
In this case, as shown in FIG. 5, the control means 28 increases the pulse width of the drive pulse signal calculated by the fuel injection pulse width calculation section 22 based only on the signal of the air flow meter 8 by a predetermined ratio, and of course During partial cylinder operation, the mixture is always controlled to be slightly rich in the active cylinders A to C. However, according to this, hunting of the air-fuel ratio can be prevented and cycle fluctuations can be suppressed, and since only one control system is required, costs can be reduced.

なお、各実施例では、燃焼によるNOxの発生量が極め
て少ないから、排気還流を減らすことができ、エンジン
性能を高く維持することができる。
In each example, since the amount of NOx generated by combustion is extremely small, exhaust gas recirculation can be reduced and engine performance can be maintained at a high level.

以上説明した通り、本発明によれば、軽負荷域等で一部
気筒の作動を休止させ部分気筒運転を行なうようにした
エンジンにおいて、部分気筒運転時に稼動側気筒への混
合気を理論空燃比よりいくらか過濃にしたので、排気中
に酸素センサを設置し空燃比制御を行なう際に、多少の
空燃比のハンチングがあってもほぼ過濃側に維持でき、
安定燃焼を維持して部分気筒運転時のサイクル変動を低
減することができる。また、過濃混合気により、NOx
の発生が抑えられると共に、触媒にて合流する休止側気
筒からの排出新気により、CO、HCも十分に低減する
ことができ、運転性能、排気性能の向上が図れるという
効果がある。
As explained above, according to the present invention, in an engine in which the operation of some cylinders is suspended in a light load range etc. to perform partial cylinder operation, the air-fuel mixture to the active cylinder is adjusted to the stoichiometric air-fuel ratio during partial cylinder operation. By making the exhaust gas a little richer, even if there is some hunting in the air-fuel ratio, when an oxygen sensor is installed in the exhaust gas to control the air-fuel ratio, it can be maintained almost on the rich side.
It is possible to maintain stable combustion and reduce cycle fluctuations during partial cylinder operation. In addition, due to excessively rich mixture, NOx
This has the effect of suppressing the generation of CO and HC, and also sufficiently reducing CO and HC due to the fresh air discharged from the cylinders on the idle side joining together at the catalyst, thereby improving driving performance and exhaust performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の構成断面図、第2図は本発明の実施例
を示す構成断面図、第3図はその制御手段のブロック構
成図、第4図は本発明の他の実施例を示す構成断面図、
第5図はその制御手段のブロック構成図である。 1・・・絞弁、6・・・稼動側排気通路、7・・・休止
41111排気通路、8・・・エアフローメータ、14
.15・・・触11.16.17・・・酸素センサ、1
8・・・絞弁スイッチ、19・・・制御装置、20・・
・制御手段、27・・・酸素センサ、28・・・制御手
段。 特許出願人  日産自動車株式会社
FIG. 1 is a sectional view of the configuration of a conventional example, FIG. 2 is a sectional view of the configuration of an embodiment of the present invention, FIG. 3 is a block configuration diagram of its control means, and FIG. 4 is a sectional view of another embodiment of the present invention. A cross-sectional diagram showing the configuration,
FIG. 5 is a block diagram of the control means. 1... Throttle valve, 6... Working side exhaust passage, 7... Pause 41111 exhaust passage, 8... Air flow meter, 14
.. 15... Touch 11.16.17... Oxygen sensor, 1
8... Throttle valve switch, 19... Control device, 20...
- Control means, 27...Oxygen sensor, 28...Control means. Patent applicant Nissan Motor Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] エンジンの軽負荷時や無負荷時に燃料の供給が遮断され
作動を休止する休止側気筒と、常時燃料と新気が供給さ
れ作動を継続する稼動側気筒とを備え、これら休止側気
筒と稼動側気筒とに対応して排気通路を途中まで分割し
、稼動側排気通路と合流後の排気通路にそれぞれ触媒を
設置した多気筒エンジンにおいて、上記燃料遮断時に稼
動側気筒への混合気を理論空燃比よシいくらか過濃に設
定する制御手段を備えたことを特徴とする気筒数制御エ
ンジン。
It is equipped with a dormant cylinder that stops operating when the fuel supply is cut off when the engine is under light load or no load, and an active cylinder that is constantly supplied with fuel and fresh air and continues to operate. In a multi-cylinder engine in which the exhaust passage is divided halfway according to the cylinders, and a catalyst is installed in the working side exhaust passage and the combined exhaust passage, the air-fuel mixture to the working side cylinder is changed to the stoichiometric air-fuel ratio when the fuel is shut off. An engine with a controlled number of cylinders, characterized in that it is equipped with a control means for setting the richness to be more or less rich.
JP10938282A 1982-06-25 1982-06-25 Cylinder number controlled engine Pending JPS59543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10938282A JPS59543A (en) 1982-06-25 1982-06-25 Cylinder number controlled engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10938282A JPS59543A (en) 1982-06-25 1982-06-25 Cylinder number controlled engine

Publications (1)

Publication Number Publication Date
JPS59543A true JPS59543A (en) 1984-01-05

Family

ID=14508817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10938282A Pending JPS59543A (en) 1982-06-25 1982-06-25 Cylinder number controlled engine

Country Status (1)

Country Link
JP (1) JPS59543A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4616879A (en) * 1984-03-21 1986-10-14 Howard Booher Dump trailer with quiet cushions
US4652788A (en) * 1983-08-18 1987-03-24 Max-Planck-Gesellschaft Zur Foerderung Channel secondary electron multiplier
US4909223A (en) * 1987-09-09 1990-03-20 Hitachi, Ltd. Air-fuel ratio control apparatus for multicylinder engine
US6406078B1 (en) * 1994-05-19 2002-06-18 Henkel Corporation Composite laminate automotive structures

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58573A (en) * 1981-06-24 1983-01-05 日産自動車株式会社 Electronic lock apparatus for automobile

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58573A (en) * 1981-06-24 1983-01-05 日産自動車株式会社 Electronic lock apparatus for automobile

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4652788A (en) * 1983-08-18 1987-03-24 Max-Planck-Gesellschaft Zur Foerderung Channel secondary electron multiplier
US4616879A (en) * 1984-03-21 1986-10-14 Howard Booher Dump trailer with quiet cushions
US4909223A (en) * 1987-09-09 1990-03-20 Hitachi, Ltd. Air-fuel ratio control apparatus for multicylinder engine
US6406078B1 (en) * 1994-05-19 2002-06-18 Henkel Corporation Composite laminate automotive structures
US6865811B2 (en) 1994-05-19 2005-03-15 Henkel Kommanditgesellschaft Auf Aktien Method of making composite laminate automotive structures

Similar Documents

Publication Publication Date Title
JPS58573B2 (en) Fuel supply cylinder number control device
JPS5874841A (en) Cylinder number-controlled engine
JPH1082315A (en) Exhaust emission control device for internal combustion engine
JP4574610B2 (en) Control device for internal combustion engine
JP2004124758A (en) Control device for spark ignition type engine
JPS61132745A (en) Air-fuel ratio controller of internal-conbustion engine
JPS59543A (en) Cylinder number controlled engine
JP2000170560A (en) Intake and exhaust controller for cylinder stop engine
JP4404841B2 (en) Control device for internal combustion engine
JP4266890B2 (en) Exhaust gas purification device for internal combustion engine
JP2003227383A (en) Control device for spark ignition type engine
JPS59165839A (en) Number-of-cylinders controlled engine
JP3879342B2 (en) Exhaust gas purification device for internal combustion engine
JPS58210338A (en) Engine with controlled number of cylinder in operation
JPH0996230A (en) Control device for internal combustion engine
JPS58144644A (en) Engine capable of changing number of operative cylinders
JPS5841240A (en) Engine controlled in number of operating cylinders
JPH06264786A (en) Control device of internal combustion engine
JP6132625B2 (en) Engine system
JPH0295766A (en) Oxygen enriching air controller for oxygen enriched engine
JPS58217738A (en) Cylinder number controlling type engine
JP3723323B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0734192Y2 (en) Cylinder oxygen concentration detector for exhaust gas
JP3508301B2 (en) Engine air-fuel ratio control device
JPS5835242A (en) Cylinder quantity controlled engine