JPS58144644A - Engine capable of changing number of operative cylinders - Google Patents

Engine capable of changing number of operative cylinders

Info

Publication number
JPS58144644A
JPS58144644A JP2861882A JP2861882A JPS58144644A JP S58144644 A JPS58144644 A JP S58144644A JP 2861882 A JP2861882 A JP 2861882A JP 2861882 A JP2861882 A JP 2861882A JP S58144644 A JPS58144644 A JP S58144644A
Authority
JP
Japan
Prior art keywords
cylinders
cylinder
exhaust passage
air
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2861882A
Other languages
Japanese (ja)
Inventor
Haruhiko Iizuka
晴彦 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2861882A priority Critical patent/JPS58144644A/en
Publication of JPS58144644A publication Critical patent/JPS58144644A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/02Cutting-out

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To obtain an optimal air-fuel ratio at the time of full-cylinder operation and also at the time of partial-cylinder operation of an engine, by providing an O2-sensor respectively in an exhaust passage for cylinders that are always kept in operation and in an exhaust passage for cylinders that can be rendered inoperative, and controlling the air-fuel ratio for these two sets of cylinders independently according to the output signals of the two O2-sensors. CONSTITUTION:An exhaust passage 1 connected to both of cylinder-group #1-#3 that can be rendered inoperative by stopping fuel supply in a low-load region and cylinder- group #4-#6 that are alway kept in operation is divided into an exhaust passage 2 for the cylinders #1-#3 and an exhaust passage #4-#6 at an intermediate portion of the passage 1. A first catalyst 7 is disposed in the exhaust passage 3 while a second catalyst 8 is disposed on the downstream side of the position where the two exhaust passages 2 and 3 are joined. Further, a first O2-sensor 9 is disposed in the exhaust passage 3 at the position on the upstream side of the first catalyst 7 while a second O2-sensor 10 is disposed in the exhaust passage 2. During the operation of an engine, the air-fuel ratio of the cylinders #1-#3 and that for the cylinders #4-#6 are controlled independently from each other by furnishing the output signals of the two sensors 9, 10 to a control means.

Description

【発明の詳細な説明】 この発明は、エンジン軽負荷域で一部気筒の作動を休止
させて部分気筒運転を行なう気筒数制御1ンジンの改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an engine with cylinder number control that performs partial cylinder operation by suspending operation of some cylinders in a light engine load range.

一般に、エンジンを高い負荷状態で運転すると燃費が良
好になる傾向があり、このため多気筒Jンジンにおいて
、エンジン負荷の小さいときに一部気筒への燃料の供給
をカットして作動を休止させ、この分だけ残りの稼動側
気筒の負荷を相対的に高め、全体として軽負荷域の燃費
を改善するようにした気筒数制御エンジンが考えられた
。(特願昭53−72849参照) 本出願人が先に出願したこの種のエンジンでは、第1図
に示すように、休止側の気筒井1〜#3と稼動側の気筒
#4〜#6に対応して排気通路1が途中まで休止側排気
通路2と稼動側排気通路3どに分割されている。
Generally, when an engine is operated under a high load condition, fuel efficiency tends to improve.For this reason, in a multi-cylinder engine, fuel supply to some cylinders is cut to stop operation when the engine load is low. An engine with a controlled number of cylinders was devised that relatively increases the load on the remaining active cylinders by this amount, thereby improving overall fuel efficiency in the light load range. (See Japanese Patent Application No. 53-72849.) In this type of engine, which was previously filed by the present applicant, cylinder wells 1 to #3 on the idle side and cylinder wells #4 to #6 on the operating side are shown in Fig. Correspondingly, the exhaust passage 1 is divided halfway into a rest exhaust passage 2 and an active exhaust passage 3.

そして、エンジンの軽負荷域で気筒#1〜#3の作動を
休止させるときには、例えば図示しないエアフローメー
タからの吸入空気量信号やイグニッションコイル等から
の回転数信号に基づき、制御装置(図示しない)が気筒
#1〜#3に対応して吸気ポート等に設置された燃料噴
射弁(図示しない)を全閉保持して燃料の供給をカット
し、吸気通路5の絞り弁4を介して導入される新気のみ
を休止側気筒#1〜#3に供給する。これにより、休止
側気筒#1〜#3におけるボンピングロスを低減しつつ
、稼動側気筒井4〜#6のみの作動による部分気筒運転
を行なう。
When stopping the operation of cylinders #1 to #3 in a light load range of the engine, a control device (not shown) is operated based on, for example, an intake air amount signal from an air flow meter (not shown) or a rotation speed signal from an ignition coil, etc. The fuel injection valves (not shown) installed in the intake ports corresponding to cylinders #1 to #3 are held fully closed to cut off the fuel supply, and the fuel is introduced through the throttle valve 4 in the intake passage 5. Only fresh air is supplied to the idle cylinders #1 to #3. As a result, partial cylinder operation is performed by operating only the active cylinder wells 4 to #6 while reducing the pumping loss in the idle cylinders #1 to #3.

ところで、このエンジンにあっては、通常運転時(全気
筒運転時)には各気筒#1〜#6とも同様に燃焼した排
気ガスを排出するが、部分気筒運転時には稼動側気筒井
4〜#6から同じく燃焼ガスが、休止側気筒#1〜#3
からは新気がそのまま排出される。
By the way, in this engine, during normal operation (when all cylinders are operated), combusted exhaust gas is discharged from each cylinder #1 to #6 in the same way, but during partial cylinder operation, the combusted exhaust gas is discharged from cylinder wells 4 to #6 on the operating side. Similarly, combustion gas from 6 flows into the idle side cylinders #1 to #3.
Fresh air is directly discharged from the

したがって、この排気処理装置6として三元触媒を用い
る場合には、図のように稼動側気筒#4〜#6からの排
気のみを浄化する第1の触媒7と、主に全気筒運転時に
休止側気筒#1〜#3からの排気を浄化する第2の触媒
8とが、稼動側排気通路3の下流と、両排気通路2.3
の合流部下流とに分割設置される。
Therefore, when using a three-way catalyst as this exhaust treatment device 6, as shown in the figure, the first catalyst 7 purifies only the exhaust from the operating cylinders #4 to #6, and the A second catalyst 8 for purifying exhaust gas from side cylinders #1 to #3 is located downstream of the working side exhaust passage 3 and in both exhaust passages 2.3.
It will be divided into two parts: downstream of the confluence and downstream of the confluence.

また、これらの触117,8の上流側には、それぞれ酸
素センサ9,10が設置され、その空燃比検出信号は前
述の制御装置に送られる。
Furthermore, oxygen sensors 9 and 10 are installed upstream of these contacts 117 and 8, respectively, and their air-fuel ratio detection signals are sent to the aforementioned control device.

そして、部分気筒運転時には、稼動側気筒#4〜#6で
理論空燃比の混合気が得られるように第1の酸素センサ
9の検出信号に応じて対応する燃料噴射弁の噴射量が補
正され、全気筒運転時には、第2の酸素センサ10の検
出信号に応じて全燃料噴射弁の噴射量を補正し、全気筒
#1〜#6とも理論空燃比となるように制御している。
During partial cylinder operation, the injection amount of the corresponding fuel injector is corrected according to the detection signal of the first oxygen sensor 9 so that a mixture at the stoichiometric air-fuel ratio is obtained in the active cylinders #4 to #6. During all-cylinder operation, the injection amounts of all fuel injection valves are corrected according to the detection signal of the second oxygen sensor 10, and all cylinders #1 to #6 are controlled to have the stoichiometric air-fuel ratio.

これにより、第1および第2の触[7,8での転換効率
を高め、対応する気筒#1〜#3. #4〜#6からの
排気との反応を促進して、排気の清浄化を図っている。
This increases the conversion efficiency in the first and second cylinders [7, 8] and the corresponding cylinders #1 to #3. The reaction with the exhaust gas from #4 to #6 is promoted to purify the exhaust gas.

しかしながら、このように全気筒運転時に休止側と稼動
側気筒#1〜#3.#4〜#6の空燃比を第2の酸素セ
ンサ10からの信号のみによって制御するのでは、例え
ば吸気系の形状や燃料噴射弁等の相違により、休止側気
筒#1〜#3と稼動側気筒#4〜#6とで吸入空気量や
燃料噴射量にバラツキが生じやすいことから、双方とも
同様に最適空燃比の混合気を得ることは難しく、燃焼状
態が悪化して運転性能に悪影響を及ぼしかねない。
However, in this way, when all cylinders are operated, the idle side and active side cylinders #1 to #3. If the air-fuel ratios of #4 to #6 are controlled only by the signal from the second oxygen sensor 10, for example, due to differences in the shape of the intake system, fuel injection valves, etc. Since variations tend to occur in the intake air amount and fuel injection amount between cylinders #4 to #6, it is difficult to obtain a mixture with the optimum air-fuel ratio for both cylinders, which deteriorates the combustion state and adversely affects driving performance. It may cause harm.

そこで従来では、全気筒運転時に、休止気筒#1〜#3
の空燃比を第2の酸素センサ10の検出信号に応じ、稼
動側気筒#4〜#6の空燃比を第1の酸素センサ9の検
出信号に応じてそれぞれ別々に制御するものが提案され
ている。(特開昭55−131540参照) ところが、このようにして空燃比を制御しても、第2の
酸素センサ10は休止側と稼動側排気通路2.3の合流
部下流に設置されているため、その検出値は稼動側気筒
井4〜#6の排気の影響を受IJる。例えば、蚕気筒運
転時に稼動側気筒#4〜#6の排気が濃くなるとく酸素
濃度が薄い)、当該気筒#4〜#6では第1の酸素セン
サ9の信号に応じて空燃比を薄くするように制御される
が、その分第2の酸素センサ10の検出値が変動し休止
側気筒#1〜#3の空燃比も薄くするように指示してし
まう。
Therefore, conventionally, when all cylinders are operated, the idle cylinders #1 to #3 are
It has been proposed to separately control the air-fuel ratio of the operating cylinders #4 to #6 in accordance with the detection signal of the second oxygen sensor 10 and the air-fuel ratio of the operating cylinders #4 to #6 in accordance with the detection signal of the first oxygen sensor 9. There is. (Refer to JP-A-55-131540) However, even if the air-fuel ratio is controlled in this way, the second oxygen sensor 10 is installed downstream of the confluence of the idle side and active side exhaust passages 2.3. , the detected value is influenced by the exhaust gas from the active cylinder wells 4 to #6. For example, when the exhaust cylinders #4 to #6 on the operating side become rich when the cylinder is operated, the oxygen concentration is low), and the air-fuel ratio is made lean in the cylinders #4 to #6 in accordance with the signal from the first oxygen sensor 9. However, the detected value of the second oxygen sensor 10 changes accordingly, and the air-fuel ratio of the cylinders #1 to #3 on the idle side is also instructed to be reduced.

このため、休止側気筒#1〜#3の空燃比を最適に制御
することはできず、燃焼が悪化したり、また第2の触媒
−8の浄化機能が阻害され良好な排気組成が得られなく
なるという問題があった。
For this reason, the air-fuel ratio of the idle cylinders #1 to #3 cannot be optimally controlled, resulting in poor combustion and impeding the purification function of the second catalyst-8, making it impossible to obtain a good exhaust composition. There was a problem with it disappearing.

この発明は、このような従来の問題点に着目してなされ
たもので、第1の酸素センサと第1の触媒を稼動側排気
通路に設置する一方、第2の触媒を休止側排気通路との
合流部下流に、第2の酸素センサを休止側排気通路にそ
れぞれ設置し、これらのセンサ検出信号に応じて対応す
る稼動側ならびに休止側気筒の空燃比を制御することに
より、上記問題点を解決するようにした気筒数制御エン
ジンの提供を目的とする。
This invention was made by focusing on such conventional problems, and the first oxygen sensor and the first catalyst are installed in the active side exhaust passage, while the second catalyst is installed in the idle side exhaust passage. The above problem can be solved by installing a second oxygen sensor in each of the exhaust passages on the idle side downstream of the confluence of the cylinders, and controlling the air-fuel ratio of the corresponding cylinders on the active side and idle side according to the detection signals of these sensors. The purpose of the present invention is to provide a cylinder number control engine that solves the above problems.

以下、本発明を図面に基づいて説明する。第2図に示す
ように、気筒#1〜#3はエンジンの軽負荷域で燃料の
供給がaIliされ新気のみが供給される休止側気筒、
これに対して気筒井4〜#6は常時燃料と新気とが供給
され作動を継続する稼動側気筒である。
Hereinafter, the present invention will be explained based on the drawings. As shown in FIG. 2, cylinders #1 to #3 are cylinders on the idle side where fuel is supplied only in the light load range of the engine and only fresh air is supplied.
On the other hand, cylinder wells 4 to #6 are active cylinders that are constantly supplied with fuel and fresh air and continue to operate.

この休止側気筒井1〜#3と稼動側気筒井4〜#6に接
続する排気通路1は、これらに対応して途中まで休止側
排気通路2と稼動側排気通路3とに分割されている。
The exhaust passage 1 that connects to the idle cylinder wells 1 to #3 and the active cylinder wells 4 to #6 is divided into an idle exhaust passage 2 and an active exhaust passage 3 correspondingly. .

このうち、稼動側排気通路3には、稼動側気筒#4〜#
6からの排気のみを浄化する第1の触媒7が、休止側排
気通路2との合流部下流には、主に休止側気筒#1〜#
3からの排気を浄化する第2の触媒8が設置される。自
触媒7.8には三元触媒が用いられる。
Among these, the working side exhaust passage 3 has working side cylinders #4 to ##.
A first catalyst 7 that purifies only the exhaust gas from cylinders #1 to #6 on the idle side is located downstream of the confluence with the exhaust passage 2 on the idle side.
A second catalyst 8 is installed to purify the exhaust gas from 3. A three-way catalyst is used as the autocatalyst 7.8.

そして、第1の触媒7上流の稼動側排気通路3に、稼動
側気筒#4〜#6の排気中の酸素濃度を検出する第1の
酸素センサ9が、休止側排気通路2に、休止側気筒#1
〜#3の排気中の酸素濃度を検出する第2の酸素センサ
10がそれぞれ設置される。これらのセンサ検出信号は
制御装置!11に送られる。
A first oxygen sensor 9 for detecting the oxygen concentration in the exhaust gas from the active cylinders #4 to #6 is installed in the active exhaust passage 3 upstream of the first catalyst 7, and a first oxygen sensor 9 is installed in the idle side exhaust passage 2 to detect the oxygen concentration in the exhaust gas from the active cylinders #4 to #6. Cylinder #1
A second oxygen sensor 10 for detecting the oxygen concentration in the exhaust gas of #3 to #3 is installed, respectively. These sensor detection signals are a control device! Sent to 11.

制御装置11は、第3図に示すように構成され、ただし
図中12は較り弁4上流のエア70−メータ、13はイ
グニッションコイル、14は休止側気筒#1〜#3に対
応する燃料噴射弁、15は稼動側気筒#4〜#6に対応
する燃料噴射弁を示す。
The control device 11 is configured as shown in FIG. 3, where 12 is an air meter 70 upstream of the comparison valve 4, 13 is an ignition coil, and 14 is a fuel corresponding to cylinders #1 to #3 on the idle side. Injection valve 15 indicates a fuel injection valve corresponding to operating cylinders #4 to #6.

そして、まず制御装置f11には、エアフローメータ1
2からの吸入空気量信号と、イグニッションコイル13
からのエンジン回転数信号が、その基本パルス発生回路
16に入力される。(17は波形整形回路、18は周波
数変換回路である。)基本パルス発生回路16は、これ
らの信号に応じた周期、幅のパルス信号を発生し、その
信号を燃料制御回路19.20に送る。
First, the control device f11 includes an air flow meter 1.
Intake air amount signal from 2 and ignition coil 13
The engine rotational speed signal is input to the basic pulse generation circuit 16. (17 is a waveform shaping circuit, 18 is a frequency conversion circuit.) The basic pulse generation circuit 16 generates a pulse signal with a period and width according to these signals, and sends the signal to the fuel control circuit 19.20. .

燃料制御回路19.20は、このパルス信号をもとに演
算部21.22で基本的な燃料噴射綴を演算し、これを
後述する燃料の補正信号により補正して燃料(パルス)
信号を指令し、パワーアンプ23.24を介して対応す
る燃料噴射弁15゜14の開弁時間つまり噴射量を制御
する。
Based on this pulse signal, the fuel control circuit 19.20 calculates a basic fuel injection formula using a calculation unit 21.22, corrects this using a fuel correction signal to be described later, and generates fuel (pulse).
A signal is commanded to control the opening time, that is, the injection amount, of the corresponding fuel injection valve 15, 14 via the power amplifiers 23, 24.

この場合、燃料信号の幅等により、エンジン回転数に比
して吸入空気量が少ない軽負荷域では、気筒数制御回路
25が動作して休止側気筒#1〜#3に対応する燃料噴
射弁14を全閉保持し、燃料の供給が遮断される。この
とき、稼動側気筒#1〜#6では、その直前と比べて出
力が約2倍となるように絞り弁4が開かれ、増量する吸
入空気■に応じて燃料噴射弁15からの噴射量が増量さ
れる。
In this case, in a light load range where the amount of intake air is small compared to the engine speed due to the width of the fuel signal, etc., the cylinder number control circuit 25 operates to control the fuel injection valves corresponding to the idle cylinders #1 to #3. 14 is held fully closed, and the fuel supply is cut off. At this time, in the working cylinders #1 to #6, the throttle valve 4 is opened so that the output is approximately twice as compared to that immediately before, and the injection amount from the fuel injection valve 15 is increased according to the increasing amount of intake air. is increased.

これにより、気筒#1〜#3を休止させる一方、稼動側
気筒#4〜#6の負荷を相対的に高めて部分気筒運転が
行なわれる。
As a result, while the cylinders #1 to #3 are deactivated, the load on the active cylinders #4 to #6 is relatively increased to perform partial cylinder operation.

また、前述した第1.第2の酸素センサ9.10の検出
信号は、それぞれ制御装置11内の空燃比制御回路26
.27に入力される。
In addition, the above-mentioned 1. The detection signals of the second oxygen sensors 9 and 10 are transmitted to the air-fuel ratio control circuit 26 in the control device 11, respectively.
.. 27.

空燃比制御回路26.27は、これらの検出信号に応じ
てそれぞれ燃料の補正信号を検出し、これを対応する前
記燃料制御回路19.20内の増量補正部28.29に
送る。
The air-fuel ratio control circuits 26.27 detect respective fuel correction signals in response to these detection signals, and send these to the corresponding increase correction sections 28.29 in the fuel control circuits 19.20.

そして、燃料制御回路19.20は、その補正信号に応
じて、先に基本パルス発生回路16からのパルス信号を
もとに演算した基本燃料噴射量をおのおの補正し、例え
ば全気筒運転時には、稼動側気筒#4〜#6ならびに休
止側気筒#1〜#3とも最適空燃比(理論空燃比)の混
合気が得られるように、部分気筒運転時には、稼動側気
筒#4〜#6で最適空燃比の混合気が得られるように燃
料噴射弁14.15の噴射量をコントロールする。
Then, the fuel control circuits 19 and 20 each correct the basic fuel injection amount calculated based on the pulse signal from the basic pulse generation circuit 16 in accordance with the correction signal. During partial cylinder operation, the optimum air-fuel ratio is set in the active cylinders #4 to #6 so that a mixture with the optimum air-fuel ratio (stoichiometric air-fuel ratio) can be obtained in both the side cylinders #4 to #6 and the idle cylinders #1 to #3. The injection amount of the fuel injection valves 14 and 15 is controlled so that a mixture with the appropriate fuel ratio is obtained.

即ち、全気筒運転時、部分気筒運転時とも稼動側気筒#
4〜#6では第1の酸′素センサ9の検出信号に応じて
空燃比を制御し、休止側気筒#1〜#3では全気筒運転
時に第2の酸素センサ10の検出信号に応じて空燃比を
制御するのである。
In other words, in both full-cylinder operation and partial cylinder operation, the active cylinder #
4 to #6, the air-fuel ratio is controlled according to the detection signal of the first oxygen sensor 9, and in the idle cylinders #1 to #3, the air-fuel ratio is controlled according to the detection signal of the second oxygen sensor 10 when all cylinders are in operation. It controls the air-fuel ratio.

なお、第3図中はエンジンスタートスイッチ、36は絞
り弁スイッチ、37は水温センサであり、これらの検出
信号はそれぞれの増量補正回路38.39.40を介し
て燃料制御回路19.20の増量補正部28.29に入
力され1.スタート時やアイドリンク時および水温状態
に応じて各気筒#1〜#6への燃料を増量し、運転状態
に合った空燃比が得られるようにしている。また、41
はバッテリ、42.43は電源電圧の補正回路を示す。
In addition, in FIG. 3, there is an engine start switch, 36 is a throttle valve switch, and 37 is a water temperature sensor, and these detection signals are sent to the fuel control circuit 19, 20 to increase the fuel amount via the respective fuel increase correction circuits 38, 39, and 40. It is input to the correction section 28, 29 and 1. The amount of fuel supplied to each cylinder #1 to #6 is increased at the time of starting, idling, and depending on the water temperature state, so that an air-fuel ratio suitable for the operating state can be obtained. Also, 41
42 and 43 indicate a battery, and 42 and 43 indicate a power supply voltage correction circuit.

このように構成したので、稼動側気筒#4〜#6では空
燃比制御が的確に行なわれ、また稼動側気筒#4〜#6
からの排気によって休止側排気通路2に設置した第2の
酸素センサ10の検出値に影響を与え条ようなことはな
ぐなる。
With this configuration, air-fuel ratio control is performed accurately in the operating cylinders #4 to #6, and
This prevents the exhaust gas from affecting the detected value of the second oxygen sensor 10 installed in the idle side exhaust passage 2.

したがって、第2の酸素センサ10から休止側気筒#1
〜#3の排気中の酸素濃度を正確に検出することができ
、このため休止側気筒#1〜#3の空燃比も適正に制御
することができる。
Therefore, from the second oxygen sensor 10 to the idle cylinder #1
The oxygen concentration in the exhaust gas of the cylinders #1 to #3 can be accurately detected, and therefore the air-fuel ratio of the cylinders #1 to #3 on the inactive side can also be appropriately controlled.

その結果、全気筒#1〜#6とも燃焼状態を良好に保っ
て出力を高められると共に、第1、第2の触媒7,8の
転換効率を最良に維持して排気性能を向上することがで
きる。
As a result, the combustion state of all cylinders #1 to #6 can be maintained in good condition to increase the output, and the conversion efficiency of the first and second catalysts 7 and 8 can be maintained at the best level to improve exhaust performance. can.

第4図は、本発明の他の実施例であり、部分気筒運転時
に、休止側気筒弁1〜#3にエア70−メータ12上流
の吸気通路5から直接吸気を導入するようにしたエンジ
ンにおいて、上述した空燃比制御を行なっている。
FIG. 4 shows another embodiment of the present invention, which is an engine in which intake air is introduced directly from the intake passage 5 upstream of the air meter 12 to the cylinder valves 1 to #3 on the idle side during partial cylinder operation. , performs the air-fuel ratio control described above.

ただし、吸気通路5は、排気通路1と同じく休止側気筒
弁1〜#3と稼動側気筒#4〜#6に対応して途中から
休止側吸気通路30と稼動側吸気通路31とに分割され
、休止、側吸気通路30の上流部に遮断弁32が、吸気
側通路30とエア70−メータ12上流の吸気通路5と
を接続するバイパス通路33に新気供給弁34が介装さ
れている。
However, like the exhaust passage 1, the intake passage 5 is divided from the middle into a rest-side intake passage 30 and an active-side intake passage 31 corresponding to the cylinder valves 1 to #3 on the rest side and the cylinders #4 to #6 on the working side. , pause, a cutoff valve 32 is installed at the upstream side of the side intake passage 30, and a fresh air supply valve 34 is installed at the bypass passage 33 that connects the intake side passage 30 and the intake passage 5 upstream of the air 70-meter 12. .

そして、部分気筒運転時に遮断弁32が閉じ、新気供給
弁34が開(ようになっている。
During partial cylinder operation, the cutoff valve 32 is closed and the fresh air supply valve 34 is opened.

また、稼動側排気通路31には第1の酸素センサ9と第
1の触tIIA7、休止側排気通路2には第2の酸素セ
ンサ10.両排気通路2.3の合流部下流には第2の触
媒8がそれぞれ設置され、各気筒#1〜#6の空燃比は
、第3図の制御装置11によって前記実施例と同様にコ
ントロールされる。
Further, the working side exhaust passage 31 has a first oxygen sensor 9 and a first contact tIIA7, and the resting side exhaust passage 2 has a second oxygen sensor 10. A second catalyst 8 is installed downstream of the confluence of both exhaust passages 2.3, and the air-fuel ratio of each cylinder #1 to #6 is controlled by the control device 11 shown in FIG. 3 in the same manner as in the previous embodiment. Ru.

この実施例では、はぼ同一負荷において、全気筒運転時
と部分気筒運転時とでエアフローメータ12を通る吸気
量の変動が少ないので、空燃比の制御精度が高く、より
効果的である。
In this embodiment, with almost the same load, there is little variation in the amount of intake air passing through the air flow meter 12 between full-cylinder operation and partial-cylinder operation, so the air-fuel ratio control is highly accurate and more effective.

以上説明した通り、本発明によれば、エンジン軽負荷域
の部分気筒運転時に休止側気筒に新気のみが供給される
多気筒エンジンにおいて、排気通路を休止側気筒と稼動
側気筒とに対応して途中まで分割し、稼動側排気通路に
第1の酸素センサと第1の触媒を、休止側排気通路に第
2の酸素センサを、両排気通路の合流部下流に第2の触
媒をてれ、ぞれ設置すると共に、これらのセンサ検出信
月に応じて対応する稼動側と休止側気筒の空燃比を別々
に制御したので、全気筒運転、部分気筒運転にかかわら
ず各気筒とも最適空燃比を得ることができ、触媒の転換
効率を高めて排気組成を良好に保つことができ、機関性
能の向上が図れるという効果がある。
As explained above, according to the present invention, in a multi-cylinder engine in which only fresh air is supplied to the cylinder on the idle side during partial cylinder operation in a light engine load range, the exhaust passage can be arranged to correspond to the cylinder on the idle side and the cylinder on the active side. The first oxygen sensor and the first catalyst are installed in the active exhaust passage, the second oxygen sensor is installed in the idle exhaust passage, and the second catalyst is installed downstream of the confluence of both exhaust passages. , and the air-fuel ratios of the corresponding active and idle cylinders were controlled separately according to the sensor detection signals, so that the optimum air-fuel ratio was maintained for each cylinder regardless of whether all cylinders were operating or partial cylinders were operating. This has the effect of increasing the conversion efficiency of the catalyst, maintaining a good exhaust composition, and improving engine performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置の概略平面図、第2図は本発明の実施
例を示す概略平面図、第3図は本発明の制W装置を示す
ブロック線図、第4図は本発明の伯の実施例を示す概略
平面図である。 1・・・排気通路、2・・・休止側排気通路、3・・・
稼動側排気通路、4・・・絞り弁、5・・・吸気通路、
7・・・第1の触媒、8・・・第2の触媒、9・・・第
1の酸素センサ、10・・・第2の酸素センサ、11・
・・制御装置、12・・・エア70−メータ、13・・
・イグニッションコイル、14.15・・・燃料噴射弁
FIG. 1 is a schematic plan view of a conventional device, FIG. 2 is a schematic plan view showing an embodiment of the present invention, FIG. 3 is a block diagram showing a W control device of the present invention, and FIG. 4 is a schematic plan view of an embodiment of the present invention. FIG. 2 is a schematic plan view showing an embodiment of the invention. 1...Exhaust passage, 2...Stopping side exhaust passage, 3...
Operating side exhaust passage, 4... Throttle valve, 5... Intake passage,
7... First catalyst, 8... Second catalyst, 9... First oxygen sensor, 10... Second oxygen sensor, 11.
...Control device, 12...Air 70-meter, 13...
・Ignition coil, 14.15...Fuel injection valve.

Claims (1)

【特許請求の範囲】[Claims] エンジンの軽負荷域で燃料の鍍給が遮断され新気のみが
供給される休止側気筒と、常時燃料と新気が供給され作
動を継続°する稼動側気筒とを備えた多気筒エンジンに
おいて、排気通路を休止側気筒と稼動側気筒とに対応し
て途中まで分割し、稼動側排気通路に第1の酸素センナ
と第1の触媒を、1本庄側排気通路に第2のセンサを、
両排気通路の合流部下流に第2の触媒をそれぞれ設置し
、かつこれらのセンサ検出信号に応じて対応する稼動側
ど体止側気筒の空燃比を別々に制御する制御装置を備え
たことを特徴とする気筒数制御エンジン。
In a multi-cylinder engine, there are two cylinders: a cylinder on the idle side to which fuel supply is cut off and only fresh air is supplied in the light load range of the engine, and an active cylinder to which fuel and fresh air are constantly supplied and operation continues. The exhaust passage is divided halfway into a cylinder on the idle side and a cylinder on the active side, and a first oxygen sensor and a first catalyst are installed in the active side exhaust passage, and a second sensor is installed in the exhaust side exhaust passage.
A second catalyst is installed downstream of the confluence of both exhaust passages, and a control device is provided that separately controls the air-fuel ratio of the corresponding working side cylinder and stop side cylinder according to these sensor detection signals. Features a cylinder number control engine.
JP2861882A 1982-02-24 1982-02-24 Engine capable of changing number of operative cylinders Pending JPS58144644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2861882A JPS58144644A (en) 1982-02-24 1982-02-24 Engine capable of changing number of operative cylinders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2861882A JPS58144644A (en) 1982-02-24 1982-02-24 Engine capable of changing number of operative cylinders

Publications (1)

Publication Number Publication Date
JPS58144644A true JPS58144644A (en) 1983-08-29

Family

ID=12253535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2861882A Pending JPS58144644A (en) 1982-02-24 1982-02-24 Engine capable of changing number of operative cylinders

Country Status (1)

Country Link
JP (1) JPS58144644A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4909223A (en) * 1987-09-09 1990-03-20 Hitachi, Ltd. Air-fuel ratio control apparatus for multicylinder engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4909223A (en) * 1987-09-09 1990-03-20 Hitachi, Ltd. Air-fuel ratio control apparatus for multicylinder engine

Similar Documents

Publication Publication Date Title
JPS58573B2 (en) Fuel supply cylinder number control device
JPS58574B2 (en) Fuel supply cylinder number control device
JPH0693841A (en) Control device for exhaust secondary air supply device in internal combustion engine
JPS58144644A (en) Engine capable of changing number of operative cylinders
JPS59543A (en) Cylinder number controlled engine
WO2023223504A1 (en) Device and method for controlling oxygen storage amount in three-way catalyst
JPS58210338A (en) Engine with controlled number of cylinder in operation
JP2004270584A (en) Multi-cylinder internal combustion engine with secondary air supply system and control method for multi-cylinder internal combustion engine
JPS5922058B2 (en) electronically controlled internal combustion engine
JP2614766B2 (en) Air-fuel ratio control device for gas engine
JPS62178740A (en) Exhaust gas purifying device for multicylinder engine
JPS61268838A (en) Control device for air-fuel ratio in internal-combustion engine
JPS5835242A (en) Cylinder quantity controlled engine
JP3608443B2 (en) Air-fuel ratio control device for internal combustion engine
JPS5898639A (en) Engine capable of changing number of cylinder to be operated
JP3006021B2 (en) Air-fuel ratio control device for internal combustion engine
JPS60222542A (en) Exhaust gas reflux controlling device for internal-combustion engine
JPS58217738A (en) Cylinder number controlling type engine
JPS6232336B2 (en)
JPH0734192Y2 (en) Cylinder oxygen concentration detector for exhaust gas
JP3513881B2 (en) V-type engine exhaust purification system
JPS58220938A (en) Engine with controlled number of operating cylinder
JPH02176138A (en) Air-fuel ratio control device for internal combustion engine
JPS58119941A (en) Cylinder-number-controlled engine
JPS58150052A (en) Cylinder quantity controlled engine