JP2001115827A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JP2001115827A
JP2001115827A JP29737899A JP29737899A JP2001115827A JP 2001115827 A JP2001115827 A JP 2001115827A JP 29737899 A JP29737899 A JP 29737899A JP 29737899 A JP29737899 A JP 29737899A JP 2001115827 A JP2001115827 A JP 2001115827A
Authority
JP
Japan
Prior art keywords
nox
catalyst
selective reduction
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29737899A
Other languages
Japanese (ja)
Inventor
Masaru Ogawa
賢 小川
Isao Komoriya
勲 小森谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP29737899A priority Critical patent/JP2001115827A/en
Publication of JP2001115827A publication Critical patent/JP2001115827A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1461Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
    • F02D41/1462Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1463Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
    • F02D41/1465Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0806NOx storage amount, i.e. amount of NOx stored on NOx trap
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To suppress NOx reduction treatment to the minimum, and improve fuel consumption performance while achieving an intended NOx purifying performance by estimating a NOx absorbing quantity of a NOx absorbing catalyst on a downstream side of an exhaust system in an internal combustion engine capable of operating in a lean condition with a good efficiency on the basis of a purifying ratio of a selective reduction catalyst of the upstream side, in a device wherein the selective reduction catalyst is arranged on the upstream side and the NOx absorbing catalyst is disposed on the downstream side. SOLUTION: A NOx delivery quantity X of an engine, and an FNOMPL (D) are calculated from engine rotating speed by a map retrieval (S16, S18), a NOx purifying ratio is calculated from a catalyst temperature TCAT by a table retrieval (S22), it is corrected by a target air-fuel ratio KCMD (S24), a NOx adsorbing quantity Q. NOx is calculated (S26), an integrated value ΣQ.NOx is calculated (S28), it is compared with a prescribed value, and then, it is judged whether a NOx reduction treatment is carried out or not (S30 to S34).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は内燃機関の排気浄
化装置に関し、具体的には、排気系に2種のNOx浄化
触媒を直列に配置すると共に、上流側の触媒の浄化率に
基づいて下流の触媒のNOx吸着量を精度良く算出して
燃費性能を向上させるようにしたものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine, and more particularly, to an exhaust system in which two types of NOx purifying catalysts are arranged in series, and a downstream NOx purifying catalyst is provided based on a purifying efficiency of an upstream catalyst. In which the NOx adsorption amount of the catalyst is accurately calculated to improve fuel efficiency.

【0002】[0002]

【従来の技術】近年、リーンバーン機関ないしは直噴機
関など、空燃比のリーン化が進みつつあり、酸化雰囲気
でのNOx(窒素酸化物)成分の浄化性能の一層の向上
が望まれている。その種の技術として、特開平5−30
2508号公報記載の技術を挙げることができる。
2. Description of the Related Art In recent years, lean air-fuel ratios such as lean-burn engines or direct-injection engines have been developed, and it is desired to further improve the purification performance of NOx (nitrogen oxide) components in an oxidizing atmosphere. Japanese Patent Laid-Open Publication No.
The technique described in Japanese Patent Publication No. 2508 can be mentioned.

【0003】この従来技術においては、リーン運転可能
な内燃機関の排気ガス浄化装置において、前記内燃機関
の排気系に、ゼオライトに遷移金属を担持せしめたゼオ
ライト系のNOx触媒を配置すると共に、その下流に、
流入する排気ガスの空燃比がリーンであるときにNOx
を吸収し、流入する排気ガス中の酸素濃度が低下する
と、吸収したNOxを還元浄化するNOx吸収剤(NO
x吸着触媒)を配置している。
[0003] In this prior art, in an exhaust gas purifying apparatus for an internal combustion engine capable of lean operation, a zeolite type NOx catalyst in which a transition metal is supported on zeolite is arranged in an exhaust system of the internal combustion engine, and downstream of the NOx catalyst. To
NOx when the air-fuel ratio of the inflowing exhaust gas is lean
When the oxygen concentration in the inflowing exhaust gas decreases, the NOx absorbent (NO
x adsorption catalyst).

【0004】即ち、この従来技術にあっては、NOx吸
着触媒(NOx吸収剤)は短時間でNOx吸着性能が飽
和して還元剤(HC(炭化水素)など)を頻繁に供給し
なければならない不都合を解消するべく、その上流側に
ゼオライト系のNOx触媒を設け、リーン空燃比におい
てNOx触媒でNOxを還元浄化し、残余のNOxを後
段のNOx吸着触媒で吸着させることで飽和までの時間
を長くすると共に、機関回転数の累積値から下流のNO
x吸着触媒のNOx吸着量を推定し、累積値が上限値を
超えたとき、空燃比をリッチあるいは理論空燃比に切り
換えるNOx還元浄化処理を行うように構成している。
That is, in this prior art, the NOx adsorbing catalyst (NOx absorbent) has to saturate the NOx adsorbing performance in a short period of time and must supply a reducing agent (HC (hydrocarbon) or the like) frequently. In order to eliminate the inconvenience, a zeolite-based NOx catalyst is provided upstream of the NOx catalyst, NOx is reduced and purified by the NOx catalyst at a lean air-fuel ratio, and the remaining NOx is adsorbed by the subsequent NOx adsorption catalyst to reduce the time until saturation. And make the NO of the downstream from the accumulated value of the engine speed.
The NOx adsorption amount of the x-adsorption catalyst is estimated, and when the accumulated value exceeds the upper limit, the NOx reduction purification process for switching the air-fuel ratio to the rich or the stoichiometric air-fuel ratio is performed.

【0005】[0005]

【発明が解決しようとする課題】このように、従来技術
においては下流のNOx吸着触媒のNOx吸着量を機関
回転数から簡易に推定しているが、NOx吸着量は運転
状態によっても変動するのみならず、上流のNOx触媒
の浄化率によっても相違する。
As described above, in the prior art, the amount of NOx adsorbed on the downstream NOx adsorbing catalyst is simply estimated from the engine speed, but the amount of NOx adsorbed fluctuates only depending on the operating state. However, it also depends on the purification rate of the upstream NOx catalyst.

【0006】従って、従来技術のように簡易にNOx吸
着量を推定するときは、上限値を比較的小さい値に設定
してかなりの頻度で空燃比をリッチ化するNOx還元処
理を行う必要があって燃費性能を損なう不都合があっ
た。他方、燃費性能を重視すると、意図したNOx浄化
性能を達成することが困難になる。
Therefore, when simply estimating the NOx adsorption amount as in the prior art, it is necessary to set the upper limit value to a relatively small value and perform the NOx reduction process for enriching the air-fuel ratio with a considerable frequency. There is a disadvantage that fuel efficiency is impaired. On the other hand, when importance is placed on fuel economy performance, it becomes difficult to achieve intended NOx purification performance.

【0007】従って、この発明の目的は、上流側のNO
x触媒の浄化率などに基づいて下流のNOx吸着触媒の
NOx吸着量を精度良く推定し、NOx還元処理を最小
限度に止め、よって意図したNOx浄化性能を達成しつ
つ燃費性能を向上させるようにした内燃機関の排気浄化
装置を提供することにある。
Accordingly, an object of the present invention is to provide an upstream NO
It is possible to accurately estimate the NOx adsorption amount of the downstream NOx adsorption catalyst based on the purification rate of the x catalyst and to minimize the NOx reduction process, thereby improving the fuel consumption performance while achieving the intended NOx purification performance. To provide an exhaust gas purification device for an internal combustion engine.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1項にあっては、リーン運転可能な内燃機
関の排気ガス浄化装置において、前記内燃機関の排気系
に配置されたリーン雰囲気でHCを還元剤としてNOx
を選択的に還元する選択還元触媒、前記選択還元触媒の
下流に配置されたリーン雰囲気においてNOxを吸着
し、理論空燃比あるいはそれ以下のリッチ空燃比におい
て吸着したNOxを還元するNOx吸着触媒、少なくと
も機関回転数および負荷を含む前記内燃機関の運転状態
を検出し、検出した運転状態に応じて前記内燃機関から
排出されるNOx排出量を算出するNOx排出量算出手
段、前記選択還元触媒のNOx浄化率を算出するNOx
浄化率算出手段、前記算出されたNOx排出量とNOx
浄化率に基づいて前記NOx吸着触媒のNOx吸着量、
より具体的には前記NOx吸着触媒が吸着したであろう
NOx吸着量を算出するNOx吸着量算出手段、および
前記算出されたNOx吸着量に基づいてNOx還元処理
を行うNOx還元処理手段を備える如く構成した。
In order to achieve the above object, according to the present invention, in an exhaust gas purifying apparatus for an internal combustion engine capable of lean operation, the exhaust gas purifying apparatus is disposed in an exhaust system of the internal combustion engine. NOx using HC as a reducing agent in a lean atmosphere
A selective reduction catalyst for selectively reducing NOx, a NOx adsorption catalyst for adsorbing NOx in a lean atmosphere disposed downstream of the selective reduction catalyst, and reducing NOx adsorbed at a stoichiometric air-fuel ratio or a rich air-fuel ratio lower than the stoichiometric air-fuel ratio. NOx emission calculating means for detecting an operating state of the internal combustion engine including an engine speed and a load, and calculating an NOx emission discharged from the internal combustion engine in accordance with the detected operating state, NOx purification of the selective reduction catalyst NOx to calculate rate
Purification rate calculation means, the calculated NOx emission amount and NOx
The NOx adsorption amount of the NOx adsorption catalyst based on the purification rate,
More specifically, the system includes a NOx adsorption amount calculating unit that calculates an NOx adsorption amount that would have been adsorbed by the NOx adsorption catalyst, and a NOx reduction processing unit that performs a NOx reduction process based on the calculated NOx adsorption amount. Configured.

【0009】検出した運転状態に応じて内燃機関から排
出されるNOx排出量を算出すると共に、選択還元触媒
のNOx浄化率を算出し、それらNOx排出量とNOx
浄化率に基づいてNOx吸着触媒が吸着したであろうN
Ox吸着量を算出し、そのNOx吸着量に基づいてNO
x還元処理を行う如く構成したので、NOx還元処理を
最小限度に止め、よって意図したNOx浄化性能を達成
しつつ燃費性能を向上させることができる。
The amount of NOx discharged from the internal combustion engine is calculated in accordance with the detected operating condition, the NOx purification rate of the selective reduction catalyst is calculated, and the NOx emission and NOx are calculated.
Based on the purification rate, the NOx adsorbing catalyst would have adsorbed N
The Ox adsorption amount is calculated, and NO is determined based on the NOx adsorption amount.
Since the configuration is such that the x reduction process is performed, the NOx reduction process can be minimized, and the fuel consumption performance can be improved while achieving the intended NOx purification performance.

【0010】請求項2項にあっては、前記選択還元触媒
は、イリジウム系の選択還元触媒である如く構成した。
[0010] In the present invention, the selective reduction catalyst is an iridium-based selective reduction catalyst.

【0011】イリジウム系の選択還元触媒と下流のNO
x吸着触媒はNOx浄化機能あるいは特性が異なるた
め、浄化率を最適にすることができる。即ち、上流側の
イリジウム系の選択還元触媒はリーン空燃比(酸化雰囲
気)でNOxと多重結合HCとを反応させてNOxを浄
化すると共に、下流側のNOx吸着触媒はリーン空燃比
でNOxを吸着(あるいは吸蔵)し、理論空燃比あるい
はリッチ空燃比で還元剤によってNOxを還元浄化す
る。このように、両者は浄化機能あるいは特性が異なる
ことから、両者を組み合わせることで、浄化率を最大限
度まで高めることができる。
Iridium-based selective reduction catalyst and downstream NO
Since the x adsorption catalyst has a different NOx purification function or characteristic, the purification rate can be optimized. That is, the iridium-based selective reduction catalyst on the upstream side reacts NOx with the multiple bond HC at a lean air-fuel ratio (oxidizing atmosphere) to purify NOx, and the downstream NOx adsorption catalyst adsorbs NOx at a lean air-fuel ratio. (Or occlusion), and NOx is reduced and purified by a reducing agent at a stoichiometric air-fuel ratio or a rich air-fuel ratio. As described above, since the two have different purification functions or characteristics, by combining them, the purification rate can be increased to the maximum.

【0012】また、イリジウム系の選択還元触媒とNO
x吸着触媒は共に、浄化性能(浄化率)が触媒温度にお
いて400℃付近で最大となるので、例えば、触媒温度
がその付近にあるときにリーン空燃比を供給する、ある
いは触媒温度がその付近となるように制御することで、
NOx浄化率を上げることも可能となる。
An iridium-based selective reduction catalyst and NO
In both x-adsorption catalysts, the purification performance (purification rate) is maximized at around 400 ° C. at the catalyst temperature. For example, when the catalyst temperature is around that, the lean air-fuel ratio is supplied, or By controlling so that
It is also possible to increase the NOx purification rate.

【0013】さらに、イリジウム系の選択還元触媒の場
合、空間速度Space Velocityへの依存性が極めて小さい
ため、触媒容量を小さくして熱容量を低減することがで
き、冷間始動時などに有利となる。さらに、それによっ
て下流のNOx吸着触媒の活性化を早めることもできる
と共に、その負担も軽減することができる。
Further, in the case of an iridium-based selective reduction catalyst, since the dependence on the space velocity is extremely small, the catalyst capacity can be reduced to reduce the heat capacity, which is advantageous during a cold start. . In addition, the activation of the downstream NOx adsorption catalyst can be accelerated, and the burden can be reduced.

【0014】さらに、上流側のイリジウム系の選択還元
触媒でNOxを浄化してNOx濃度を減少させること
で、下流側のNOx吸着触媒が飽和点に達するまでの時
間を延長することができ、NOx還元処理時間を減少す
ることができる。その意味でも燃費性能を向上すること
ができる。
Further, by purifying NOx with the iridium-based selective reduction catalyst on the upstream side and reducing the NOx concentration, the time until the NOx adsorption catalyst on the downstream side reaches the saturation point can be prolonged. The reduction processing time can be reduced. In that sense, fuel efficiency can be improved.

【0015】このように、下流側のNOx吸着触媒はリ
ーン空燃比において優れたNOx浄化性能(吸着性能)
を有することから、イリジウム系の選択還元触媒とNO
x吸着触媒を直列に配置することにより、リーン空燃比
におけるNOx浄化性能を向上させることができる。
As described above, the NOx adsorption catalyst on the downstream side has an excellent NOx purification performance (adsorption performance) at a lean air-fuel ratio.
Iridium-based selective reduction catalyst and NO
By arranging the x adsorption catalysts in series, the NOx purification performance at a lean air-fuel ratio can be improved.

【0016】さらに、イリジウム系の選択還元触媒はN
Ox浄化温度域ではHC浄化性能が三元触媒などに比較
して低いため、下流のNOx吸着触媒が理論空燃比ある
いはリッチ空燃比で吸着したNOxを還元するのに必要
なHCなどの還元成分を浄化することなく、NOx吸着
触媒に供給することができ、理論空燃比あるいはリッチ
空燃比においてNOx吸着触媒のNOx浄化率を向上さ
せることができる。
Further, the iridium-based selective reduction catalyst is N
Since the HC purification performance in the Ox purification temperature range is lower than that of a three-way catalyst or the like, the reduction components such as HC necessary for the downstream NOx adsorption catalyst to reduce NOx adsorbed at the stoichiometric air-fuel ratio or the rich air-fuel ratio are reduced. It can be supplied to the NOx adsorption catalyst without purification, and the NOx purification rate of the NOx adsorption catalyst can be improved at a stoichiometric air-fuel ratio or a rich air-fuel ratio.

【0017】また、イリジウム系の選択還元触媒を用い
ることで、触媒自体の耐久性を向上させることができ
る。
Further, by using an iridium-based selective reduction catalyst, the durability of the catalyst itself can be improved.

【0018】請求項3項にあっては、前記NOx浄化率
算出手段は、前記選択還元触媒の温度に基づいて前記選
択還元触媒のNOx浄化率を算出する如く構成した。
According to a third aspect of the present invention, the NOx purification rate calculation means is configured to calculate the NOx purification rate of the selective reduction catalyst based on the temperature of the selective reduction catalyst.

【0019】選択還元触媒のNOx浄化率はその温度に
依存して変化するが、かく構成したことで、NOx浄化
率を精度良く算出することができ、よって意図したNO
x浄化性能を達成しつつ燃費性能を一層向上させること
ができる。
Although the NOx purification rate of the selective reduction catalyst changes depending on its temperature, this configuration makes it possible to calculate the NOx purification rate with high accuracy, and thus to achieve the intended NOx purification rate.
x The fuel consumption performance can be further improved while achieving the purification performance.

【0020】請求項4項にあっては、前記NOx浄化率
算出手段は、少なくとも前記検出された運転状態に基づ
いて前記選択還元触媒の温度を算出する触媒温度算出手
段を備え、前記算出された選択還元触媒の温度に基づい
て前記選択還元触媒のNOx浄化率を算出する如く構成
した。
Preferably, the NOx purification rate calculating means includes catalyst temperature calculating means for calculating a temperature of the selective reduction catalyst based on at least the detected operating state. The NOx purification rate of the selective reduction catalyst is calculated based on the temperature of the selective reduction catalyst.

【0021】検出された運転状態に基づいて選択還元触
媒の温度を算出する如く構成したので、前記した作用効
果に加え、温度センサが不要となり、装置の構成を簡略
にすることができる。
Since the configuration is such that the temperature of the selective reduction catalyst is calculated based on the detected operating state, in addition to the above-mentioned effects, a temperature sensor is not required, and the configuration of the apparatus can be simplified.

【0022】請求項5項にあっては、前記NOx浄化率
算出手段は、前記内燃機関に供給される空燃比に基づい
て前記選択還元触媒のNOx浄化率を補正する如く構成
した。
According to a fifth aspect of the present invention, the NOx purification rate calculating means corrects the NOx purification rate of the selective reduction catalyst based on an air-fuel ratio supplied to the internal combustion engine.

【0023】内燃機関に供給される空燃比に基づいて前
記選択還元触媒のNOx浄化率を補正することで、選択
還元触媒が酸素濃度に依存する特性を備えるとき、NO
x浄化率を一層精度良く算出することができ、よって意
図したNOx浄化性能を達成しつつ燃費性能を一層向上
させることができる。
By correcting the NOx purification rate of the selective reduction catalyst based on the air-fuel ratio supplied to the internal combustion engine, when the selective reduction catalyst has a characteristic dependent on oxygen concentration, NO
The x purification rate can be calculated with higher accuracy, and the fuel consumption performance can be further improved while achieving the intended NOx purification performance.

【0024】請求項6項にあっては、前記NOx還元処
理手段は、前記算出されたNOx吸着量を所定値と比較
する比較手段を備え、前記算出されたNOx吸着量が前
記所定値を超えるとき、NOx還元処理を行う如く構成
した。
According to a sixth aspect of the present invention, the NOx reduction processing means includes a comparing means for comparing the calculated NOx adsorption amount with a predetermined value, and the calculated NOx adsorption amount exceeds the predetermined value. At this time, it was configured to perform the NOx reduction processing.

【0025】これによってNOx還元処理の実行時期を
的確に決定することができ、よって意図したNOx浄化
性能を達成しつつ燃費性能を一層向上させることができ
る。
As a result, the execution time of the NOx reduction process can be accurately determined, and the fuel consumption performance can be further improved while achieving the intended NOx purification performance.

【0026】また、前記内燃機関がガソリン燃料を気筒
燃焼室に直接噴射して超希薄燃焼あるいは予混合燃焼の
いずれかの運転モードで運転される筒内噴射型の火花点
火式の内燃機関であり、前記NOx排出量算出手段は、
前記内燃機関が前記運転モードのいずれで運転されてい
るか判別する運転モード判別手段を備え、前記判別され
た運転モードおよび前記検出した運転状態に応じて前記
内燃機関から排出されるNOx排出量を算出する如く構
成した。
Further, there is provided an in-cylinder injection type spark ignition type internal combustion engine in which the internal combustion engine is operated in one of an ultra lean combustion mode and a premixed combustion mode by directly injecting gasoline fuel into a cylinder combustion chamber. , The NOx emission calculating means,
Operating mode determining means for determining in which of the operating modes the internal combustion engine is operated, and calculating an NOx emission amount discharged from the internal combustion engine according to the determined operating mode and the detected operating state It was configured so that

【0027】これによってNOx排出量を一層精度良く
算出することができ、よって意図したNOx浄化性能を
達成しつつ燃費性能を一層向上させることができる。
As a result, the NOx emission amount can be calculated with higher accuracy, and the fuel consumption performance can be further improved while achieving the intended NOx purification performance.

【0028】[0028]

【発明の実施の形態】以下、添付図面に即してこの出願
に係る内燃機関の排気浄化装置の実施の形態を説明す
る。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing an exhaust gas purifying apparatus for an internal combustion engine according to an embodiment of the present invention.

【0029】図1はその装置を概略的に示す全体図であ
る。
FIG. 1 is an overall view schematically showing the apparatus.

【0030】図において、符号10はOHC直列4気筒
の内燃機関(以下「エンジン」という)を示し、吸気管
12の先端に配置されたエアクリーナ14から導入され
た吸気は、サージタンク16を通り、スロットルバルブ
18でその流量を調節されつつインテーク(吸気)マニ
ホルド20を経て、2個の吸気バルブ(図示せず)を介
して各シリンダ(気筒。1つのシリンダ22のみ示す)
に流入する。
In the drawing, reference numeral 10 denotes an OHC in-line four-cylinder internal combustion engine (hereinafter referred to as “engine”), and intake air introduced from an air cleaner 14 disposed at the tip of an intake pipe 12 passes through a surge tank 16. Each cylinder (cylinder; only one cylinder 22 is shown) via an intake (intake) manifold 20 and two intake valves (not shown) while the flow rate is adjusted by a throttle valve 18.
Flows into.

【0031】各シリンダにはピストン24が移動自在に
設けられると共に、その頂部に凹部が形成され、ピスト
ン24の頂部とシリンダヘッド26の内壁との間には、
燃焼室28が形成される。燃焼室28に臨む位置の中央
付近には、インジェクタ(燃料噴射弁)30が設けられ
る。
Each of the cylinders is provided with a piston 24 movably, and a recess is formed at the top thereof. A gap is formed between the top of the piston 24 and the inner wall of the cylinder head 26.
A combustion chamber 28 is formed. An injector (fuel injection valve) 30 is provided near the center of the position facing the combustion chamber 28.

【0032】インジェクタ30は燃料供給管34に接続
され、燃料供給管34を通じて燃料タンク(図示せず)
から燃料ポンプ(図示せず)によって加圧された燃料
(ガソリン燃料)の供給を受け、開弁するとき、燃料を
燃焼室28に噴射する。
The injector 30 is connected to a fuel supply pipe 34, through which a fuel tank (not shown) is connected.
When the valve is opened, the fuel is injected into the combustion chamber 28 when the fuel (gasoline fuel) pressurized by a fuel pump (not shown) is supplied.

【0033】また、各シリンダ22の燃焼室28には点
火プラグ36が配置される。点火プラグ36は点火コイ
ルを含む点火装置(図示せず)から点火エネルギの供給
を受け、所定の点火時期において噴射燃料と吸入空気の
混合気を点火する。点火された混合気は燃焼して爆発
し、ピストン24を駆動する。
An ignition plug 36 is disposed in the combustion chamber 28 of each cylinder 22. The ignition plug 36 receives supply of ignition energy from an ignition device (not shown) including an ignition coil, and ignites a mixture of injected fuel and intake air at a predetermined ignition timing. The ignited mixture burns and explodes, driving the piston 24.

【0034】このように、この実施の形態に係るエンジ
ン10は、ガソリン燃料をインジェクタ30を介して各
シリンダ22の燃焼室28に直接噴射する、筒内噴射型
の火花点火式の内燃機関である。
As described above, the engine 10 according to this embodiment is a direct injection type spark ignition type internal combustion engine in which gasoline fuel is directly injected into the combustion chamber 28 of each cylinder 22 via the injector 30. .

【0035】燃焼後の排気ガスは、2個の排気バルブ
(図示せず)を介してエキゾースト(排気)マニホルド
40に排出され、排気管42を進んで第1の触媒装置4
4および第2の触媒装置46に達し、そこで浄化されて
大気中に排出される。これら第1および第2の触媒装置
については後述する。
The exhaust gas after the combustion is discharged to an exhaust (exhaust) manifold 40 through two exhaust valves (not shown), and travels through an exhaust pipe 42 to the first catalytic device 4.
4 and the second catalytic device 46, where they are purified and discharged to the atmosphere. These first and second catalyst devices will be described later.

【0036】エキゾーストマニホルド40の下流におい
て排気管42はEGR管50を介して吸気管12に接続
され、排気ガスの一部を吸気系に還流させる。EGR管
50には吸気管12に接続される付近でEGRバルブ5
2が設けられ、EGR還流量を調節する。
Downstream of the exhaust manifold 40, the exhaust pipe 42 is connected to the intake pipe 12 via the EGR pipe 50, and recirculates a part of the exhaust gas to the intake system. The EGR pipe 50 has an EGR valve 5 near the connection to the intake pipe 12.
2 is provided to adjust the EGR reflux amount.

【0037】また、スロットルバルブ18と車両運転席
床面に配置されたアクセルペダル(図示せず)とは機械
的に連結されず、スロットルバルブ18はパルスモータ
54に連結され、その出力で駆動されて吸気管12を開
閉する。このように、スロットルバルブ18は、DBW
方式で駆動される。
The throttle valve 18 is not mechanically connected to an accelerator pedal (not shown) arranged on the floor of the driver's seat of the vehicle. The throttle valve 18 is connected to a pulse motor 54 and is driven by its output. To open and close the intake pipe 12. As described above, the throttle valve 18
Driven in a manner.

【0038】ピストン24はクランクシャフト56に連
結されると共に、クランクシャフト56の付近にはクラ
ンク角センサ62が配置される。クランク角センサ62
は、クランクシャフト56に取り付けられたパルサ62
aおよびそれに対向配置された磁気ピックアップ62b
からなる。
The piston 24 is connected to a crankshaft 56, and a crank angle sensor 62 is arranged near the crankshaft 56. Crank angle sensor 62
Is a pulsar 62 attached to the crankshaft 56.
a and a magnetic pickup 62b disposed opposite thereto
Consists of

【0039】クランク角センサ62は、クランク角度7
20度ごとに気筒判別用のCYL信号を、各シリンダの
BTDC所定クランク角度ごとにTDC信号を、TDC
信号間隔を6個に細分したクランク角度30度ごとにC
RK信号を出力する。
The crank angle sensor 62 detects the crank angle 7
A CYL signal for cylinder discrimination every 20 degrees, a TDC signal for each cylinder BTDC predetermined crank angle, TDC
The signal interval is subdivided into six.
An RK signal is output.

【0040】図1の説明に戻ると、パルスモータ54に
はスロットル開度センサ64が接続され、パルスモータ
回転量を通じてスロットルバルブ18の開度THに応じ
た信号を出力する。
Returning to the description of FIG. 1, a throttle opening sensor 64 is connected to the pulse motor 54, and outputs a signal corresponding to the opening TH of the throttle valve 18 through the pulse motor rotation amount.

【0041】吸気管12のスロットルバルブ18の配置
位置付近には絶対圧(MAP)センサ66が設けられ、
スロットル下流の吸気圧力を図示しない通路を介して導
入して吸気管内絶対圧PBAに応じた信号を出力する。
また、吸気管12においてスロットルバルブ18の配置
位置の上流側には吸気温センサ68が設けられ、吸入空
気の温度TAに応じた信号を出力する。
An absolute pressure (MAP) sensor 66 is provided near the position of the throttle valve 18 in the intake pipe 12.
The intake pressure downstream of the throttle is introduced through a passage (not shown) to output a signal corresponding to the intake pipe absolute pressure PBA.
An intake air temperature sensor 68 is provided in the intake pipe 12 upstream of the position where the throttle valve 18 is disposed, and outputs a signal corresponding to the intake air temperature TA.

【0042】また、シリンダ22の付近には水温センサ
70が設けられ、エンジン冷却水温TWに応じた信号を
出力する。排気管42には触媒装置44,46の上流側
において広域空燃比センサ72が設けられ、排気空燃比
に比例した信号を出力すると共に、第1、第2の触媒装
置44,46の下流側においてO2 センサ74が設けら
れ、排気空燃比が理論空燃比に対してリーンあるいはリ
ッチにあることを示す信号を出力する。
A water temperature sensor 70 is provided near the cylinder 22, and outputs a signal corresponding to the engine cooling water temperature TW. A wide-range air-fuel ratio sensor 72 is provided in the exhaust pipe 42 upstream of the catalyst devices 44 and 46, and outputs a signal proportional to the exhaust air-fuel ratio, and downstream of the first and second catalyst devices 44 and 46. An O 2 sensor 74 is provided, and outputs a signal indicating that the exhaust air-fuel ratio is lean or rich with respect to the stoichiometric air-fuel ratio.

【0043】さらに、アクセルペダルの付近にはアクセ
ル開度センサ76が設けられ、運転者により操作される
アクセル開度(アクセルペダル踏み込み量)θAPに応
じた信号を出力する。
Further, an accelerator opening sensor 76 is provided near the accelerator pedal, and outputs a signal corresponding to an accelerator opening (accelerator pedal depression amount) θAP operated by the driver.

【0044】これらセンサ出力は、電子制御ユニット
(以下「ECU」という)80に送られる。
These sensor outputs are sent to an electronic control unit (hereinafter referred to as “ECU”) 80.

【0045】ECU80はCPU,ROM,RAMなど
からなるマイクロコンピュータおよびカウンタ(図示せ
ず)を備え、クランク角センサ62が出力するCRK信
号をカウントしてエンジン回転数NEを検出すると共
に、後述するNOx吸着量の算出およびNOx還元処理
などを行う。
The ECU 80 includes a microcomputer including a CPU, a ROM, a RAM, and the like, and a counter (not shown). The ECU 80 counts the CRK signal output from the crank angle sensor 62 to detect the engine speed NE, and NOx to be described later. Calculation of the amount of adsorption and NOx reduction processing are performed.

【0046】ここで、上記した触媒について説明する
と、上流側の第1の触媒装置44は、イリジウム(I
r)を活性種とし、リーン雰囲気でHCを還元剤として
NOxを選択的に還元するイリジウム系の選択還元触
媒、具体的には、ペロブスカイト型複酸化物(LaCo
3 など)を含む触媒、より具体的には、活性種である
イリジウムとペロブスカイト型複酸化物を合わせて担持
させるか、あるいはイリジウム触媒をペロブスカイト型
複酸化物(LaCoO3 など)で被覆した触媒を備え
る。
Here, the above-mentioned catalyst will be described. The first catalyst device 44 on the upstream side is provided with iridium (I
r) as an active species and an iridium-based selective reduction catalyst for selectively reducing NOx with HC as a reducing agent in a lean atmosphere, specifically, a perovskite-type double oxide (LaCo
O 3 ), more specifically, a catalyst in which iridium, which is an active species, and a perovskite-type double oxide are supported together, or a catalyst in which an iridium catalyst is coated with a perovskite-type double oxide (eg, LaCoO 3 ) Is provided.

【0047】このイリジウム系の選択還元触媒44は、
酸化雰囲気(リーン空燃比)においてHCとNOxを反
応(還元)させてNOxを還元浄化する。
The iridium-based selective reduction catalyst 44 comprises:
In an oxidizing atmosphere (lean air-fuel ratio), NOx is reduced and purified by reacting (reducing) HC and NOx.

【0048】また、下流側の第2の触媒装置46は、リ
ーン雰囲気においてNOxを吸着し、理論空燃比あるい
はそれ以下のリッチ空燃比において吸着したNOxを還
元浄化するNOx吸着触媒を備える。
The second catalytic device 46 on the downstream side is provided with a NOx adsorption catalyst that adsorbs NOx in a lean atmosphere and reduces and purifies NOx adsorbed at a stoichiometric air-fuel ratio or a rich air-fuel ratio lower than the stoichiometric air-fuel ratio.

【0049】NOx吸着触媒としては、特開平6−88
518号公報などで提案される、いわゆる吸蔵式の触
媒、あるいは本出願人が特願平10−124317号で
提案する、いわゆる吸着式の触媒のいずれを用いても良
い。
As a NOx adsorption catalyst, JP-A-6-88
Any of the so-called occlusion type catalysts proposed in Japanese Patent Application Publication No. 518 and the like, and the so-called adsorption type catalysts proposed by the present applicant in Japanese Patent Application No. 10-124317 may be used.

【0050】吸蔵式の触媒も吸着式の触媒も共に排気ガ
ス中の酸素濃度が高く、NOxが多いリーン雰囲気でN
Oxを吸蔵(あるいは吸着)し、酸素濃度が比較的低
く、HC,COが多いリッチ雰囲気で吸蔵(あるいは吸
着)したNOxをHC,COで還元する特性を備える。
HC,COは酸化され、水蒸気および二酸化炭素として
放出される。
In both the storage type catalyst and the adsorption type catalyst, the oxygen concentration in the exhaust gas is high and N
It has a characteristic of storing (or adsorbing) Ox, reducing NOx stored (or adsorbed) in a rich atmosphere having a relatively low oxygen concentration and a large amount of HC and CO with HC and CO.
HC and CO are oxidized and released as water vapor and carbon dioxide.

【0051】このように、この実施の形態においては、
イリジウム系の選択還元触媒からなる第1の触媒装置4
4とNOx吸着触媒からなる第2の触媒装置46を直列
に配置するようにした。
As described above, in this embodiment,
First catalytic device 4 comprising an iridium-based selective reduction catalyst
No. 4 and a second catalyst device 46 composed of a NOx adsorption catalyst are arranged in series.

【0052】即ち、イリジウム系の選択還元触媒と下流
のNOx吸着触媒はNOx浄化機能あるいは特性が異な
るため、浄化率を最適にすることができる。即ち、上流
側のイリジウム系の選択還元触媒はリーン空燃比(酸化
雰囲気)でNOxと多重結合HCとを反応させてNOx
を浄化すると共に、下流側のNOx吸着触媒はリーン空
燃比でNOxを吸着(あるいは吸蔵)し、理論空燃比あ
るいはリッチ空燃比で還元剤によってNOxを還元浄化
する。このように、両者は浄化機能あるいは特性が異な
ることから、両者を組み合わせることで、浄化率を最大
限度まで高めることができる。
That is, the iridium-based selective reduction catalyst and the downstream NOx adsorption catalyst have different NOx purification functions or characteristics, so that the purification rate can be optimized. That is, the iridium-based selective reduction catalyst on the upstream side reacts NOx with the multiple bond HC at a lean air-fuel ratio (oxidizing atmosphere) to produce NOx.
And the NOx adsorption catalyst on the downstream side adsorbs (or stores) NOx at a lean air-fuel ratio and reduces and purifies NOx with a reducing agent at a stoichiometric air-fuel ratio or a rich air-fuel ratio. As described above, since the two have different purification functions or characteristics, by combining them, the purification rate can be increased to the maximum.

【0053】また、イリジウム系の選択還元触媒とNO
x吸着触媒は共に、浄化性能(浄化率)が触媒温度にお
いて400℃付近で最大となるので、例えば、触媒温度
がその付近にあるときにリーン空燃比を供給する、ある
いは触媒温度がその付近となるように制御することで、
NOx浄化率を上げることも可能となる。
An iridium-based selective reduction catalyst and NO
In both x-adsorption catalysts, the purification performance (purification rate) is maximized at around 400 ° C. at the catalyst temperature. For example, when the catalyst temperature is around that, the lean air-fuel ratio is supplied, or By controlling so that
It is also possible to increase the NOx purification rate.

【0054】さらに、イリジウム系の選択還元触媒の場
合、空間速度Space Velocityへの依存性が極めて小さい
ため、触媒容量を小さくして熱容量を低減することがで
き、冷間始動時などに有利となる。さらに、それによっ
て下流のNOx吸着触媒の活性化を早めることもできる
と共に、その負担も軽減することができる。
Further, in the case of an iridium-based selective reduction catalyst, since the dependence on the space velocity is extremely small, the catalyst capacity can be reduced to reduce the heat capacity, which is advantageous during a cold start. . In addition, the activation of the downstream NOx adsorption catalyst can be accelerated, and the burden can be reduced.

【0055】さらに、上流側のイリジウム系の選択還元
触媒でNOxを浄化してNOx濃度を減少させること
で、下流側のNOx吸着触媒が飽和点に達するまでの時
間を延長することができ、NOx還元処理時間を減少す
ることができる。従って、その意味でも燃費性能を向上
することができる。
Furthermore, by purifying NOx with the iridium-based selective reduction catalyst on the upstream side and reducing the NOx concentration, the time until the NOx adsorption catalyst on the downstream side reaches the saturation point can be extended, and NOx can be extended. The reduction processing time can be reduced. Therefore, fuel efficiency can be improved in that sense.

【0056】さらに、下流側のNOx吸着触媒はリーン
空燃比において優れたNOx浄化性能(吸着性能)を有
することから、イリジウム系の選択還元触媒とNOx吸
着触媒を直列に配置することにより、リーン空燃比にお
けるNOx浄化性能を向上させることができる。
Further, since the NOx adsorption catalyst on the downstream side has an excellent NOx purification performance (adsorption performance) at a lean air-fuel ratio, the lean iridium-based selective reduction catalyst and the NOx adsorption catalyst are arranged in series, so that the lean air-fuel ratio is reduced. The NOx purification performance at the fuel ratio can be improved.

【0057】さらに、イリジウム系の選択還元触媒はN
Ox浄化温度域ではHC浄化性能が三元触媒などに比較
して低いため、下流のNOx吸着触媒が理論空燃比ある
いはリッチ空燃比で吸着したNOxを還元するのに必要
なHCなどの還元成分を浄化することなく、NOx吸着
触媒に供給することができ、理論空燃比あるいはリッチ
空燃比においてNOx吸着触媒のNOx浄化率を向上さ
せることができる。
Further, the iridium-based selective reduction catalyst is N
Since the HC purification performance in the Ox purification temperature range is lower than that of a three-way catalyst or the like, the reduction components such as HC necessary for the downstream NOx adsorption catalyst to reduce NOx adsorbed at the stoichiometric air-fuel ratio or the rich air-fuel ratio are reduced. It can be supplied to the NOx adsorption catalyst without purification, and the NOx purification rate of the NOx adsorption catalyst can be improved at a stoichiometric air-fuel ratio or a rich air-fuel ratio.

【0058】また、第1の触媒装置44にイリジウム系
の選択還元触媒を用いることで、触媒装置としての耐久
性を向上させることができる。
Further, by using an iridium-based selective reduction catalyst for the first catalyst device 44, the durability of the catalyst device can be improved.

【0059】次いで、この実施の形態に係る内燃機関の
排気浄化装置の動作を説明する。
Next, the operation of the exhaust gas purifying apparatus for an internal combustion engine according to this embodiment will be described.

【0060】図2はその動作を示すフロー・チャートで
ある。尚、図示のプログラムは、例えば50msecご
とに実行される。
FIG. 2 is a flow chart showing the operation. The illustrated program is executed, for example, every 50 msec.

【0061】以下説明すると、S10においてS.EM
ODが0であるか否か判断する。S.EMODは前記し
たECU80のRAM内の適宜な領域に設定される変数
であってエンジンの運転モードを示す。
The operation will be described below. EM
It is determined whether or not OD is 0. S. EMOD is a variable that is set in an appropriate area in the RAM of the ECU 80 and indicates the operation mode of the engine.

【0062】即ち、S.EMODの値が0のときは筒内
平均空燃比が理論空燃比あるいはその近傍となるよう
に、また1のときは理論空燃比より大きいリーン空燃
比、例えば22:1あるいはその付近となるように、目
標空燃比(以下「KCMD」という。尚、目標空燃比は
当量比で示す)設定され、その設定された目標空燃比に
応じてエンジン10が運転されて予混合燃焼を生じる運
転モードにあることを意味する。
That is, S.I. When the value of EMOD is 0, the average in-cylinder air-fuel ratio is set at or near the stoichiometric air-fuel ratio. When the value of EMOD is 1, the average air-fuel ratio is set at a lean air-fuel ratio larger than the stoichiometric air-fuel ratio, for example, at or near 22: 1. , A target air-fuel ratio (hereinafter referred to as “KCMD”; the target air-fuel ratio is indicated by an equivalence ratio), and the engine 10 is operated according to the set target air-fuel ratio to generate a premixed combustion. Means that.

【0063】また、S.EMODの値が2のときは、さ
らに大きいリーン空燃比、例えば60:1あるいはその
付近となるように、目標空燃比(以下「KCMD」とい
う)が設定され、その設定された目標空燃比に応じてエ
ンジン10が運転されて超希薄燃焼あるいは成層燃焼
(Direct Injection Stratified Charge) を生じる運転
モードにあることを意味する。
Further, S.I. When the value of EMOD is 2, a target air-fuel ratio (hereinafter, referred to as “KCMD”) is set so as to be a larger lean air-fuel ratio, for example, 60: 1 or in the vicinity thereof, and according to the set target air-fuel ratio. Means that the engine 10 is operated to generate an ultra-lean combustion or a stratified charge combustion (Direct Injection Stratified Charge).

【0064】尚、目標空燃比KCMDの設定および燃料
噴射などは、図示しない別のルーチンで行われる。S1
0ではそのルーチンで設定される上記したS.EMOD
の値を検索することで運転モードを判定する。
The setting of the target air-fuel ratio KCMD and fuel injection are performed by another routine (not shown). S1
0 is set in the routine. EMOD
The operation mode is determined by searching the value of.

【0065】S10で肯定されるときはエンジン10が
理論空燃比で運転されるモードにあってNOx吸着量の
算出が不要であることから、以降の処理をスキップする
と共に、否定されるときはS12に進み、検出されたエ
ンジン冷却水温TWが、所定値X.TWNOx、例えば
80℃を超えるか否か判断し、否定されるときは以降の
処理をスキップする。
When the result in S10 is affirmative, the engine 10 is operated at the stoichiometric air-fuel ratio, and the calculation of the NOx adsorption amount is unnecessary. Therefore, the subsequent processing is skipped. And the detected engine cooling water temperature TW becomes the predetermined value X. It is determined whether the temperature exceeds TWNOx, for example, 80 ° C., and if not, the subsequent processing is skipped.

【0066】即ち、第1の触媒装置44の浄化率はその
温度に応じて大きく異なると共に、低温では浄化率も低
いので、エンジン冷却水温が第1の触媒装置44が低温
で浄化率が低いことを窺わせるに足るときは、演算の簡
略化のため、以降の処理をスキップするようにした。
That is, since the purification rate of the first catalyst device 44 varies greatly depending on its temperature, and the purification rate is low at low temperatures, the engine cooling water temperature is low when the first catalyst device 44 is at low temperature and the purification rate is low. When it is sufficient to indicate, the following processing is skipped to simplify the calculation.

【0067】S12で肯定されるときはS14に進み、
前記したS.EMODの値が1であるか否か判断する。
S12で肯定されるときは予混合リーン運転にあると判
断してS16に進み、検出されたエンジン回転数NEと
吸気管内絶対圧PBA(エンジン負荷)から予め設定さ
れたマップ(図示せず)を検索し、エンジン10がその
予混合リーン運転において排出したであろうNOx排出
量X.FNOMPLを算出する。
When the result in S12 is affirmative, the program proceeds to S14,
The S.S. It is determined whether or not the value of EMOD is 1.
When the result in S12 is affirmative, it is determined that the engine is in the premixed lean operation, and the program proceeds to S16, in which a map (not shown) preset from the detected engine speed NE and the intake pipe absolute pressure PBA (engine load) is displayed. Searching for the NOx emissions X.X that the engine 10 would have emitted in its premixed lean operation. Calculate FNOMPL.

【0068】他方、S14で否定されるときはS10の
判断を経ていることから成層燃焼運転にあると判断して
S18に進み、検出されたエンジン回転数NEと算出さ
れた目標トルクPMCMDREG(検出されたエンジン
回転数NEとアクセル開度θAPから算出)から予め設
定された第2のマップ(図示せず)を検索し、同様にエ
ンジン10がその成層燃焼運転において排出したであろ
うNOx排出量X.FNOMPDを算出する。
On the other hand, if the result in S14 is NO, since the determination in S10 has been made, it is determined that the engine is in stratified charge combustion operation, and the routine proceeds to S18, in which the detected engine speed NE and the calculated target torque PMCMDREG ( A second preset map (not shown) is searched from the calculated engine speed NE and the accelerator opening θAP), and similarly, the NOx emission amount X that would have been emitted by the engine 10 during the stratified combustion operation thereof. . Calculate FNOMPD.

【0069】上記したマップは共に、所定周期において
エンジン10が排出するであろうNOx排出量を予め実
験により求めて設定されてなる。
In each of the above maps, the NOx emission amount that will be emitted by the engine 10 in a predetermined cycle is determined in advance by an experiment.

【0070】次いでS20に進み、検出された運転状態
などに応じて第1の触媒装置44の選択還元触媒の温度
(触媒床温度。以下「触媒温度TCAT」という)を算
出する。具体的には、検出された運転状態に基づいて熱
力学の式に基づいて選択還元触媒の熱移動を求めて算出
する。
Then, the program proceeds to S20, in which the temperature of the selective reduction catalyst of the first catalyst device 44 (catalyst bed temperature, hereinafter referred to as "catalyst temperature TCAT") is calculated in accordance with the detected operating state and the like. Specifically, the heat transfer of the selective reduction catalyst is obtained and calculated based on a thermodynamic equation based on the detected operating state.

【0071】より具体的には、エンジン回転数NE、吸
気管内絶対圧PBA、目標空燃比KCMD、エンジン冷
却水温TWに基づいて予め設定しておいた特性に従って
選択還元触媒の比熱、熱伝達率、排気系温度などを求
め、予め記憶されている選択還元触媒の質量、断面積を
用いて触媒温度TCATを算出する。
More specifically, the specific heat, the heat transfer coefficient, and the specific heat of the selective reduction catalyst are determined according to the characteristics set in advance based on the engine rotational speed NE, the intake pipe absolute pressure PBA, the target air-fuel ratio KCMD, and the engine coolant temperature TW. The exhaust system temperature and the like are obtained, and the catalyst temperature TCAT is calculated using the mass and cross-sectional area of the selective reduction catalyst stored in advance.

【0072】尚、この触媒温度TCATの算出の手法の
詳細は、先に本出願人が特開平11−62656号公報
で提案しているので、説明はこの程度に止める。
The details of the method of calculating the catalyst temperature TCAT have been previously proposed by the present applicant in Japanese Patent Application Laid-Open No. H11-62656, and thus the description will be limited to this extent.

【0073】次いでS22に進み、算出した触媒温度T
CATから図3にその特性を示すテーブルを検索し、第
1の触媒装置44の選択還元触媒のNOx浄化率X.I
NOを算出する。尚、NOx浄化率X.INOは%で示
される。
Then, the program proceeds to S22, in which the calculated catalyst temperature T is calculated.
3 is searched from the CAT, and the NOx purification rate X.C. of the selective reduction catalyst of the first catalyst device 44 is searched. I
Calculate NO. The NOx purification rate X. INO is shown in%.

【0074】次いでS24に進み、図示しない別ルーチ
ンで設定される前記した目標空燃比KCMDから図4に
その特性を示すテーブルを検索し、上記した選択還元触
媒のNOx浄化率補正係数X.KINOを算出する。
Then, the program proceeds to S24, in which a table showing the characteristics shown in FIG. 4 is retrieved from the target air-fuel ratio KCMD set in another routine (not shown), and the NOx purification rate correction coefficient X. Calculate KINO.

【0075】次いでS26に進み、算出したNOx浄化
率X.INOにNOx浄化率補正係数X.KINOを乗
じてNOx浄化率を補正し、補正値を1から減算して得
た差(未浄化率を示す)を、算出したNOx排出量X.
FNOMPL(あるいはX.FNOMPD)に乗じてN
Ox吸着量Q.NOx、より具体的には第2の触媒装置
46のNOx吸着触媒のNOx吸着量、より具体的には
NOx吸着触媒が吸着したであろうNOx吸着量を算出
する。
Then, the program proceeds to S26, in which the calculated NOx purification rate X. NOx purification rate correction coefficient X. The NOx purification rate is corrected by multiplying by the KINO, and the difference (indicating the unpurified rate) obtained by subtracting the correction value from 1 is calculated as the calculated NOx emission amount X.
FNOMPL (or X. FNOMPD) multiplied by N
Ox adsorption amount Q. The NOx, more specifically, the NOx adsorption amount of the NOx adsorption catalyst of the second catalyst device 46, more specifically, the NOx adsorption amount that would have been adsorbed by the NOx adsorption catalyst is calculated.

【0076】即ち、NOx排出量に第1の触媒装置44
の選択還元触媒の未浄化率を乗じることで、第1の触媒
装置44の選択還元触媒で浄化できず、下流の第2の触
媒装置46に送られてそのNOx吸着触媒が吸着したで
あろうNOx吸着量を算出する。
That is, the first catalyst device 44
By multiplying by the unpurified rate of the selective reduction catalyst, the NOx adsorption catalyst could not be purified by the selective reduction catalyst of the first catalyst device 44 and sent to the downstream second catalyst device 46 to adsorb the NOx adsorption catalyst. The NOx adsorption amount is calculated.

【0077】次いでS28に進み、算出したNOx吸着
量を積算してNOx吸着量積算値ΣQ.NOxを求め、
S30に進み、求めたNOx吸着量積算値ΣQ.NOx
が所定値X.NOLTを超えるか否か判断する。所定値
X.NOLTは、第2の触媒装置のNOx吸着触媒のN
Ox吸着量が飽和したことを示すに足る値を実験により
適宜求めて設定する。
Then, the program proceeds to S28, in which the calculated NOx adsorption amount is integrated, and the NOx adsorption amount integrated value {Q. Find NOx,
Proceeding to S30, the obtained NOx adsorption amount integrated value {Q. NOx
Is a predetermined value X. It is determined whether or not NOLT is exceeded. The predetermined value X. NOLT is N of the NOx adsorption catalyst of the second catalyst device.
A value sufficient to indicate that the Ox adsorption amount is saturated is appropriately determined by experiment and set.

【0078】S30で肯定されるときはS32に進み、
フラグF.NOLTのビットを1にセットすると共に、
否定されるときはS34に進み、フラグF.NOLTの
ビットを0にリセットする。
When the result in S30 is affirmative, the program proceeds to S32, where
Flag F. Set the bit of NOLT to 1 and
If not, the process proceeds to S34, and the flag F. The bit of NOLT is reset to 0.

【0079】ここで、フラグF.NOLTのビットを1
にセットすることは前記したNOx還元処理の実行が必
要なことを、フラグF.NOLTのビットを0にリセッ
トすることは不要なことを意味する。
Here, the flag F. Set NOLT bit to 1
Setting the flag F. indicates that the NOx reduction process needs to be performed. Resetting the NOLT bit to 0 means that it is unnecessary.

【0080】図5は、図2フロー・チャートと平行して
行われる、そのNOx還元処理を示すフロー・チャート
である。尚、図示のプログラムも図2のそれと同様の時
間間隔で実行される。
FIG. 5 is a flow chart showing the NOx reduction processing performed in parallel with the flow chart of FIG. The illustrated program is also executed at time intervals similar to those in FIG.

【0081】以下説明すると、S100においてフラグ
F.NOLTが1で、フラグF.NOLTlast(図
5フロー・チャートの前回ループ時の値)が0、即ち、
今回のプログラムループにおいてフラグF.NOLTの
ビットが0から1に反転したか否か判断する。
The following is a description. If NOLT is 1 and flag F. NOLTlast (the value at the time of the previous loop in the flow chart of FIG. 5) is 0, that is,
In the current program loop, the flag F. It is determined whether the bit of the NOLT has been inverted from 0 to 1.

【0082】S100で肯定されるときはS102に進
み、検出されたエンジン回転数NEと吸気管内絶対圧P
BAに基づいて適宜な特性に従って目標空燃比KCMD
を理論空燃比に設定しつつエンジン10を運転する理論
空燃比運転持続時間X.STSMPを設定する。
When the result in S100 is affirmative, the program proceeds to S102, in which the detected engine speed NE and the intake pipe absolute pressure P
Target air-fuel ratio KCMD according to appropriate characteristics based on BA
Is set to the stoichiometric air-fuel ratio while the engine 10 is operated. Set STSMP.

【0083】次いで、S104に進み、タイマ(ダウン
カウンタ)T.NOPに設定した理論空燃比運転持続時
間X.STSMPをセットし、ダウンカウント(時間計
測)を開始する。
Next, the routine proceeds to S104, where a timer (down counter) T. NOP set stoichiometric air-fuel ratio operation duration X. STSMP is set, and a down count (time measurement) is started.

【0084】S100で肯定された後、次回のプログラ
ムループではS100の判断は否定されてS106に進
み、フラグF.NOLTが1でタイマT.NOPの値が
零を超えるか否か判断する。
After affirming in S100, in the next program loop, the determination in S100 is denied, and the routine proceeds to S106, where the flag F. If NOLT is 1 and timer T. It is determined whether the value of NOP exceeds zero.

【0085】S106で肯定されるときはS108に進
み、前記したS.EMODの値を0にする。それによ
り、図示しない別ルーチンにおいて目標空燃比KCMD
が理論空燃比に設定されてエンジン10が運転され、N
Ox還元処理が実行され、第2の触媒装置46に吸着し
たNOxは排気ガス中のHC,COと還元されて浄化さ
れる。尚、このとき、目標空燃比KCMDを理論空燃比
未満のリッチ空燃比としても良い。
When the result in S106 is affirmative, the program proceeds to S108, in which S. Set the value of EMOD to 0. Thus, in another routine (not shown), the target air-fuel ratio KCMD
Is set to the stoichiometric air-fuel ratio, the engine 10 is operated, and N
The Ox reduction process is performed, and the NOx adsorbed on the second catalyst device 46 is reduced to HC and CO in the exhaust gas and purified. At this time, the target air-fuel ratio KCMD may be a rich air-fuel ratio less than the stoichiometric air-fuel ratio.

【0086】次いでS110に進み、タイマT.NOP
の値を所定量デクリメントする。
Next, the routine proceeds to S110, where the timer T. NOP
Is decremented by a predetermined amount.

【0087】次回以降のプログラムループにおいて、S
100で否定されてS106に進み、S106でも否定
されるときはNOx還元処理が終了して吸着していたN
Oxが浄化されたと判断してS112に進み、フラグ
F.NOLTのビットを0にリセットし、S114に進
み、NOx吸着量積算値ΣQ.NOxを零にする。
In the next and subsequent program loops, S
If the result in S100 is NO, the program proceeds to S106, and if the result in S106 is NO, the NOx reduction process ends and the adsorbed N
When it is determined that Ox has been purified, the process proceeds to S112, and the flag F. The bit of NOLT is reset to 0, and the routine proceeds to S114, where the NOx adsorption amount integrated value {Q. Set NOx to zero.

【0088】この実施の形態は上記の如く、エンジン1
0の運転状態に応じてエンジン10から排出されるNO
x排出量X.FNOMPL(あるいはX.FNOMP
D)を算出し、第1の触媒装置44の触媒温度TCAT
を算出してそれからNOx浄化率X.INOを算出し、
さらに目標空燃比KCMDで補正して未浄化率を求め、
NOx排出量に乗じて第2の触媒装置46のNOx吸着
触媒のNOx吸着量Q.NOxを算出するようにした。
In this embodiment, as described above, the engine 1
NO discharged from the engine 10 according to the operating state of 0
x emissions x. FNOMPL (or X. FNOMP
D) is calculated, and the catalyst temperature TCAT of the first catalyst device 44 is calculated.
Is calculated, and then the NOx purification rate X. Calculate INO,
Further, the unpurified rate is obtained by correcting with the target air-fuel ratio KCMD,
Multiplying the NOx emission amount by the NOx adsorption amount Q.O. NOx was calculated.

【0089】さらにそのNOx吸着量積算値ΣQ.NO
xを算出し、所定値X.NOLTと比較し、所定値を超
えているとき、理論空燃比で運転してNOx還元処理を
行うようにしたので、第2の触媒装置46のNOx吸着
量を精度良く算出(あるいは推定)することができ、N
Ox還元処理を最小限度に止めることができる。よって
意図したNOx浄化性能を達成しつつ燃費性能を向上さ
せることができる。
Further, the NOx adsorption amount integrated value {Q. NO
x is calculated and a predetermined value X. Compared to the NOLT, when the predetermined value is exceeded, the operation is performed at the stoichiometric air-fuel ratio to perform the NOx reduction process. Therefore, the NOx adsorption amount of the second catalyst device 46 is accurately calculated (or estimated). And N
Ox reduction treatment can be minimized. Therefore, fuel efficiency can be improved while achieving the intended NOx purification performance.

【0090】上記した如く、この実施の形態において
は、リーン運転可能な内燃機関(エンジン10)の排気
ガス浄化装置において、前記内燃機関の排気系に配置さ
れたリーン雰囲気でHCを還元剤としてNOxを選択的
に還元する選択還元触媒(第1の触媒装置44)、前記
選択還元触媒の下流に配置されたリーン雰囲気において
NOxを吸着し、理論空燃比あるいはそれ以下のリッチ
空燃比において吸着したNOxを還元するNOx吸着触
媒(第2の触媒装置46)、少なくとも機関回転数(エ
ンジン回転数NE)および負荷(吸気管内絶対圧PB
A)を含む前記内燃機関の運転状態を検出し、検出した
運転状態に応じて前記内燃機関から排出されるNOx排
出量(X.FNOMPL,X.FNOMPD)を算出す
るNOx排出量算出手段(クランク角センサ62、絶対
圧センサ66、ECU80,S10からS18)、前記
選択還元触媒のNOx浄化率(X.INO)を算出する
NOx浄化率算出手段(ECU80,S20からS2
4)、前記算出されたNOx排出量(X.FNOMP
L,X.FNOMPD)とNOx浄化率(1−XINO
×X.KINO)に基づいて前記NOx吸着触媒のNO
x吸着量、より具体的には前記NOx吸着触媒が吸着し
たであろうNOx吸着量(Q.NOx,ΣQ.NOx)
を算出するNOx吸着量算出手段(ECU80,S26
からS28)、および前記算出されたNOx吸着量に基
づいてNOx還元処理を行うNOx還元処理手段(EC
U80,S30からS34,S100からS114)を
備える如く構成した。
As described above, in this embodiment, in the exhaust gas purifying apparatus for an internal combustion engine (engine 10) capable of lean operation, HC is used as a reducing agent in a lean atmosphere disposed in the exhaust system of the internal combustion engine. Catalyst (first catalyst device 44) for selectively reducing NOx, adsorbs NOx in a lean atmosphere disposed downstream of the selective reduction catalyst, and adsorbs NOx at a stoichiometric air-fuel ratio or a rich air-fuel ratio equal to or lower than the stoichiometric air-fuel ratio. NOx adsorbing catalyst (second catalytic device 46) for reducing at least the engine speed (engine speed NE) and load (intake pipe absolute pressure PB
A) NOx emission amount calculating means (crank) for detecting an operating state of the internal combustion engine including A) and calculating an NOx emission amount (X.FNOMPL, X.FNOMPD) discharged from the internal combustion engine according to the detected operating state. Angle sensor 62, absolute pressure sensor 66, ECU 80, S10 to S18), NOx purification rate calculation means (ECU 80, S20 to S2) for calculating the NOx purification rate (X.INO) of the selective reduction catalyst.
4), the calculated NOx emission amount (X. FNOMP)
L, X. FNOMPD) and NOx purification rate (1-XINO)
× X. KINO) based on the NOx of the NOx adsorption catalyst.
x adsorption amount, more specifically, the NOx adsorption amount that would have been adsorbed by the NOx adsorption catalyst (Q.NOx, ΔQ.NOx)
NOx adsorption amount calculating means (ECU 80, S26
To S28) and a NOx reduction processing means (EC) for performing a NOx reduction process based on the calculated NOx adsorption amount.
U80, S30 to S34, and S100 to S114).

【0091】また、前記選択還元触媒は、イリジウム系
の選択還元触媒である如く構成した。
Further, the selective reduction catalyst is configured to be an iridium-based selective reduction catalyst.

【0092】また、前記NOx浄化率算出手段は、前記
選択還元触媒の温度(触媒温度TCAT)に基づいて前
記選択還元触媒のNOx浄化率を算出する(ECU8
0,S22)如く構成した。
Further, the NOx purification rate calculating means calculates the NOx purification rate of the selective reduction catalyst based on the temperature of the selective reduction catalyst (catalyst temperature TCAT) (ECU 8).
0, S22).

【0093】また、前記NOx浄化率算出手段は、前記
検出された運転状態に基づいて前記選択還元触媒の温度
を算出する触媒温度算出手段(ECU80,S20)を
備え、前記算出された前記選択還元触媒の温度に基づい
て前記選択還元触媒のNOx浄化率を算出する(ECU
80,S22)如く構成した。
The NOx purification rate calculating means includes catalyst temperature calculating means (ECU 80, S20) for calculating the temperature of the selective reduction catalyst based on the detected operating state. Calculating the NOx purification rate of the selective reduction catalyst based on the temperature of the catalyst (ECU
80, S22).

【0094】また、前記NOx浄化率算出手段は、前記
内燃機関に供給される空燃比(目標空燃比KCMD)に
基づいて前記選択還元触媒のNOx浄化率を補正する
(ECU80,S24)如く構成した。
Further, the NOx purification rate calculation means is configured to correct the NOx purification rate of the selective reduction catalyst based on the air-fuel ratio (target air-fuel ratio KCMD) supplied to the internal combustion engine (ECU 80, S24). .

【0095】また、前記NOx還元処理手段は、前記算
出されたNOx吸着量(ΣQ.NOx)を所定値(X.
NOLT)と比較する比較手段(ECU80,S30)
を備え、前記算出されたNOx吸着量が前記所定値を超
えるとき、NOx還元処理を行う(ECU80,S3
2)如く構成した。
Further, the NOx reduction processing means sets the calculated NOx adsorption amount (ΣQ.NOx) to a predetermined value (X.NO.
NOLT) (ECU 80, S30)
When the calculated NOx adsorption amount exceeds the predetermined value, a NOx reduction process is performed (ECU 80, S3
2) It was constituted as follows.

【0096】また、前記内燃機関がガソリン燃料を気筒
燃焼室に直接噴射して超希薄燃焼あるいは予混合燃焼の
いずれかの運転モードで運転される筒内噴射型の火花点
火式の内燃機関であり、前記NOx排出量算出手段は、
前記内燃機関が前記運転モード(S.EMOD)のいず
れで運転されているか判別する運転モード判別手段(E
CU80,S14)を備え、前記判別された運転モード
および前記検出した運転状態に応じて前記内燃機関から
排出されるNOx排出量を算出する(ECU80,S1
6,S18)如く構成した。
Further, there is provided an in-cylinder injection type spark ignition type internal combustion engine in which the internal combustion engine is operated in an operation mode of either ultra-lean combustion or premixed combustion by directly injecting gasoline fuel into a cylinder combustion chamber. , The NOx emission calculating means,
An operation mode determination unit (E) that determines which of the operation modes (S.EMOD) the internal combustion engine is operating in;
CU80, S14), and calculates the NOx emission amount discharged from the internal combustion engine according to the determined operation mode and the detected operation state (ECU80, S1).
6, S18).

【0097】尚、上記において、筒内噴射型の火花点火
式の内燃機関を例にとって説明したが、リーン空燃比あ
るいは理論空燃比(およびリッチ空燃比)の間で予混合
燃焼のみを行う内燃機関であっても良い。
In the above description, a cylinder injection type spark ignition type internal combustion engine has been described as an example. However, an internal combustion engine which performs only premix combustion between a lean air-fuel ratio or a stoichiometric air-fuel ratio (and a rich air-fuel ratio) is described. It may be.

【0098】[0098]

【発明の効果】請求項1項にあっては、検出した運転状
態に応じて内燃機関から排出されるNOx排出量を算出
すると共に、選択還元触媒のNOx浄化率を算出し、そ
れらNOx排出量とNOx浄化率に基づいてNOx吸着
触媒が吸着したであろうNOx吸着量を算出し、そのN
Ox吸着量に基づいてNOx還元処理を行う如く構成し
たので、NOx還元処理を最小限度に止め、よって意図
したNOx浄化性能を達成しつつ燃費性能を向上させる
ことができる。
According to the first aspect of the present invention, the amount of NOx discharged from the internal combustion engine is calculated according to the detected operating state, the NOx purification rate of the selective reduction catalyst is calculated, and the amount of NOx discharged is calculated. And the NOx adsorption amount that would have been adsorbed by the NOx adsorption catalyst is calculated based on
Since the NOx reduction processing is configured to be performed based on the Ox adsorption amount, the NOx reduction processing can be minimized, and the fuel consumption performance can be improved while achieving the intended NOx purification performance.

【0099】請求項2項にあっては、イリジウム系の選
択還元触媒と下流のNOx吸着触媒はNOx浄化機能あ
るいは特性が異なるため、浄化率を最適にすることがで
きる。即ち、上流側のイリジウム系の選択還元触媒はリ
ーン空燃比(酸化雰囲気)でNOxと多重結合HCとを
反応させてNOxを浄化すると共に、下流側のNOx吸
着触媒はリーン空燃比でNOxを吸着(あるいは吸蔵)
し、理論空燃比あるいはリッチ空燃比で還元剤によって
NOxを還元浄化する。このように、両者は浄化機能あ
るいは特性が異なることから、両者を組み合わせること
で、浄化率を最大限度まで高めることができる。
In the second aspect, the iridium-based selective reduction catalyst and the downstream NOx adsorption catalyst have different NOx purification functions or characteristics, so that the purification rate can be optimized. That is, the iridium-based selective reduction catalyst on the upstream side reacts NOx with the multiple bond HC at a lean air-fuel ratio (oxidizing atmosphere) to purify NOx, and the downstream NOx adsorption catalyst adsorbs NOx at a lean air-fuel ratio. (Or occlusion)
Then, NOx is reduced and purified by a reducing agent at a stoichiometric air-fuel ratio or a rich air-fuel ratio. As described above, since the two have different purification functions or characteristics, by combining them, the purification rate can be increased to the maximum.

【0100】また、イリジウム系の選択還元触媒とNO
x吸着触媒は共に、浄化性能(浄化率)が触媒温度にお
いて400℃付近で最大となるので、例えば、触媒温度
がその付近にあるときにリーン空燃比を供給する、ある
いは触媒温度がその付近となるように制御することで、
NOx浄化率を上げることも可能となる。
Further, an iridium-based selective reduction catalyst and NO
In both x-adsorption catalysts, the purification performance (purification rate) is maximized at around 400 ° C. at the catalyst temperature. For example, when the catalyst temperature is around that, the lean air-fuel ratio is supplied, or By controlling so that
It is also possible to increase the NOx purification rate.

【0101】さらに、イリジウム系の選択還元触媒の場
合、空間速度Space Velocityへの依存性が極めて小さい
ため、触媒容量を小さくして熱容量を低減することがで
き、冷間始動時などに有利となる。さらに、それによっ
て下流のNOx吸着触媒の活性化を早めることもできる
と共に、その負担も軽減することができる。
Further, in the case of an iridium-based selective reduction catalyst, since the dependence on the space velocity is extremely small, the catalyst capacity can be reduced to reduce the heat capacity, which is advantageous at the time of a cold start and the like. . In addition, the activation of the downstream NOx adsorption catalyst can be accelerated, and the burden can be reduced.

【0102】さらに、上流側のイリジウム系の選択還元
触媒でNOxを浄化してNOx濃度を減少させること
で、下流側のNOx吸着触媒が飽和点に達するまでの時
間を延長することができ、NOx還元処理時間を減少す
ることができる。従って、その意味でも燃費性能を向上
することができる。
Further, by purifying NOx with the iridium-based selective reduction catalyst on the upstream side and reducing the NOx concentration, it is possible to extend the time until the NOx adsorption catalyst on the downstream side reaches the saturation point. The reduction processing time can be reduced. Therefore, fuel efficiency can be improved in that sense.

【0103】このように、下流側のNOx吸着触媒はリ
ーン空燃比において優れたNOx浄化性能(吸着性能)
を有することから、イリジウム系の選択還元触媒とNO
x吸着触媒を直列に配置することにより、リーン空燃比
におけるNOx浄化性能を向上させることができる。
As described above, the NOx adsorption catalyst on the downstream side has an excellent NOx purification performance (adsorption performance) at a lean air-fuel ratio.
Iridium-based selective reduction catalyst and NO
By arranging the x adsorption catalysts in series, the NOx purification performance at a lean air-fuel ratio can be improved.

【0104】さらに、イリジウム系の選択還元触媒はN
Ox浄化温度域ではHC浄化性能が三元触媒などに比較
して低いため、下流のNOx吸着触媒が理論空燃比ある
いはリッチ空燃比で吸着したNOxを還元するのに必要
なHCなどの還元成分を浄化することなく、NOx吸着
触媒に供給することができ、理論空燃比あるいはリッチ
空燃比においてNOx吸着触媒のNOx浄化率を向上さ
せることができる。
Further, the iridium-based selective reduction catalyst is N
Since the HC purification performance in the Ox purification temperature range is lower than that of a three-way catalyst or the like, the reduction components such as HC necessary for the downstream NOx adsorption catalyst to reduce NOx adsorbed at the stoichiometric air-fuel ratio or the rich air-fuel ratio are reduced. It can be supplied to the NOx adsorption catalyst without purification, and the NOx purification rate of the NOx adsorption catalyst can be improved at a stoichiometric air-fuel ratio or a rich air-fuel ratio.

【0105】また、イリジウム系の選択還元触媒を用い
ることで、触媒としての耐久性を向上させることができ
る。
Further, by using an iridium-based selective reduction catalyst, the durability as a catalyst can be improved.

【0106】請求項3項にあっては、選択還元触媒のN
Ox浄化率はその温度に依存して変化するが、かく構成
したことで、NOx浄化率を精度良く算出することがで
き、よって意図したNOx浄化性能を達成しつつ燃費性
能を一層向上させることができる。
According to a third aspect of the present invention, the amount of N
Although the Ox purification rate changes depending on the temperature, the above configuration makes it possible to calculate the NOx purification rate with high accuracy, thereby further improving the fuel economy performance while achieving the intended NOx purification performance. it can.

【0107】請求項4項にあっては、少なくとも検出さ
れた運転状態に基づいて選択還元触媒の温度を算出する
如く構成したので、前記した作用効果に加え、温度セン
サが不要となり、装置の構成を簡略化することができ
る。
According to the fourth aspect of the present invention, the temperature of the selective reduction catalyst is calculated based on at least the detected operating condition. Can be simplified.

【0108】請求項5項にあっては、内燃機関に供給さ
れる空燃比に基づいて前記選択還元触媒のNOx浄化率
を補正することで、NOx浄化率を一層精度良く算出す
ることができ、よって意図したNOx浄化性能を達成し
つつ燃費性能を一層向上させることができる。
According to the present invention, the NOx purification rate can be calculated with higher accuracy by correcting the NOx purification rate of the selective reduction catalyst based on the air-fuel ratio supplied to the internal combustion engine. Therefore, the fuel consumption performance can be further improved while achieving the intended NOx purification performance.

【0109】請求項6項にあっては、NOx還元処理の
実行時期を的確に決定することができ、よって意図した
NOx浄化性能を達成しつつ燃費性能を一層向上させる
ことができる。
According to the present invention, the execution time of the NOx reduction process can be determined accurately, and the fuel consumption performance can be further improved while achieving the intended NOx purification performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この出願に係る内燃機関の排気浄化装置を全体
的に示す概略図である。
FIG. 1 is a schematic diagram showing an exhaust gas purifying apparatus for an internal combustion engine according to the present application as a whole.

【図2】図1装置の動作を示すフロー・チャートであ
る。
FIG. 2 is a flowchart showing the operation of the apparatus in FIG. 1;

【図3】図2フロー・チャートで使用されるNOx浄化
率X.INOのテーブル特性を示す説明グラフである。
FIG. 3 shows a NOx purification rate X.R. It is an explanatory graph which shows the table characteristic of INO.

【図4】図2フロー・チャートで使用されるNOx浄化
率補正係数X.KINOのテーブル特性を示す説明グラ
フである。
FIG. 4 shows a NOx purification rate correction coefficient X. It is an explanatory graph which shows the table characteristic of KINO.

【図5】図2のフロー・チャートと平行して実行される
NOx還元処理を示すフロー・チャートである。
FIG. 5 is a flowchart showing a NOx reduction process executed in parallel with the flowchart of FIG. 2;

【符号の説明】[Explanation of symbols]

10 内燃機関(エンジン) 12 吸気管 22 シリンダ(気筒) 28 燃焼室 30 インジェクタ(燃料噴射弁) 44 第1の触媒装置(選択還元触媒) 46 第2の触媒装置(NOx吸着触媒) 62 クランク角センサ 66 絶対圧(MAP)センサ 76 アクセル開度センサ 80 電子制御ユニット(ECU) Reference Signs List 10 internal combustion engine (engine) 12 intake pipe 22 cylinder (cylinder) 28 combustion chamber 30 injector (fuel injection valve) 44 first catalyst device (selective reduction catalyst) 46 second catalyst device (NOx adsorption catalyst) 62 crank angle sensor 66 Absolute pressure (MAP) sensor 76 Accelerator opening sensor 80 Electronic control unit (ECU)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 41/04 305 B01D 53/36 101B 45/00 360 102B B01J 23/56 301A Fターム(参考) 3G084 BA09 BA24 DA02 DA10 FA02 FA10 FA11 FA20 FA27 FA29 FA38 3G091 AA11 AA12 AA17 AA24 AA28 AB05 AB06 BA00 BA14 CB02 DB06 DB10 DB13 DC01 EA01 EA06 EA07 EA16 EA18 EA33 EA34 FB11 FB12 GB10W HA36 HA37 HA47 3G301 HA01 HA04 HA16 JA02 JA25 LA03 LB04 MA01 PA07Z PA10Z PA11Z PD03Z PD04Z PD08Z PE01Z PE03Z PE05Z PE08Z PF03Z 4D048 AA06 AB02 BA18X BA33X BA37X BA42X CA01 CC32 CD01 DA02 DA08 EA04 4G069 AA02 AA03 BB06B BC42B BC67B BC74A BC74B CA03 CA08 CA13 EC23 EE08 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02D 41/04 305 B01D 53/36 101B 45/00 360 102B B01J 23/56 301A F-term (Reference) 3G084 BA09 BA24 DA02 DA10 FA02 FA10 FA11 FA20 FA27 FA29 FA38 3G091 AA11 AA12 AA17 AA24 AA28 AB05 AB06 BA00 BA14 CB02 DB06 DB10 DB13 DC01 EA01 EA06 EA07 EA16 EA18 EA33 EA34 FB11 FB12 GB10W HA36 HA01 HA04 LA03 PD03Z PD04Z PD08Z PE01Z PE03Z PE05Z PE08Z PF03Z 4D048 AA06 AB02 BA18X BA33X BA37X BA42X CA01 CC32 CD01 DA02 DA08 EA04 4G069 AA02 AA03 BB06B BC42B BC67B BC74A BC74B CA03 CA08 CA13 EC23 EE08

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 リーン運転可能な内燃機関の排気ガス浄
化装置において、 a.前記内燃機関の排気系に配置されたリーン雰囲気で
HCを還元剤としてNOxを選択的に還元する選択還元
触媒、 b.前記選択還元触媒の下流に配置されたリーン雰囲気
においてNOxを吸着し、理論空燃比あるいはそれ以下
のリッチ空燃比において吸着したNOxを還元するNO
x吸着触媒、 c.少なくとも機関回転数および負荷を含む前記内燃機
関の運転状態を検出し、検出した運転状態に応じて前記
内燃機関から排出されるNOx排出量を算出するNOx
排出量算出手段、 d.前記選択還元触媒のNOx浄化率を算出するNOx
浄化率算出手段、 e.前記算出されたNOx排出量とNOx浄化率に基づ
いて前記NOx吸着触媒のNOx吸着量を算出するNO
x吸着量算出手段、 および f.前記算出されたNOx吸着量に基づいてNOx還元
処理を行うNOx還元処理手段、を備えたことを特徴と
する内燃機関の排気浄化装置。
An exhaust gas purifying apparatus for an internal combustion engine capable of lean operation, comprising: a. A selective reduction catalyst for selectively reducing NOx using HC as a reducing agent in a lean atmosphere disposed in an exhaust system of the internal combustion engine; b. NO that adsorbs NOx in a lean atmosphere disposed downstream of the selective reduction catalyst and reduces the adsorbed NOx at a stoichiometric air-fuel ratio or a rich air-fuel ratio equal to or lower than the stoichiometric air-fuel ratio
x adsorption catalyst, c. NOx for detecting an operating state of the internal combustion engine including at least an engine speed and a load and calculating a NOx emission amount discharged from the internal combustion engine in accordance with the detected operating state
Means for calculating emissions, d. NOx for calculating the NOx purification rate of the selective reduction catalyst
Purification rate calculating means, e. NO for calculating the NOx adsorption amount of the NOx adsorption catalyst based on the calculated NOx emission amount and NOx purification rate
x adsorption amount calculation means; and f. An exhaust purification device for an internal combustion engine, comprising: NOx reduction processing means for performing a NOx reduction process based on the calculated NOx adsorption amount.
【請求項2】 前記選択還元触媒は、イリジウム系の選
択還元触媒であることを特徴とする請求項1項記載の内
燃機関の排気浄化装置。
2. An exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein said selective reduction catalyst is an iridium-based selective reduction catalyst.
【請求項3】 前記NOx浄化率算出手段は、前記選択
還元触媒の温度に基づいて前記選択還元触媒のNOx浄
化率を算出することを特徴とする請求項1項または2項
記載の内燃機関の排気浄化装置。
3. The internal combustion engine according to claim 1, wherein the NOx purification rate calculating means calculates a NOx purification rate of the selective reduction catalyst based on a temperature of the selective reduction catalyst. Exhaust gas purification device.
【請求項4】 前記NOx浄化率算出手段は、 g.少なくとも前記検出された運転状態に基づいて前記
選択還元触媒の温度を算出する触媒温度算出手段、を備
え、前記算出された選択還元触媒の温度に基づいて前記
選択還元触媒のNOx浄化率を算出することを特徴とす
る請求項3項記載の内燃機関の排気浄化装置。
4. The NOx purification rate calculating means comprises: g. Catalyst temperature calculating means for calculating the temperature of the selective reduction catalyst based on at least the detected operating state, and calculating the NOx purification rate of the selective reduction catalyst based on the calculated temperature of the selective reduction catalyst. The exhaust gas purifying apparatus for an internal combustion engine according to claim 3, wherein:
【請求項5】 前記NOx浄化率算出手段は、前記内燃
機関に供給される空燃比に基づいて前記選択還元触媒の
NOx浄化率を補正することを特徴とする請求項1項か
ら4項のいずれかに記載の内燃機関の排気浄化装置。
5. The NOx purification rate calculating means for correcting the NOx purification rate of the selective reduction catalyst based on an air-fuel ratio supplied to the internal combustion engine. An exhaust purification device for an internal combustion engine according to any one of the above.
【請求項6】 前記NOx還元処理手段は、 h.前記算出されたNOx吸着量を所定値と比較する比
較手段、を備え、前記算出されたNOx吸着量が前記所
定値を超えるとき、NOx還元処理を行うことを特徴と
する請求項1項から5項のいずれかに記載の内燃機関の
排気浄化装置。
6. The NOx reduction processing means includes: h. 6. A comparison means for comparing the calculated NOx adsorption amount with a predetermined value, wherein a NOx reduction process is performed when the calculated NOx adsorption amount exceeds the predetermined value. An exhaust gas purification device for an internal combustion engine according to any one of the above items.
JP29737899A 1999-10-19 1999-10-19 Exhaust emission control device for internal combustion engine Withdrawn JP2001115827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29737899A JP2001115827A (en) 1999-10-19 1999-10-19 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29737899A JP2001115827A (en) 1999-10-19 1999-10-19 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2001115827A true JP2001115827A (en) 2001-04-24

Family

ID=17845724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29737899A Withdrawn JP2001115827A (en) 1999-10-19 1999-10-19 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2001115827A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214320A (en) * 2005-02-02 2006-08-17 Honda Motor Co Ltd Exhaust emission control device of internal combustion engine
JP2007501107A (en) * 2003-08-05 2007-01-25 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Catalytic device and method for purifying exhaust gas of an internal combustion engine operated under lean conditions
CN100376770C (en) * 2004-09-24 2008-03-26 三菱扶桑卡客车株式会社 Apparatus and method for estimating nox trap catalyst adsorption amount
JP2008128214A (en) * 2006-11-24 2008-06-05 Honda Motor Co Ltd Exhaust emission control device for internal combustion engine
FR3031764A1 (en) * 2015-01-20 2016-07-22 Peugeot Citroen Automobiles Sa METHOD FOR CONTROLLING A MOTORPOWER GROUP
KR101655211B1 (en) * 2015-03-30 2016-09-07 현대자동차 주식회사 SYSTEM OF PURIFYING EXHAUST GAS PROVIDED WITH LEAN NOx TRAP AND SELECTIVE CATALYTIC REDUCTION CATALYST AND METHOD OF CONTROLLING THE SAME

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007501107A (en) * 2003-08-05 2007-01-25 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Catalytic device and method for purifying exhaust gas of an internal combustion engine operated under lean conditions
JP4651039B2 (en) * 2003-08-05 2011-03-16 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Catalytic device and method for purifying exhaust gas of an internal combustion engine operated under lean conditions
CN100376770C (en) * 2004-09-24 2008-03-26 三菱扶桑卡客车株式会社 Apparatus and method for estimating nox trap catalyst adsorption amount
JP2006214320A (en) * 2005-02-02 2006-08-17 Honda Motor Co Ltd Exhaust emission control device of internal combustion engine
JP4510654B2 (en) * 2005-02-02 2010-07-28 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
JP2008128214A (en) * 2006-11-24 2008-06-05 Honda Motor Co Ltd Exhaust emission control device for internal combustion engine
US7997067B2 (en) 2006-11-24 2011-08-16 Honda Motor Co., Ltd. Exhaust emission control device and method for internal combustion engine, and engine control unit
FR3031764A1 (en) * 2015-01-20 2016-07-22 Peugeot Citroen Automobiles Sa METHOD FOR CONTROLLING A MOTORPOWER GROUP
EP3048277A1 (en) * 2015-01-20 2016-07-27 Peugeot Citroën Automobiles SA Method for controlling an internal combustion engine provided with a purification device for a selective catalytic reduction
KR101655211B1 (en) * 2015-03-30 2016-09-07 현대자동차 주식회사 SYSTEM OF PURIFYING EXHAUST GAS PROVIDED WITH LEAN NOx TRAP AND SELECTIVE CATALYTIC REDUCTION CATALYST AND METHOD OF CONTROLLING THE SAME
US9551252B2 (en) 2015-03-30 2017-01-24 Hyundai Motor Company System and method of purifying exhaust gas provided with lean NOx trap and selective catalytic reduction catalyst

Similar Documents

Publication Publication Date Title
JP2002195080A (en) Air-fuel ratio control device of internal-combustion engine
JP2003254130A (en) Device for controlling exhaust gas for internal combustion engine
JPH06330741A (en) Air fuel ratio controller of lean burn engine
JP4506003B2 (en) Engine exhaust purification system
US5956948A (en) Exhaust gas-purifying system for internal combustion engines
JP2000356125A (en) Exhaust emission control device for internal combustion engine
JP4475117B2 (en) Engine air-fuel ratio control device
JP2001115827A (en) Exhaust emission control device for internal combustion engine
JPWO2004097200A1 (en) Control device for internal combustion engine
JP4127585B2 (en) Exhaust gas purification device for internal combustion engine
JP3885302B2 (en) In-cylinder direct injection spark ignition engine exhaust purification system
JP3843847B2 (en) Air-fuel ratio control device for internal combustion engine
JP3642194B2 (en) In-cylinder internal combustion engine
JP2002242728A (en) Control device for internal combustion engine
JP2003307143A (en) Air-fuel ratio control apparatus for internal combustion engine
JP3551083B2 (en) Exhaust gas purification device for internal combustion engine
JP3551057B2 (en) Combustion control device for lean burn internal combustion engine
JP2018044454A (en) Exhaust emission control system of internal combustion engine
JP3546757B2 (en) Combustion control device for internal combustion engine
JP2004092513A (en) Combustion control device for internal combustion engine
JP2002013414A (en) Exhaust emission control device for internal combustion engine
JP3508301B2 (en) Engine air-fuel ratio control device
JP2003293750A (en) Exhaust emission control device for multicylinder internal combustion engine
JP3639442B2 (en) Exhaust gas purification device for internal combustion engine
JP4902632B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070109