JP3508301B2 - Engine air-fuel ratio control device - Google Patents

Engine air-fuel ratio control device

Info

Publication number
JP3508301B2
JP3508301B2 JP15177695A JP15177695A JP3508301B2 JP 3508301 B2 JP3508301 B2 JP 3508301B2 JP 15177695 A JP15177695 A JP 15177695A JP 15177695 A JP15177695 A JP 15177695A JP 3508301 B2 JP3508301 B2 JP 3508301B2
Authority
JP
Japan
Prior art keywords
fuel ratio
air
lean
nox
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15177695A
Other languages
Japanese (ja)
Other versions
JPH094493A (en
Inventor
国章 沢本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP15177695A priority Critical patent/JP3508301B2/en
Publication of JPH094493A publication Critical patent/JPH094493A/en
Application granted granted Critical
Publication of JP3508301B2 publication Critical patent/JP3508301B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エンジンに供給する混
合気の空燃比を運転条件に応じて理論空燃比とリーン空
燃比とに切換えるようにしたエンジンの空燃比制御装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine air-fuel ratio control device for switching the air-fuel ratio of an air-fuel mixture supplied to an engine between a stoichiometric air-fuel ratio and a lean air-fuel ratio according to operating conditions.

【0002】[0002]

【従来の技術】従来より、燃費向上を目的として、エン
ジンに供給する混合気の空燃比を所定の運転条件にて理
論空燃比(以下「ストイキ」ともいう;A/F=14.6)
からリーン空燃比(例えばA/F=20〜23)に切換える
ようにした空燃比制御装置が提案されている。
2. Description of the Related Art Conventionally, for the purpose of improving fuel economy, the air-fuel ratio of an air-fuel mixture supplied to an engine is a theoretical air-fuel ratio (hereinafter also referred to as "stoichi"; A / F = 14.6) under predetermined operating conditions.
Has proposed an air-fuel ratio control device for switching to a lean air-fuel ratio (for example, A / F = 20 to 23).

【0003】また、空燃比が急変することに伴って出力
トルクが急変し、車両にショックを生じるという不具合
を解消すべく、理論空燃比からリーン空燃比への切換時
には空燃比を連続的に変化させるようにしている。一
方、リーン空燃比での運転時のNOx排出量の低減のた
め、排気系には、リーン空燃比での運転時にNOxを吸
着し、理論空燃比での運転時に前記吸着したNOxを還
元可能なNOx吸着触媒、又は、理論空燃比での運転時
にHCを吸着し、リーン空燃比での運転時に前記吸着し
たHCとエンジンより排出されるHCとによりNOxを
還元可能なリーンNOx触媒を設けている。
Further, in order to solve the problem that the output torque suddenly changes due to the sudden change in the air-fuel ratio, which causes a shock to the vehicle, the air-fuel ratio is continuously changed at the time of switching from the theoretical air-fuel ratio to the lean air-fuel ratio. I am trying to let you. On the other hand, in order to reduce the NOx emission amount during operation at a lean air-fuel ratio, NOx can be adsorbed in the exhaust system during operation at a lean air-fuel ratio, and the adsorbed NOx can be reduced during operation at a stoichiometric air-fuel ratio. A NOx adsorption catalyst or a lean NOx catalyst capable of adsorbing HC during operation at a stoichiometric air-fuel ratio and reducing NOx by the adsorbed HC and HC discharged from the engine during operation at a lean air-fuel ratio is provided. .

【0004】特に、理論空燃比からリーン空燃比へ切換
えるときは、切換過程の中間空燃比においてNOxの排
出量が増大するから、ショック発生による運転性の悪化
を犠牲にしても、空燃比の切換速度を速くしなければな
らいが、前記NOx吸着触媒又はリーンNOx触媒の採
用により、空燃比の切換速度をある程度遅くすることが
可能となる。
In particular, when the stoichiometric air-fuel ratio is switched to the lean air-fuel ratio, the NOx emission amount increases at the intermediate air-fuel ratio in the switching process, so the air-fuel ratio is switched even if the drivability is deteriorated due to the shock. Although it is necessary to increase the speed, it is possible to reduce the air-fuel ratio switching speed to some extent by adopting the NOx adsorption catalyst or the lean NOx catalyst.

【0005】但し、空燃比の切換速度は、NOx吸着触
媒のNOx吸着能力又はリーンNOx触媒のNOx転換
効率に依存させるのが望ましいことから、例えば特願平
5−250245号では、リーンNOx触媒を使用して
いる場合に、触媒の温度、空間速度から、リーンNOx
触媒の定常的な転換効率を推定し、この推定された転換
効率に応じて、理論空燃比からリーン空燃比への切換速
度を決定している。
However, since it is desirable that the air-fuel ratio switching speed depends on the NOx adsorption capacity of the NOx adsorption catalyst or the NOx conversion efficiency of the lean NOx catalyst, for example, in Japanese Patent Application No. 5-250245, the lean NOx catalyst is used. When using, lean NOx is calculated from the temperature and space velocity of the catalyst.
The steady conversion efficiency of the catalyst is estimated, and the switching speed from the stoichiometric air-fuel ratio to the lean air-fuel ratio is determined according to the estimated conversion efficiency.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、リーン
NOx触媒の転換効率は、触媒の温度や空間速度などに
より定常的に定まるというより、運転履歴によって大幅
に変化することが、本発明者らの実験により確認され
た。すなわち、リーンNOx触媒において、理論空燃比
からリーン空燃比への切換直後は、転換効率が高く、か
つ直前の理論空燃比での運転時間が長いほど、転換効率
も高くなる。これは理論空燃比での運転中にHCが吸着
され、このHC吸着量が多い程、リーン空燃比への切換
直後の転換効率が高くなるからである。
However, the experiments conducted by the inventors of the present invention show that the conversion efficiency of a lean NOx catalyst is not constantly determined by the temperature and space velocity of the catalyst, but is significantly changed by the operation history. Confirmed by. That is, in the lean NOx catalyst, the conversion efficiency is higher immediately after switching from the stoichiometric air-fuel ratio to the lean air-fuel ratio, and the longer the operating time at the immediately preceding stoichiometric air-fuel ratio, the higher the conversion efficiency. This is because HC is adsorbed during operation at the stoichiometric air-fuel ratio, and the greater the amount of adsorbed HC, the higher the conversion efficiency immediately after switching to the lean air-fuel ratio.

【0007】また、NOx吸着触媒についても同様にそ
のNOx吸着能力は運転履歴によって大幅に変化する。
すなわち、NOx吸着触媒において、理論空燃比からリ
ーン空燃比への切換直後は、吸着能力が高く、かつ直前
の理論空燃比での運転時間が長いほど、吸着能力も高く
なる。これは理論空燃比での運転時間が長くなるほど、
NOxの脱離が進み、リーン空燃比への切換直後のNO
x吸着能力が高くなるからである。
Similarly, with respect to the NOx adsorbing catalyst, the NOx adsorbing ability also largely changes depending on the operation history.
That is, in the NOx adsorption catalyst, immediately after switching from the stoichiometric air-fuel ratio to the lean air-fuel ratio, the adsorbing capacity is high, and as the operating time at the immediately preceding stoichiometric air-fuel ratio is longer, the adsorbing capacity is also higher. This is because the longer the operating time at the theoretical air-fuel ratio,
NOx immediately after desorption of NOx and switching to lean air-fuel ratio
This is because the x adsorption capacity becomes high.

【0008】従って、このような運転履歴によるNOx
吸着触媒のNOx吸着能力又はリーンNOx触媒のNO
x転換効率の変化にかかわらず、理論空燃比からリーン
空燃比への切換時の切換速度が一定であると、NOx吸
着能力又はNOx転換効率が高いにもかかわらず切換速
度が速すぎてショックを発生したり、NOx吸着能力又
はNOx転換効率が低いにもかかわらず切換速度が遅す
ぎてNOx排出量が多くなるという問題点があった。
Therefore, NOx based on such operation history
NOx adsorption capacity of adsorption catalyst or NO of lean NOx catalyst
If the switching speed at the time of switching from the stoichiometric air-fuel ratio to the lean air-fuel ratio is constant irrespective of the change in the x conversion efficiency, the switching speed is too fast and the shock is generated even though the NOx adsorption capacity or the NOx conversion efficiency is high. However, there is a problem that the switching speed is too slow and the NOx emission amount increases although the NOx adsorption capacity or the NOx conversion efficiency is low.

【0009】本発明は、このような従来の問題点に鑑
み、空燃比切換時におけるトルク急変によるショック発
生の回避とNOx排出量の抑制とを高い次元で両立させ
ることができるエンジンの空燃比制御装置を提供するこ
とを目的とする。
In view of the above conventional problems, the present invention provides an air-fuel ratio control for an engine that can achieve both a high level of avoidance of a shock due to a sudden change in torque during air-fuel ratio switching and a suppression of NOx emissions. The purpose is to provide a device.

【0010】[0010]

【課題を解決するための手段】このため、請求項1に係
る発明では、エンジンに供給する混合気の空燃比を運転
条件に応じて理論空燃比とリーン空燃比とに切換える空
燃比切換手段を備えると共に、排気系に、リーン空燃比
での運転時にNOxを吸着又は還元する触媒を備えるエ
ンジンにおいて、図1に示すように、エンジンの運転履
歴として、空燃比、吸入空気流量及び排気温度の履歴
記憶する運転履歴記憶手段と、理論空燃比からリーン空
燃比への切換時に、それまでの運転履歴に応じて、目標
とするリーン空燃比への切換速度を決定する切換速度決
定手段とを設けて、エンジンの空燃比制御装置を構成す
る。
Therefore, in the invention according to claim 1, there is provided an air-fuel ratio switching means for switching the air-fuel ratio of the air-fuel mixture supplied to the engine between the theoretical air-fuel ratio and the lean air-fuel ratio according to the operating conditions. In an engine that is provided with an exhaust system that includes a catalyst that adsorbs or reduces NOx during operation at a lean air-fuel ratio, as shown in FIG. 1, the operation history of the engine includes air-fuel ratio, intake air flow rate, and exhaust temperature history. And a switching speed determination means for determining the switching speed to the target lean air-fuel ratio according to the operation history up to that time when switching from the stoichiometric air-fuel ratio to the lean air-fuel ratio. The engine air-fuel ratio control device.

【0011】尚、前記触媒としては、リーン空燃比での
運転時にNOxを吸着し、理論空燃比での運転時に前記
吸着したNOxを還元可能なNOx吸着触媒、又は、理
論空燃比での運転時にHCを吸着し、リーン空燃比での
運転時に前記吸着したHCとエンジンより排出されるH
CとによりNOxを還元可能なリーンNOx触媒のいず
れでもよい。
As the catalyst, a NOx adsorption catalyst capable of adsorbing NOx during operation at a lean air-fuel ratio and reducing the adsorbed NOx during operation at a stoichiometric air-fuel ratio, or during operation at a stoichiometric air-fuel ratio HC that adsorbs HC and that is adsorbed by the engine during operation at a lean air-fuel ratio and H that is discharged from the engine
Any lean NOx catalyst capable of reducing NOx with C may be used.

【0012】更に、請求項2に係る発明では、空燃比、
吸入空気流量及び排気温度の履歴として、理論空燃比で
の運転継続時における累積吸入空気流量と平均排気温度
とを記憶するものであることを特徴とする。
Further, in the invention according to claim 2 , the air-fuel ratio,
As a history of the intake air flow rate and the exhaust gas temperature, the cumulative intake air flow rate and the average exhaust gas temperature during the operation at the stoichiometric air-fuel ratio are stored.

【0013】[0013]

【作用】請求項1に係る発明では、触媒のNOx吸着能
力又はNOx転換効率に関連するエンジンの運転履歴と
して、空燃比、吸入空気流量及び排気温度の履歴を記憶
していて、ストイキからリーンへの切換時に、それまで
の運転履歴に応じて、目標とするリーン空燃比への切換
速度を決定する。
In the invention according to claim 1, the history of the air-fuel ratio, the intake air flow rate, and the exhaust temperature is stored as the engine operation history relating to the NOx adsorption capacity of the catalyst or the NOx conversion efficiency, and the stoichiometric to lean state is stored. At the time of switching, the switching speed to the target lean air-fuel ratio is determined according to the operation history up to that point.

【0014】これは、エンジンの運転履歴、特に空燃
比、吸入空気流量及び排気温度の履歴によって、触媒の
NOx吸着能力又はNOx転換効率が変化することか
ら、NOx吸着能力又はNOx転換効率が高いときには
切換速度を遅くしてショックの発生を防止し、NOx吸
着能力又はNOx転換効率が低いときには切換速度を速
くしてNOx排出量の増大を抑制するためである。
This is because the engine operating history, especially air-fuel
Since the NOx adsorption capacity or NOx conversion efficiency of the catalyst changes depending on the ratio, the intake air flow rate, and the history of exhaust temperature , when the NOx adsorption capacity or NOx conversion efficiency is high, the switching speed is slowed to prevent the occurrence of shock, This is because when the NOx adsorption capacity or NOx conversion efficiency is low, the switching speed is increased to suppress an increase in NOx emission amount.

【0015】請求項2に係る発明では、より具体的に、
ストイキ運転継続時における累積吸入空気流量及び平均
排気温度に応じて、切換速度を変化させる。ストイキ運
転継続時における累積吸入空気流量が多くなり、また平
均排気温度が高くなる程、NOx吸着触媒ではNOxの
脱離量が多くなって、リーンNOx触媒ではHCの吸着
量が多くなって、ストイキ→リーン切換直後の触媒のN
Ox吸着能力又はNOx転換効率が向上するからであ
る。
In the invention according to claim 2, more specifically,
The switching speed is changed according to the cumulative intake air flow rate and the average exhaust gas temperature during the continuous stoichiometric operation. As the cumulative intake air flow rate during the continuous stoichiometric operation increases and the average exhaust gas temperature increases, the desorption amount of NOx increases with the NOx adsorption catalyst and the HC adsorption amount increases with the lean NOx catalyst. → N of catalyst immediately after lean switching
This is because the Ox adsorption capacity or the NOx conversion efficiency is improved.

【0016】[0016]

【実施例】以下に本発明の実施例を説明する。先ず本発
明の第1の実施例を図2〜図7により説明する。図2は
システム構成を示している。エンジン1の各気筒の燃焼
室には、エアクリーナ2から、スロットル弁3、吸気マ
ニホールド4を介して、空気が吸入される。吸気マニホ
ールド4の各ブランチ部にはそれぞれ電磁式の燃料噴射
弁5が設けられており、各燃料噴射弁5から噴射される
燃料により混合気が生成される。そして、混合気は燃焼
室内で点火栓6により点火されて燃焼する。
EXAMPLES Examples of the present invention will be described below. First, a first embodiment of the present invention will be described with reference to FIGS. FIG. 2 shows the system configuration. Air is drawn into the combustion chamber of each cylinder of the engine 1 from the air cleaner 2 through the throttle valve 3 and the intake manifold 4. An electromagnetic fuel injection valve 5 is provided in each branch portion of the intake manifold 4, and a fuel-air mixture is generated by the fuel injected from each fuel injection valve 5. Then, the air-fuel mixture is ignited by the spark plug 6 and burned in the combustion chamber.

【0017】燃料噴射弁5は後述するコントロールユニ
ット12からのエンジン回転に同期して所定のタイミング
で出力される駆動パルス信号により通電されて開弁し、
所定圧力に調整された燃料を噴射する。従って、駆動パ
ルス信号のパルス幅により燃料噴射量が制御される。エ
ンジン1からの排気は、排気マニホールド7を経て、排
気管8に至る。
The fuel injection valve 5 is opened by being energized by a drive pulse signal output at a predetermined timing in synchronization with engine rotation from a control unit 12 which will be described later.
The fuel adjusted to a predetermined pressure is injected. Therefore, the fuel injection amount is controlled by the pulse width of the drive pulse signal. Exhaust gas from the engine 1 reaches an exhaust pipe 8 through an exhaust manifold 7.

【0018】この排気管8の途中には、NOx吸着触媒
9が介装されている。このNOx吸着触媒9は、三元触
媒としての機能を有する他、リーン運転時にNOxを吸
着し、このNOxをストイキ運転時に脱離して三元触媒
で還元するものである。そして、排気はNOx吸着触媒
9を通過後、マフラー11を経て排出される。燃料噴射弁
5の作動を制御するコントロールユニット12は、マイク
ロコンピュータを内蔵するもので、各種のセンサから信
号が入力されている。
A NOx adsorption catalyst 9 is provided in the middle of the exhaust pipe 8. This NOx adsorbing catalyst 9 has a function as a three-way catalyst, adsorbs NOx during lean operation, desorbs this NOx during stoichiometric operation, and reduces it by the three-way catalyst. Then, the exhaust gas passes through the NOx adsorption catalyst 9 and is then exhausted through the muffler 11. The control unit 12 that controls the operation of the fuel injection valve 5 has a built-in microcomputer and receives signals from various sensors.

【0019】前記各種のセンサとしては、スロットル弁
3の上流側でエンジン1の吸入空気流量Qを検出するエ
アフローメータ13、エンジン1のカム軸回転から基準ク
ランク角信号及び単位クランク角信号を出力し間接的に
エンジン回転数Nを検出できるクランク角センサ14、エ
ンジン1のウォータジャケット内の冷却水温度Twを検
出する水温センサ15、排気マニホールド7に取付けられ
てエンジン1に吸入される混合気の空燃比に関連する排
気中酸素濃度に対応した電圧信号を出力するO2 センサ
16、更に排気温度(触媒入口温度又は出口温度)Teを
検出する排気温センサ17等が設けられている。
As the various sensors, an air flow meter 13 for detecting the intake air flow rate Q of the engine 1 on the upstream side of the throttle valve 3, a reference crank angle signal and a unit crank angle signal are output from the cam shaft rotation of the engine 1. A crank angle sensor 14 that can indirectly detect the engine speed N, a water temperature sensor 15 that detects the cooling water temperature Tw in the water jacket of the engine 1, an air-fuel mixture that is attached to the exhaust manifold 7 and is drawn into the engine 1. O 2 sensor that outputs a voltage signal corresponding to oxygen concentration in exhaust gas related to fuel ratio
16, an exhaust temperature sensor 17 for detecting the exhaust temperature (catalyst inlet temperature or outlet temperature) Te, and the like are provided.

【0020】ここにおいて、コントロールユニット12
は、前記各種のセンサからの信号に基づき後述のごとく
演算処理を行って、燃料噴射弁5の作動を制御する。次
に図3〜図4のフローチャートに従ってコントロールユ
ニット12の演算処理内容について説明する。尚、本フロ
ーは所定時間Δt(例えば10ms)毎に実行される。
Here, the control unit 12
Controls the operation of the fuel injection valve 5 by performing arithmetic processing as described below based on signals from the various sensors. Next, the contents of arithmetic processing of the control unit 12 will be described with reference to the flowcharts of FIGS. It should be noted that this flow is executed every predetermined time Δt (for example, 10 ms).

【0021】ステップ1(図にはS1と記してある。以
下同様)では、エアフローメータ13からの信号に基づい
て吸入空気流量Qを検出する。ステップ2では、クラン
ク角センサ14からの信号に基づいてエンジン回転数Nを
検出する。ステップ3では、吸入空気流量Qとエンジン
回転数Nとから、ストイキ(A/F=14.6)相当の基本
燃料噴射量Tp=K×Q/N(Kは定数)を計算する。
In step 1 (denoted as S1 in the drawing; the same applies hereinafter), the intake air flow rate Q is detected based on the signal from the air flow meter 13. In step 2, the engine speed N is detected based on the signal from the crank angle sensor 14. In step 3, a basic fuel injection amount Tp = K × Q / N (K is a constant) corresponding to stoichiometry (A / F = 14.6) is calculated from the intake air flow rate Q and the engine speed N.

【0022】ステップ4では、水温センサ15からの信号
に基づいて冷却水温度Twを検出する。ステップ5で
は、冷却水温度Twが例えば75℃以上か否かを判定し、
75℃未満の低温時は、ストイキにより運転するため、ス
テップ8へ進む。冷却水温度Twが75℃以上の時は、運
転領域に応じた空燃比の切換制御を実現するため、ステ
ップ6へ進む。
In step 4, the cooling water temperature Tw is detected based on the signal from the water temperature sensor 15. In step 5, it is determined whether the cooling water temperature Tw is, for example, 75 ° C. or higher,
When the temperature is lower than 75 ° C., the operation is stoichiometric, so the process proceeds to step 8. When the cooling water temperature Tw is 75 ° C. or higher, the process proceeds to step 6 in order to realize the air-fuel ratio switching control according to the operating region.

【0023】ステップ6では、エンジン回転数Nと基本
燃料噴射量(負荷)Tpとに基づき、図5のマップ上で
の領域(ストイキ領域・リーン領域)を検出して、ステ
ップ7へ進む。ステップ7では、リーン領域か否かを判
定し、NO(ストイキ領域)のときはストイキ運転のた
めにステップ8へ進み、YES(リーン領域)のときは
リーン運転のためにステップ14へ進む。
In step 6, the region (stoichiometric region / lean region) on the map of FIG. 5 is detected based on the engine speed N and the basic fuel injection amount (load) Tp, and the process proceeds to step 7. In step 7, it is determined whether or not it is in the lean region. If NO (stoichiometric region), the process proceeds to step 8 for stoichiometric operation, and if YES (lean region), the process proceeds to step 14 for lean operation.

【0024】〔ストイキ運転の場合〕 ステップ8では、リーンフラグFLの値(ストイキ運転
中はFL=0、リーン運転中はFL=1)を判定する。
FL=1のときは、現在リーン運転中でリーン→ストイ
キの切換指令がなされたときであり、このときはステッ
プ9へ進み、リーンフラグFL=0にする。また、次の
ステップ 10 ’では、累積吸入空気流量ΣQSをクリアす
る(ΣQS=0)。FL=0のときは、ストイキ運転継
続中であるので、ステップ 11 ’へ進み、累積吸入空気流
量ΣQSの計算を行い(ΣQS=ΣQS+Q)、更に、
ステップ 11 ”で、排気温センサ 17 からの信号に基づいて
排気温度Teを検出し、逐次、その移動平均を求めて、
平均排気温度MTeを算出する。
[In the case of stoichiometric operation] In step 8, the value of the lean flag FL (FL = 0 during stoichiometric operation, FL = 1 during lean operation) is determined.
When FL = 1, the lean operation is currently in progress, and a lean-to-stoichi switching instruction is issued. At this time, the routine proceeds to step 9, where the lean flag FL = 0 is set. Also the following
In step 10 ', clear the cumulative intake air flow rate ΣQS
(ΣQS = 0). When FL = 0, the stoichiometric operation is continuing, so the routine proceeds to step 11 ', and the cumulative intake air flow
The amount ΣQS is calculated (ΣQS = ΣQS + Q), and
In step 11 ", based on the signal from the exhaust temperature sensor 17 ,
The exhaust gas temperature Te is detected, and the moving average is sequentially calculated,
The average exhaust temperature MTe is calculated.

【0025】これらの後、ステップ12へ進み、O2 セン
サ16からの信号に基づいて空燃比フィードバック補正係
数αを計算する。次のステップ13では、ストイキ相当の
基本燃料噴射量Tpと、空燃比フィードバック補正係数
αと、バッテリ電圧に基づいて設定される電圧補正分
(無効噴射時間)Tsとから、次式に従って、燃料噴射
量Tiを計算し、本ルーチンを終了する。 Ti=Tp×α+Ts 燃料噴射量Tiが計算されると、これが所定のレジスタ
にセットされ、エンジン回転に同期して所定のタイミン
グで、このTiのパルス幅の駆動パルス信号が燃料噴射
弁5に出力されて燃料噴射が行われる。このとき、空燃
比はストイキに制御される。
After that, the routine proceeds to step 12, where the air-fuel ratio feedback correction coefficient α is calculated based on the signal from the O 2 sensor 16. In the next step 13, from the basic fuel injection amount Tp equivalent to stoichiometry, the air-fuel ratio feedback correction coefficient α, and the voltage correction amount (ineffective injection time) Ts set based on the battery voltage, the fuel injection is performed according to the following equation. The amount Ti is calculated, and this routine ends. Ti = Tp × α + Ts When the fuel injection amount Ti is calculated, this is set in a predetermined register, and a drive pulse signal having a pulse width of Ti is output to the fuel injection valve 5 at a predetermined timing in synchronization with the engine rotation. Then, fuel injection is performed. At this time, the air-fuel ratio is controlled stoichiometrically.

【0026】〔リーン運転の場合〕 ステップ14では、リーンフラグFLの値(ストイキ運転
中はFL=0、リーン運転中はFL=1)を判定する。
FL=0のときは、現在ストイキ運転中でストイキ→リ
ーンの切換指令がなされたときであり、このときはステ
ップ15へ進み、リーンフラグFL=1にする。また、次
のステップ16では、リーン切換後時間計測用のタイマT
MLをクリアする(TML=0)。
[In the case of lean operation] In step 14, the value of the lean flag FL (FL = 0 during stoichiometric operation, FL = 1 during lean operation) is determined.
When FL = 0, it means that the stoichiometric-to-lean switching command is being issued during the current stoichiometric operation. At this time, the routine proceeds to step 15, where the lean flag FL = 1 is set. Further, in the next step 16, the timer T for measuring the time after lean switching is set.
Clear ML (TML = 0).

【0027】更に、次のステップ 17 では、図6に示す
ように、ストイキ運転継続時の累積吸入空気流量ΣQS
及び平均排気温度MTeに応じてリーン切換時の最終目
標リーン空燃比(例えばA/F=22)への切換速度に関
連する切換時間(切換開始から完了までの時間)Tcを
定めたマップを参照して、実際の累積吸入空気流量ΣQ
S及び平均排気温度MTeから切換時間Tcを検索す
る。
Further, in the next step 17 " , as shown in FIG. 6, the cumulative intake air flow rate ΣQS during the continuation of the stoichiometric operation.
Also , refer to the map that defines the switching time (time from switching start to completion) Tc related to the switching speed to the final target lean air-fuel ratio (for example, A / F = 22) at the time of lean switching according to the average exhaust gas temperature MTe . Then, the actual cumulative intake air flow rate ΣQ
The switching time Tc is retrieved from S and the average exhaust gas temperature MTe .

【0028】ここで、累積吸入空気流量ΣQSが多い
程、また平均排気温度MTeが高い程、切換速度が遅く
なるように、切換時間Tcを長く設定してある。本実施
例のNOx吸着触媒9は、リーン条件においてNOxを
吸着し、その後のストイキ条件においてNOxを脱離・
還元するものであるので、ストイキ条件での累積吸入空
気流量ΣQSが多い程、また平均排 気温度MTeが高い
程、NOxの脱離・還元処理が進むので、NOx吸着能
力が高くなるからである。
Here, the cumulative intake air flow rate ΣQS is large.
The switching time Tc is set longer so that the switching speed becomes slower as the average exhaust gas temperature MTe becomes higher . The NOx adsorption catalyst 9 of the present embodiment adsorbs NOx under lean conditions and desorbs NOx under stoichiometric conditions thereafter.
Since it is to be returned, cumulative intake air under stoichiometric conditions
The more air flow rate ΣQS, also a high average exhaust temperature MTe
This is because the NOx desorption / reduction process proceeds, so that the NOx adsorption capacity increases.

【0029】FL=1のときは、リーン運転継続中であ
るので、ステップ18へ進み、リーン切換後時間計測用の
タイマTMLを本ルーチンの実行時間隔Δt分カウント
アップする。これらの後、ステップ19へ進み、現時点の
リーン切換後時間TMLを切換時間Tcと比較し、TM
L≦Tc(切換時間内)の場合は、ステップ20へ進む。
When FL = 1, the lean operation is continuing, so the routine proceeds to step 18, where the timer TML for measuring the time after lean switching is counted up by the execution time interval Δt of this routine. After this, the routine proceeds to step 19, where the current lean post-switching time TML is compared with the switching time Tc, and TM
If L ≦ Tc (within the switching time), the process proceeds to step 20.

【0030】ステップ20では、次式のごとく、基本燃料
噴射量Tpを補正した上で、燃料噴射量Tiを計算し、
本ルーチンを終了する。 Ti=Tp×〔1−(1−14.6/22)・(TML/Tc)〕+Ts すなわち、切換時間Tc内において、時間(TML)経
過と共に、目標空燃比をストイキ(A/F=14.6)から
最終目標リーン空燃比(A/F=22)まで変化させつ
つ、基本燃料噴射量Tpを目標空燃比相当に補正した上
で、燃料噴射量Tiを計算する。
In step 20, the basic fuel injection amount Tp is corrected and the fuel injection amount Ti is calculated according to the following equation:
This routine ends. Ti = Tp × [1- (1-14.6 / 22) · (TML / Tc)] + Ts That is, within the switching time Tc, the target air-fuel ratio is changed from stoichiometric (A / F = 14.6) as time (TML) elapses. The fuel injection amount Ti is calculated after correcting the basic fuel injection amount Tp to a value corresponding to the target air-fuel ratio while changing the final target lean air-fuel ratio (A / F = 22).

【0031】TML>Tc(切換時間経過後)の場合
は、ステップ21へ進む。ステップ21では、次式のごと
く、基本燃料噴射量Tpを最終目標リーン空燃比(A/
F=22)相当に補正した上で、燃料噴射量Tiを計算
し、本ルーチンを終了する。 Ti=Tp×(14.6/22)+Ts 燃料噴射量Tiが計算されると、これが所定のレジスタ
にセットされ、エンジン回転に同期して所定のタイミン
グで、このTiのパルス幅の駆動パルス信号が燃料噴射
弁5に出力されて燃料噴射が行われる。このとき、空燃
比はリーンに制御される。
If TML> Tc (after the switching time has elapsed), the process proceeds to step 21. In step 21, the basic fuel injection amount Tp is set to the final target lean air-fuel ratio (A /
F = 22), the fuel injection amount Ti is calculated, and this routine is finished. Ti = Tp × (14.6 / 22) + Ts When the fuel injection amount Ti is calculated, this is set in a predetermined register, and the drive pulse signal having the pulse width of Ti is fueled at a predetermined timing in synchronization with the engine rotation. The fuel is injected by being output to the injection valve 5. At this time, the air-fuel ratio is controlled lean.

【0032】本実施例においては、主にステップ6,
7,13,19,20,21の部分が空燃比切換手段に相当し、
ステップ8,9,10 ’, 11 ’, 11 の部分が運転履歴
憶手段に相当し、ステップ17 の部分が切換速度決定手
段に相当する。このように、本実施例では、ストイキか
らリーンへの切換時に、その直前のストイキ運転継続時
の累積吸入空気流量ΣQS及び平均排気温度Mteに応
じて、切換時間Tcを設定する。すなわち、ストイキ条
件での累積吸入空気流量ΣQSが多い程、また平均排気
温度が高い程、切換速度が遅くなるように、切換時間T
cを長くする。NOx吸着触媒9は、リーン条件におい
てNOxを吸着し、その後のストイキ条件においてNO
xを脱離・還元するものであるので、ストイキ条件での
累積吸入空気流量ΣQSが多い程、また平均排気温度M
Teが高い程、NOxの脱離・還元処理が進むので、N
Ox吸着能力が高くなるからである。
In the present embodiment, mainly step 6,
7, 13, 19, 20, and 21 correspond to the air-fuel ratio switching means,
Steps 8, 9, 10 ', 11 ' and 11 " correspond to the operation history recording means, and step 17 " correspond to the switching speed determining means. As described above, in the present embodiment, when the stoichiometric operation is switched to the lean state and the stoichiometric operation immediately before that is continued.
The switching time Tc is set according to the cumulative intake air flow rate ΣQS and the average exhaust gas temperature Mte . That is, stoichi
The higher the cumulative intake air flow rate ΣQS, the higher the average exhaust
The switching time T is set so that the switching speed becomes slower as the temperature becomes higher.
Make c longer. The NOx adsorption catalyst 9 adsorbs NOx under lean conditions, and NO under the stoichiometric conditions thereafter.
x is desorbed and reduced, so under stoichiometric conditions
The larger the cumulative intake air flow rate ΣQS, the more the average exhaust gas temperature M
The higher the Te, the more the NOx desorption / reduction process proceeds.
This is because the Ox adsorption capacity becomes high.

【0033】尚、図7にはNOx吸着触媒の空燃比履歴
に対するNOx吸着能力(触媒出口NOx排出量)の変
化を示している。この図7のようにストイキ→リーンに
空燃比を切換える場合、(1) のようにストイキが短い履
歴と、(2) のようにストイキが長い履歴とを比較する
と、ストイキ→リーンの切換直後に、(1) のストイキが
短い場合に比較して、(2) のストイキが長い場合の方
が、NOxの脱離・還元処理が進んでいることから、N
Ox吸着能力が高く、触媒出口NOx排出量を低減でき
ることがわかる。
FIG. 7 shows changes in the NOx adsorption capacity (catalyst outlet NOx emission amount) with respect to the air-fuel ratio history of the NOx adsorption catalyst. When switching the air-fuel ratio from stoichiometric to lean as shown in Fig. 7, comparing the history of short stoichiometry as shown in (1) and the history of long stoichiometric as shown in (2) , immediately after the switching from stoichiometric to lean. , Compared with the case where the stoichiometry of (1) is short, the case where the stoichiometry of (2) is long is more advanced in the desorption / reduction process of NOx.
It can be seen that the Ox adsorption capacity is high and the NOx emission amount at the catalyst outlet can be reduced.

【0034】尚、本実施例のNOx吸着触媒9は、リー
ン空燃比であってもNOx吸着能力を発揮するから、比
較的ゆっくりした速度で空燃比を切換えても、NOx排
出量が大幅に増大することはないが、運転履歴によって
は吸着能力が低下し、高吸着能力に適合する切換速度で
はNOx排出量を増大させてしまうのので、吸着能力の
変化に応じて切換速度を可変して、NOx排出量の抑制
と運転性の向上とを高い次元で両立させるようにしてい
る。
Since the NOx adsorption catalyst 9 of this embodiment exhibits the NOx adsorption capacity even with a lean air-fuel ratio, even if the air-fuel ratio is switched at a relatively slow speed, the NOx emission amount greatly increases. However, since the adsorption capacity is reduced depending on the operation history and the NOx emission amount is increased at the switching speed adapted to the high adsorption capacity, the switching speed is changed according to the change of the adsorption capacity. The control of NOx emissions and the improvement of drivability are made compatible at a high level.

【0035】次に本発明の第2の実施例を図8により説
明する。図8第2の実施例のシステム構成図であり、
図2と異なる点は、排気管8の途中に、NOx吸着触媒
の代わりに、リーンNOx触媒10A(上流側)と三元触
媒10B(下流側)とが介装されている。リーンNOx還
元触媒10Aは、ストイキ運転時にHCを吸着し、リーン
運転時に前記吸着したHCとエンジンより排出されるH
CとによりNOxを還元するものである。
Next, a second embodiment of the present invention will be described with reference to FIG . FIG. 8 is a system configuration diagram of the second embodiment,
The difference from FIG. 2 is that a lean NOx catalyst 10A (upstream side) and a three-way catalyst 10B (downstream side) are provided in the exhaust pipe 8 instead of the NOx adsorption catalyst. The lean NOx reduction catalyst 10A adsorbs HC during stoichiometric operation, and adsorbs HC during lean operation and H emitted from the engine.
C and NO reduce NOx.

【0036】従って、ストイキ条件が長い程、HCの吸
着量が大となるので、リーン切換直後のNOx転換効率
が高くなる。よって、前記第1の実施例と同様に、スト
イキ運転継続時の累積吸入空気流量ΣQSと平均排気温
度MTeとに応じて切換時間Tcを設定すればよい。従
って、制御のフローチャートは、図3〜図4のものをそ
のまま使用できる。
Therefore, the longer the stoichiometric condition, the greater the amount of HC adsorbed, and the higher the NOx conversion efficiency immediately after lean switching. Therefore, similarly to the first embodiment, the switching time Tc may be set according to the cumulative intake air flow rate ΣQS and the average exhaust gas temperature MTe during the continuous stoichiometric operation. Therefore, the control flow charts shown in FIGS. 3 to 4 can be used as they are.

【0037】[0037]

【発明の効果】以上説明したように、請求項1に係る発
明によれば、触媒のNOx吸着能力又はNOx転換効率
に関連するエンジンの運転履歴として、空燃比、吸入空
気流量及び排気温度の履歴を記憶していて、ストイキか
らリーンへの切換時に、それまでの運転履歴に応じて、
目標とするリーン空燃比への切換速度を決定することに
より、空燃比切換時におけるショック発生の回避とNO
x排出量の抑制とを高い次元で両立させることができる
という効果が得られる。
As described above, according to the invention of claim 1, the engine operating history relating to the NOx adsorption capacity of the catalyst or the NOx conversion efficiency is the air-fuel ratio, the intake air
It stores the history of air flow rate and exhaust temperature, and when switching from stoichiometric to lean, according to the operation history up to that point,
By determining the switching speed to the target lean air-fuel ratio, it is possible to avoid the shock occurrence at the time of switching the air-fuel ratio and to reduce the NO.
The effect that the suppression of the x emission amount can be achieved at a high level at the same time is obtained.

【0038】請求項2に係る発明によれば、より具体的
にストイキ運転継続時における累積吸入空気流量及び平
均排気温度を記憶することで、触媒のNOx吸着能力又
はNOx転換効率を更により的確に捉えて、より良好な
制御が可能になるという効果が得られる。
According to the second aspect of the present invention, more specifically, by storing the cumulative intake air flow rate and the average exhaust temperature during the continuation of the stoichiometric operation, the NOx adsorption capacity or NOx conversion efficiency of the catalyst can be more accurately measured. The effect is that it is possible to obtain better control.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の構成を示す機能ブロック図FIG. 1 is a functional block diagram showing the configuration of the present invention.

【図2】 第1の実施例のシステム構成図FIG. 2 is a system configuration diagram of the first embodiment.

【図3】 第1の実施例のフローチャート(その1)FIG. 3 is a flowchart of the first embodiment (part 1).

【図4】 第1の実施例のフローチャート(その2)FIG. 4 is a flowchart of the first embodiment (part 2).

【図5】 ストイキ・リーン領域判定用マップを示す図FIG. 5 is a diagram showing a map for determining a stoichio-lean area.

【図6】 切換時間設定用マップを示す図FIG. 6 is a diagram showing a switching time setting map.

【図7】 ストイキ→リーン切換時のNOx吸着能力の
説明図
FIG. 7 is an explanatory diagram of NOx adsorption capacity when switching from stoichio to lean.

【図8】 第2の実施例のシステム構成図 FIG. 8 is a system configuration diagram of the second embodiment.

【符号の説明】[Explanation of symbols]

1 エンジン 5 燃料噴射弁 9 NOx吸着触媒 10A リーンNOx触媒 10B 三元触媒 12 コントロールユニット 13 エアフローメータ 14 クランク角センサ 15 水温センサ 16 O2 センサ 17 排気温センサ1 Engine 5 Fuel Injection Valve 9 NOx Adsorption Catalyst 10A Lean NOx Catalyst 10B Three-way Catalyst 12 Control Unit 13 Air Flow Meter 14 Crank Angle Sensor 15 Water Temperature Sensor 16 O 2 Sensor 17 Exhaust Temperature Sensor

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F02D 41/14 310 F01N 3/08 F02D 45/00 314 F02D 45/00 340 Front page continuation (58) Fields surveyed (Int.Cl. 7 , DB name) F02D 41/14 310 F01N 3/08 F02D 45/00 314 F02D 45/00 340

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】エンジンに供給する混合気の空燃比を運転
条件に応じて理論空燃比とリーン空燃比とに切換える空
燃比切換手段を備えると共に、排気系に、リーン空燃比
での運転時にNOxを吸着又は還元する触媒を備えるエ
ンジンにおいて、 エンジンの運転履歴として、空燃比、吸入空気流量及び
排気温度の履歴を記憶する運転履歴記憶手段と、 理論空燃比からリーン空燃比への切換時に、それまでの
運転履歴に応じて、目標とするリーン空燃比への切換速
度を決定する切換速度決定手段と、 を設けたことを特徴とするエンジンの空燃比制御装置。
1. An air-fuel ratio switching means for switching an air-fuel ratio of an air-fuel mixture supplied to an engine between a stoichiometric air-fuel ratio and a lean air-fuel ratio in accordance with operating conditions, and an exhaust system having NOx during operation at a lean air-fuel ratio. In an engine equipped with a catalyst that adsorbs or reduces, the operation history of the engine includes air-fuel ratio, intake air flow rate and
Operation history storage means that stores the history of exhaust temperature, and switching speed determination that determines the switching speed to the target lean air-fuel ratio when switching from the theoretical air-fuel ratio to the lean air-fuel ratio according to the operation history up to that point An air-fuel ratio control device for an engine, characterized by comprising:
【請求項2】 前記運転履歴記憶手段は、空燃比、吸入空
気流量及び排気温度の履歴として、理論空燃比での運転
継続時における累積吸入空気流量と平均排気温度とを記
憶するものであることを特徴とする請求項1記載のエン
ジンの空燃比制御装置。
2. The operation history storage means stores, as the history of the air-fuel ratio, the intake air flow rate, and the exhaust temperature, the cumulative intake air flow rate and the average exhaust temperature when the operation is continued at the theoretical air-fuel ratio. The air-fuel ratio control device for an engine according to claim 1 .
JP15177695A 1995-06-19 1995-06-19 Engine air-fuel ratio control device Expired - Lifetime JP3508301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15177695A JP3508301B2 (en) 1995-06-19 1995-06-19 Engine air-fuel ratio control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15177695A JP3508301B2 (en) 1995-06-19 1995-06-19 Engine air-fuel ratio control device

Publications (2)

Publication Number Publication Date
JPH094493A JPH094493A (en) 1997-01-07
JP3508301B2 true JP3508301B2 (en) 2004-03-22

Family

ID=15526055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15177695A Expired - Lifetime JP3508301B2 (en) 1995-06-19 1995-06-19 Engine air-fuel ratio control device

Country Status (1)

Country Link
JP (1) JP3508301B2 (en)

Also Published As

Publication number Publication date
JPH094493A (en) 1997-01-07

Similar Documents

Publication Publication Date Title
JP2871615B2 (en) Exhaust gas purification device for internal combustion engine
JP3569120B2 (en) Combustion control device for lean burn internal combustion engine
JPH0680304B2 (en) Ignition timing control method for internal combustion engine
JPH06330741A (en) Air fuel ratio controller of lean burn engine
JP2000274298A (en) Control device for internal combustion engine
JP2000087736A (en) Internal combustion engine
JPH10184418A (en) Exhaust purifying device for lean combustion engine
JPH08319862A (en) Control device of internal combustion engine
JP3508301B2 (en) Engine air-fuel ratio control device
JPH11229859A (en) Internal combustion engine
JP4031887B2 (en) Engine air-fuel ratio control apparatus and method
JP2000130221A (en) Fuel injection control device of internal combustion engine
JP2001115827A (en) Exhaust emission control device for internal combustion engine
JP3818100B2 (en) Fuel injection control device for in-cylinder direct injection internal combustion engine
JP2515300B2 (en) Ignition timing control device for internal combustion engine
JPH094492A (en) Engine control device
JP3528315B2 (en) Engine air-fuel ratio control device
JP3123438B2 (en) Exhaust gas purification device for internal combustion engine
JP2000080914A (en) Internal combustion engine
JPH11315713A (en) Exhaust purification controlling device for engine
JP3764193B2 (en) Exhaust purification device
JP3633283B2 (en) Evaporative fuel processing device for internal combustion engine
JP2004232477A (en) Control device of internal combustion engine
JPH11270381A (en) Air-fuel ratio control device of internal combustion engine
JPH08144802A (en) Air-fuel ratio controller for internal combustion engine

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 10

EXPY Cancellation because of completion of term