JPS58150052A - Cylinder quantity controlled engine - Google Patents

Cylinder quantity controlled engine

Info

Publication number
JPS58150052A
JPS58150052A JP3194882A JP3194882A JPS58150052A JP S58150052 A JPS58150052 A JP S58150052A JP 3194882 A JP3194882 A JP 3194882A JP 3194882 A JP3194882 A JP 3194882A JP S58150052 A JPS58150052 A JP S58150052A
Authority
JP
Japan
Prior art keywords
catalyst
cylinders
exhaust passage
cylinder
idle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3194882A
Other languages
Japanese (ja)
Inventor
Haruhiko Iizuka
晴彦 飯塚
Fukashi Sugasawa
菅沢 深
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP3194882A priority Critical patent/JPS58150052A/en
Publication of JPS58150052A publication Critical patent/JPS58150052A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/02Cutting-out

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To prevent deterioration of a catalytic function, by setting a catalyst in the downstream of the junction part of each exhaust passage in idle and operative sides while another catalyst in the exhaust passage in the operative side and performing full cylinder operation when temperature of the former catalyst is at least a preset value. CONSTITUTION:Exhaust passages 2, 3 are connected respectively corresponding to idle side cylinders #1-#3 and operative side cylinders #4-#6, and the first catalyst 7 consisting of a ternary catalyst in the operative side exhaust passage while the second catalyst 8 similarly in the downstream of the junction part of the both passages 2, 3 are respectively set. Temperature of this catalyst 8 is detected by a temperature sensor 13, and its detected signal is applied to a controller 14. Then in case of entering a light load range after full cylinder operation of a relatively high load is continued, when the catalyst 8 is heated by exhaust heat and reaction heat to considerably high temperature exceeding a preset value, supply of fuel to the idle side cylinders #1-#3 is not cut even in the light load range to control an engine to perform full cylinder operation.

Description

【発明の詳細な説明】 この発明は、エンジン軽負荷域で一部気筒の作動管休止
させて部分気筒運転1行なう気筒数制御エンジンの改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a cylinder number control engine that performs a partial cylinder operation by deactivating the operating pipes of some cylinders in a light engine load range.

一般に、エンジン金高い負荷状態で運転すると燃費が良
好になる傾向があり、このため多気筒エンジンにおいて
、エンジン負荷の小さいときに−s気筒への燃料の供給
をカットして作動管休止させ、この分だけ残りの稼動側
気筒の負荷を相対的に高め、全体として軽負荷域の炉費
會改善するよ本出願人が先に出願したこの種のエンジン
では。
In general, fuel efficiency tends to improve when the engine is operated under a high load. Therefore, in a multi-cylinder engine, when the engine load is low, the fuel supply to the -s cylinder is cut and the operating pipe is stopped. In this type of engine, which the present applicant previously applied, the load on the remaining working cylinders is relatively increased by that amount, and the furnace cost in the light load range is improved as a whole.

第1図に示すように、体止仰の気筒す1〜す3と稼動側
の気筒す4〜す6に対応して排気通路1が途中まで休止
側排気通路2と稼動側排気通路3とに分割されている、 そして、エンジンの軽負荷域で気筒す1〜す3の作動管
休止させるときには1例えばエアフローメータ11から
の吸入空気量信号やイグニッションコイル等からの回転
数信号に基づき、制御装置(図示しない、)が気筒4#
1〜す3に対応して吸慨ボート等圧設置された慾料噴射
升(図示しない)會全閉保持して燃料の供給上カットし
、@気違路5の絞弁4を介して導入される新気のみを休
止側気筒す1〜4#3に供給する。これにより、休止側
気筒す1〜す3におけるボンピング覧ス管低減しつつ、
稼動側気筒す4〜す6のみの作動による部分気筒運転を
行なう。
As shown in Fig. 1, the exhaust passage 1 is connected halfway to the idle side exhaust passage 2 and the working side exhaust passage 3 corresponding to the cylinders 1 to 3 on the resting side and the cylinders 4 to 6 on the operating side. When the operating pipes of cylinders 1 to 3 are stopped in the light load range of the engine, control is performed based on the intake air amount signal from the air flow meter 11, the rotation speed signal from the ignition coil, etc. The device (not shown) is connected to cylinder #4.
The fuel injection tank (not shown) installed in the suction boat at equal pressure corresponding to 1 to 3 is kept fully closed to cut off the fuel supply, and introduced via the throttle valve 4 of @ mad passage 5. Only fresh air is supplied to the cylinders 1 to 4#3 on the inactive side. As a result, while reducing the pumping noise in the cylinders 1 to 3 on the idle side,
Partial cylinder operation is performed by operating only active cylinders 4 to 6.

ところで、このエンジンにあっては、通常運転時(全気
筒運転時)Kは各気筒す1〜す6とも同様に燃焼した排
気ガス會排出するが、部分気筒運転時には稼11)J@
気筒す4〜す6から同じく燃焼ガスが、休止側気筒す1
〜す3からは新気がそのまま排出される。
By the way, in this engine, during normal operation (when all cylinders are operated), the combusted exhaust gas is emitted from each cylinder (1 to 6), but when the engine is in partial cylinder operation, the combustion gas is discharged (11) J@
Similarly, combustion gas flows from cylinders 4 to 6 to cylinder 1 on the idle side.
Fresh air is directly discharged from ~S3.

したがって、この排気処理装&6として三元触媒管用い
る場合には1図のように稼動儒気筒チ4〜す6からの排
気のみ1浄化する第1の触媒7と。
Therefore, when a three-way catalyst pipe is used as the exhaust treatment device &6, the first catalyst 7 is used to purify only the exhaust gas from the operating cylinders 4 to 6, as shown in FIG.

主に全気筒運転時に休止側気筒す1〜す3からの排fi
t−浄化する第2の触媒8とが、稼動側排気通路3の下
流と1両排気通路2,3の合流部下流とに分割設置され
る。
Mainly exhaust gas from cylinders 1 to 3 on the idle side when all cylinders are operated.
A second catalyst 8 for t-purification is separately installed downstream of the working side exhaust passage 3 and downstream of the confluence of the single-car exhaust passages 2 and 3.

また、これらの触媒7,8上流の稼11JJ@排気通路
3と休止側排気通路2には、それぞれ酸素センサ9.l
Oが設置され、その空炉比信号は前述の制御装置に送ら
れる。
Furthermore, oxygen sensors 9. l
O is installed, and its air-to-furnace ratio signal is sent to the aforementioned control device.

そして、稼動り気筒4#4〜す6では全気筒運転時と部
分気筒運転時に第1の酸素センサ9の検出信号に応じて
、休止@気筒すl〜す3では全気筒運転時に第2の酸素
センサ10の検出信号に応じてそれぞれ対応する燃料噴
射弁の噴射量が補正され、各気筒す1〜す6とも理論空
燃比の混合気が得られるように制御している。
Then, in the active cylinders #4 to #6, the second oxygen sensor is activated during full cylinder operation and partial cylinder operation, and in the idle cylinders #4 to #3, the second oxygen sensor is activated during full cylinder operation. The injection amount of each corresponding fuel injection valve is corrected in accordance with the detection signal of the oxygen sensor 10, and each cylinder 1 to 6 is controlled to obtain a mixture at a stoichiometric air-fuel ratio.

これにより、第1および第2の触媒7.8での転換効率
音高め、対応する気筒す1〜す3.す4〜す6からの排
気との反応管促進して、排気の清浄化會図っている。
This increases the conversion efficiency of the first and second catalysts 7.8 and the corresponding cylinders 1 to 3. The reaction tube promotes the cleaning of the exhaust gas with the exhaust gas from Steps 4 to 6.

しかし々から、この従来例にあっては、S分気筒運転時
に、第2の触媒8に休止側気筒す1〜す3からの新気が
流入するため1例えば金気S運転から部分気筒運転への
移行直後でその触媒8の温度が高くなっているときには
、新気中に含まれする多量の酸素によって触媒8の機能
が著しく劣化するようになシ、これが長い間くり返され
ると。
However, in this conventional example, fresh air from the idle cylinders 1 to 3 flows into the second catalyst 8 during the S partial cylinder operation. When the temperature of the catalyst 8 is high immediately after the transition to , the function of the catalyst 8 will deteriorate significantly due to the large amount of oxygen contained in the fresh air, and if this is repeated for a long time.

触媒8の耐久性そのものが悪化してしまうという問題が
あった。
There was a problem in that the durability of the catalyst 8 itself deteriorated.

このことは、第2図に示すように部分気筒運転時に休止
り気筒す1〜す3に供給する新気をエナフローメータ1
1上流からバイパス通路12會介して直接導くようにし
たエンジンや、また第3図に示すように第1の触媒7と
第2の触媒8を稼動側排気通路3と休止側排気通路2に
設置し九場合についても言える。
This means that the fresh air supplied to the idle cylinders 1 to 3 during partial cylinder operation is transferred to the enaflow meter 1 as shown in Fig. 2.
The engine is directly led from the upstream side through the bypass passage 12, and the first catalyst 7 and the second catalyst 8 are installed in the active exhaust passage 3 and the idle exhaust passage 2 as shown in The same can be said for the nine cases.

この発明は、このようか従来の問題点に着目してなされ
たもので、休止側と稼動側の排気通路の合流部下流もし
くは休止側排気通路に設置された第2の触媒の温度を検
出する温度センサを設け。
This invention has been made by focusing on the conventional problems, and detects the temperature of a second catalyst installed downstream of the confluence of the exhaust passages on the idle side and the active side or in the exhaust passage on the idle side. Equipped with a temperature sensor.

この第2の触媒の温度が設定値以上のときには。When the temperature of this second catalyst is higher than the set value.

エンジン軽負荷域であっても部分気筒運転に入ら々いよ
うにして、上記問題点の解決上図った気筒数制御エンジ
ンの提供を目的とする。
To provide an engine with cylinder number control aimed at solving the above problems by preventing partial cylinder operation even in a light engine load range.

以下1本発明を図面に基づいて説明する、第4図は本発
明の一実施例を示す平面構成図、第5図はその制御装置
の一例を示す回路図である。
The present invention will be described below with reference to the drawings. FIG. 4 is a plan configuration diagram showing an embodiment of the present invention, and FIG. 5 is a circuit diagram showing an example of a control device thereof.

第4図で、気筒ψ1〜≠3ti、後述するように主にエ
ンジンの軽負荷域で燃料の併給が連断され絞*41+−
介して新気のみが供給される休止−気筒、これに対して
気筒す4〜す6は、常時溶料と新気とが供給され作動を
継続する稼動−気筒管示す。
In Figure 4, for cylinders ψ1 to ≠3ti, as will be described later, the simultaneous fuel supply is interrupted mainly in the light load range of the engine, and the throttle *41+-
In contrast, cylinders 4 to 6 are inactive, to which only fresh air is supplied through the cylinders, and active cylinders are continuously supplied with solvent and fresh air.

この休止側気筒す1〜す3と稼動@気筒4#4〜す6に
接続する排気通路1け、これらに対応して途中まで休止
側排気通路2と稼動側排気通路3とに分割されており、
稼動側排気通路3に三元触媒からなる第1の触媒7が1
両排気通路2,3の合流部下流(もしくは休止側排気通
路2)に同じく第2の触媒8が設置される。
One exhaust passage connects to these cylinders 1 to 3 on the idle side and cylinders 4 #4 to 6 in operation, and is divided halfway into an exhaust passage 2 on the idle side and an exhaust passage 3 on the active side corresponding to these. Ori,
A first catalyst 7 consisting of a three-way catalyst is installed in the working side exhaust passage 3.
Similarly, a second catalyst 8 is installed downstream of the confluence of both exhaust passages 2 and 3 (or at the idle side exhaust passage 2).

第1の触媒7は、稼動側気筒す4〜す6からの排気を浄
化し、第2の触媒8は主に休止側気筒すl〜す3からの
排気を浄化する。次だし、第2の触媒8會休止側排気通
路2に設置した場合、休止側気筒す1〜す3からの排気
のみを浄化する。
The first catalyst 7 purifies the exhaust gas from the active cylinders 4 to 6, and the second catalyst 8 mainly purifies the exhaust gas from the idle cylinders 1 to 3. Next, when the second catalyst 8 is installed in the idle side exhaust passage 2, it purifies only the exhaust gas from the idle side cylinders 1 to 3.

そして、この第2の触媒8には、触媒8の温度を検出す
る温度センサ13が取付けられ、その検出信号は制御装
f!1t14に送られる。
A temperature sensor 13 is attached to the second catalyst 8 to detect the temperature of the catalyst 8, and the detection signal is sent to the control device f! Sent to 1t14.

また、これらの触媒7,8上流の稼動−排気通路3と休
止側排気通路2には、それぞれ排気中の酸素濃度音検出
して、制御装置14に空燃比信号をフィードバックする
第1.第2の酸素センサ9゜10が設置されている。稼
動伸気筒す4〜す6ならびに体止伸気筒す1〜す3の空
燃比制御は、制御装flj14により、前述したように
行われ、その説明を省略する。
Further, in the operating-exhaust passage 3 and the idle-side exhaust passage 2 upstream of these catalysts 7 and 8, there is a first exhaust passage that detects the oxygen concentration sound in the exhaust gas and feeds back an air-fuel ratio signal to the control device 14, respectively. A second oxygen sensor 9°10 is installed. The air-fuel ratio control of the operating expansion cylinders 4 to 6 and the stop expansion cylinders 1 to 3 is performed by the control device flj14 as described above, and the explanation thereof will be omitted.

そして、制御装置14では、まずエアフローメータ11
からの吸入空気量信号とイグニッションコイル15から
の回転数信号が、燃料噴射制御回路16に入力される。
Then, in the control device 14, first, the air flow meter 11
The intake air amount signal from the ignition coil 15 and the rotational speed signal from the ignition coil 15 are input to the fuel injection control circuit 16.

燃料噴射制御回路16は、これらの信号をもとに基本的
か燃料噴射tを演算し、燃料パルス信号を出力する。
The fuel injection control circuit 16 basically calculates the fuel injection t based on these signals and outputs a fuel pulse signal.

この燃料パルス信号は、出力増幅器17’i−介して稼
wJ側気筒す4〜す6に対応する燃料噴射9Pd〜fに
送られると共に、気筒数判断回路18と19のAND回
路に入力される。
This fuel pulse signal is sent to the fuel injection units 9Pd to 9F corresponding to the working wJ side cylinders 4 to 6 via the output amplifier 17'i-, and is also input to the AND circuit of the cylinder number determination circuits 18 and 19. .

気筒数判断回路18は、燃料パルス信号のノくルス巾1
周期等により、エンジン回転数に比して吸入空気量が少
ない軽9荷域ではローレベルの信号′″0′″を出力し
、それ以外の領緘でけノ・イレベルの信号“1”音出力
する、この信号ti20のOR回路に送られる。
The cylinder number determination circuit 18 determines the nozzle width of the fuel pulse signal by 1.
Due to cycle, etc., a low level signal ``0'' is output in the light 9 load area where the amount of intake air is small compared to the engine speed, and a low level signal ``1'' is output in other areas. The output signal ti20 is sent to the OR circuit.

溶方、前述した温度センサ13の検出信号は比較器21
に入力される。比較器21では、その検出信号音設定値
発生回路22の基準信号と比較し。
The detection signal of the temperature sensor 13 mentioned above is sent to the comparator 21.
is input. The comparator 21 compares the detection signal tone with a reference signal of the set value generation circuit 22.

第2の触媒8の温度が設定値以上であれげノ・イレベル
の信号”1”會、それより低ければローレベルの信号″
″0”音出力し繭記OR回路20に送る。
If the temperature of the second catalyst 8 is above the set value, a high level signal is "1", and if it is lower than that, a low level signal.
It outputs a "0" sound and sends it to the Mayuki OR circuit 20.

したがって、OR回路20の出力Fi、エンジン軽負荷
域以外ならひに第2の触媒8の温度が設定値以上のとき
にハイレベル°1”となり、軽負荷域で該温度が設定値
より低いときにローレベル”0”となる。
Therefore, the output Fi of the OR circuit 20 becomes a high level °1" when the temperature of the second catalyst 8 is above the set value except in the engine light load range, and when the temperature is lower than the set value in the light load range. becomes low level “0”.

そして、この信号は前記AND回路19に入力され、A
ND回路19は、OR回路20の出力がハイレベル“l
#のとき、燃料噴射制御回路16からの燃料パルス信号
を出力増幅!231に介して休止−気筒す1〜す3に対
応する燃料噴射9f−a −cに送る。
Then, this signal is input to the AND circuit 19, and A
The ND circuit 19 is configured so that the output of the OR circuit 20 is at a high level “l”.
When #, the fuel pulse signal from the fuel injection control circuit 16 is output amplified! 231 to the fuel injections 9f-a-c corresponding to the deactivated cylinders 1 to 3.

これにより、燃料噴射9Pa −cおよびd〜fを開閉
制御するのであり、即ち稼動仰気筒す4〜す6では常時
燃料が供給される溶方、体止@気陥す1〜す3では軽負
荷域でかつ第2の触媒8温度が設定値よシ低いときに燃
料の供給が遮断される。
This controls the opening/closing of the fuel injections 9Pa-c and d-f. In other words, the operating elevation cylinders 4-6 are constantly supplied with fuel, and the operating lift cylinders 1-3 are light. The fuel supply is cut off in the load range and when the temperature of the second catalyst 8 is lower than the set value.

なお、前記気筒数判断回路18の一構成例を第6図に示
す。24Vi比較器で、基準値発生器25の設定パルス
巾より燃料噴射制御回路16からの燃料パルス信号の巾
が狭いとノ・イレベルの信号“l″を出力する。26の
比較器は、基準値発生器27の設定周期より燃料パルス
信号のパルス周期が短かいとハイレベルの信号′″1′
を出力する。
An example of the configuration of the cylinder number determining circuit 18 is shown in FIG. If the width of the fuel pulse signal from the fuel injection control circuit 16 is narrower than the set pulse width of the reference value generator 25, the 24Vi comparator outputs a signal "l" at the no-i level. The comparator 26 outputs a high level signal ``1'' when the pulse period of the fuel pulse signal is shorter than the set period of the reference value generator 27.
Output.

これらの信号は、AND回路28を介してOR回路29
に入力され、反転器30で反転後指令される。
These signals are sent to an OR circuit 29 via an AND circuit 28.
The signal is input to the inverter 30 and then commanded after being inverted.

また、この例でOR回路29には%溶料噴射制御回路1
6からスロットル全閉時にノ・イレペルの信号11”が
入力される。即ち、エンジン軽負荷域と同様、アイドリ
ンク時に本気筒数判断回路18の出力をローレベル@1
”とし、上述した溶料制御を行うことは可能である。
In this example, the OR circuit 29 also includes the % solvent injection control circuit 1.
When the throttle is fully closed, a signal 11'' is input from 6. In other words, as in the light engine load range, the output of the cylinder number judgment circuit 18 is set to low level @ 1 during idle link.
”, it is possible to perform the above-mentioned solvent control.

このように構成したので、熱料噴射弁a −e 。With this configuration, the heat injection valves a-e.

d−fから各気筒す1〜す6に燃料が供給される全気筒
運転時には、各気筒す1〜す6からの炉焼排気と第1.
第2の触媒7.8との反応が活発化し、清浄排気を得る
ことができる。
During all-cylinder operation in which fuel is supplied from cylinders df to cylinders 1 to 6, the furnace exhaust gas from each cylinder 1 to 6 and the 1st.
The reaction with the second catalyst 7.8 becomes active, and clean exhaust gas can be obtained.

そして、この後軽負荷域に移行し、この際第2の触媒8
の温度が設定値より低ければ、休止−気筒す1〜す3へ
の燃料供給が遮断され、稼動伸気筒す4〜す6のみの作
動による部分気筒運転が行われる。
After that, the state shifts to a light load region, and at this time, the second catalyst 8
If the temperature is lower than the set value, the fuel supply to the idle cylinders 1 to 3 is cut off, and partial cylinder operation is performed by operating only the active expansion cylinders 4 to 6.

したがって、燃費が改善され、tた稼側伸気筒す4〜す
6からの排気が第1の触媒7にて良く反応浄化される溶
方、休止側気筒す1〜す3の排出新気中の酸素によって
第2の触媒8の浄化機能が劣化することはかい。
Therefore, the fuel efficiency is improved, and the exhaust gas from the working side extension cylinders 4 to 6 is well reacted and purified by the first catalyst 7, and the fresh air discharged from the idle side cylinders 1 to 3. There is no possibility that the purification function of the second catalyst 8 will deteriorate due to the oxygen.

これに対して、比較的高角荷の全気筒運転が継続され、
その後軽負荷域に入つ念場合には、第2の触媒8の温度
が排気熱や反応熱によって相当那濡化されており、設定
値を越える。このため、軽負荷域であって屯、休止―気
flIすl〜す3への燃料供給が清新されることはなく
、稼動−気筒す4〜す6と同様に作動し運転されるので
ある。
In contrast, all-cylinder operation with a relatively high angle load continues,
After that, when the vehicle enters the light load range, the temperature of the second catalyst 8 becomes considerably wet due to exhaust heat and reaction heat, and exceeds the set value. Therefore, in the light load range, the fuel supply to the idle cylinders 3 to 3 is not refreshed, and they operate in the same way as the active cylinders 4 to 6. .

これによ〕、高温化した第2の触媒8に休止り気筒す1
〜す3から新気が流入することを防止でき、触媒8の機
能が良好に維持されると共に、その耐久性′に向上する
ことができる。
As a result, the heated second catalyst 8 is exposed to the idle cylinder 1.
It is possible to prevent fresh air from flowing in from the catalyst 8 to the catalyst 8, so that the function of the catalyst 8 can be maintained well and its durability can be improved.

そして、軽負荷域で全気筒運転がある程度続けられると
第2の触媒8の温度が徐々に低下し、設定値より低く々
れは体止伸気筒す1〜す3への燃料供給が連断され1作
at休止して部分気筒運転に移行する。
When the operation of all cylinders continues to some extent in the light load range, the temperature of the second catalyst 8 gradually decreases, and when it becomes lower than the set value, the fuel supply to the stop expansion cylinders 1 to 3 is interrupted. After that, the engine stops for one operation and shifts to partial cylinder operation.

本実施例では、このよう罠1部分気筒運転時に休止@気
筒す1〜す3からの新気が流入する第2の触媒8の温度
全検出し、この触媒8温度が設定値以上であれば、軽負
荷域であって本部分気筒運転に入らず全気筒とも作動す
るようにしたので。
In this embodiment, during the trap 1 partial cylinder operation, the entire temperature of the second catalyst 8 into which fresh air flows from cylinders 1 to 3 is detected, and if the temperature of this catalyst 8 is equal to or higher than the set value, , in the light load range, all cylinders are operated without entering partial cylinder operation.

触媒8が新気中に含まれる多量の酸素によって劣化して
しまうことはなく、常に良好な浄化機訃會発揮でき、耐
久性および排気処理装置としての信頼性が向上する。
The catalyst 8 is not deteriorated by a large amount of oxygen contained in fresh air, and the purifier can always perform well, improving durability and reliability as an exhaust treatment device.

なお、本賽施例會12図、第3図に示したエンジンに適
用することは容易であり、同様の効果が得られる。
It should be noted that it is easy to apply the present invention to the engines shown in Figs. 12 and 3 of this embodiment, and similar effects can be obtained.

以上説明した通り、本発明によれば、S分?l筒運転時
に体止伸気筒に新気のみが供給される多気筒エンジンに
おいて、排気通路を休止9111気筒と稼動側気筒とに
対応して途中まで分割し、稼動−排気通路に三元触媒か
らなる第1の触at;t、体止−排気違路もしくは両排
気通路合流部下流に同じく第2の触媒ケ設置すると共に
、この第2の触媒の温度を検出する温度センサと、この
センサ検出温度が設定値以上のときには全気筒とも作動
して運転する手段(制御装置)と?備え九ので、第2の
触媒の高温時に体止伸気筒からの新気が流入してその触
媒機能上劣化させるようなことFi々く、耐久性が同上
しかつ第1の触媒と同様浄化効率を最良に維持して常に
良好な排気組成會得ることができるという効果がある。
As explained above, according to the present invention, S minute? In a multi-cylinder engine in which only fresh air is supplied to the stop cylinder during cylinder operation, the exhaust passage is divided halfway into the idle cylinder and the working cylinder, and a three-way catalyst is connected to the working exhaust passage. At the same time, a second catalyst is installed downstream of the body stop-exhaust passage or the confluence of both exhaust passages, and a temperature sensor that detects the temperature of this second catalyst is also installed. What is the means (control device) for operating all cylinders when the temperature is above the set value? Therefore, when the second catalyst is at high temperature, there is no possibility that fresh air from the expansion cylinder will flow in and deteriorate the catalyst function, and the durability is the same and the purification efficiency is the same as the first catalyst. This has the effect that it is possible to maintain the best exhaust gas composition and always obtain a good exhaust composition.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図はそれぞれ従来装置の平面構成図、第4
図は本発明の一実施例を示す平面構成図、第5図はその
節j御装置の一例を示す回路図、第6図は同じく制御装
置の一例を示す部分回路図である。 1・・・排気通路、2・・・休止−排気通路、3・・・
稼動―1排気通路、4・・・絞弁、5・・・@気通路、
7・・・第1の触媒、8・・・第2の触媒、9・・・第
1の酸素センサ。 10・・・第2の酸素センサ、11・・・エアフローメ
ータ、13・・・温度センサ、14・・・制御装置、1
5・・・イグニッションコイル。 特許出願人  日産自動東株式会社 第1図 第2図
Figures 1 to 3 are plan configuration diagrams of conventional devices, respectively.
5 is a plan view showing an embodiment of the present invention, FIG. 5 is a circuit diagram showing an example of the joint control device, and FIG. 6 is a partial circuit diagram showing an example of the control device. 1... Exhaust passage, 2... Pause-exhaust passage, 3...
Operation - 1 exhaust passage, 4...throttle valve, 5...@ air passage,
7... First catalyst, 8... Second catalyst, 9... First oxygen sensor. DESCRIPTION OF SYMBOLS 10... Second oxygen sensor, 11... Air flow meter, 13... Temperature sensor, 14... Control device, 1
5...Ignition coil. Patent applicant: Nissan Auto East Co., Ltd. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] エンジンの運転条件に応じて燃料の供給が遮断され新気
のみが供給されて作動を休止する休止側気筒と、常時燃
料と新気が供給され作動を継続する稼動側気筒と會備え
た多気筒エンジンにおいて、排気通路管休止@気筒と稼
動側気筒とに対応して途中まで分割し、稼動排気通路に
三元触媒からなる第1の触媒を、休止側排気通路もしく
は両排気通路合流部下流に同じく第2の触媒管設置する
と共に、この第2の触媒の温度上検出する温度センサと
、とのセンサ検出温度が設定値以上のときには全気筒と
も作動して運転する手段と會備え九ことを特徴とする気
筒数制御エンジン。
A multi-cylinder system with a dormant cylinder whose fuel supply is cut off and only fresh air is supplied depending on the engine operating conditions, and a working cylinder which is constantly supplied with fuel and fresh air and continues to operate. In an engine, the exhaust passage pipe is divided halfway corresponding to the cylinder on the idle side and the cylinder on the active side, and the first catalyst consisting of a three-way catalyst is placed in the active exhaust passage in the exhaust passage on the idle side or downstream of the confluence of both exhaust passages. In addition to installing a second catalyst pipe, a temperature sensor is provided to detect the temperature of the second catalyst, and means and means are provided for operating all cylinders when the temperature detected by the sensor is higher than a set value. Features a cylinder number control engine.
JP3194882A 1982-03-01 1982-03-01 Cylinder quantity controlled engine Pending JPS58150052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3194882A JPS58150052A (en) 1982-03-01 1982-03-01 Cylinder quantity controlled engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3194882A JPS58150052A (en) 1982-03-01 1982-03-01 Cylinder quantity controlled engine

Publications (1)

Publication Number Publication Date
JPS58150052A true JPS58150052A (en) 1983-09-06

Family

ID=12345180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3194882A Pending JPS58150052A (en) 1982-03-01 1982-03-01 Cylinder quantity controlled engine

Country Status (1)

Country Link
JP (1) JPS58150052A (en)

Similar Documents

Publication Publication Date Title
US6843055B2 (en) Regeneration of diesel particulate filter for diesel engine
US6742329B2 (en) Exhaust emission control system of diesel engine
KR100674248B1 (en) Exhaust purifying apparatus and exhaust purifying method for internal combustion engine
JPS5951667B2 (en) cylinder number control engine
JPS5874841A (en) Cylinder number-controlled engine
JPH1047048A (en) Emission control device for internal combustion engine
CN110513177B (en) Method and device for exhaust gas aftertreatment of an internal combustion engine
JP2007023888A (en) Control device of internal combustion engine
JPH11280452A (en) Exhaust emission control device for engine
JP2004232544A (en) Engine fuel injection control device
JP2004251230A (en) Activity determining device for oxidation catalyst for engine and exhaust emission control device of engine
KR20060031623A (en) Exhaust purifying apparatus and exhaust purifying method for internal combustion engine
EP3369898A1 (en) After treatment system (ats) for a sparking ignition engine
JP2013104346A (en) Exhaust gas purification device for internal combustion device
JP2005240716A (en) Deterioration diagnostic device for catalyst
JPS58150052A (en) Cylinder quantity controlled engine
JPH11173138A (en) Exhaust emission control device for internal combustion engine
JP3082523B2 (en) Catalyst deterioration diagnosis device for internal combustion engine
JPH08121154A (en) Engine exhaust emission control method and device thereof
JPS6013934A (en) Secondary-air supplying apparatus for engine with turbocharger
JP4063743B2 (en) Fuel injection timing control device for internal combustion engine
JPS5982516A (en) Exhaust gas treatment device of operating cylinder number controlled engine
WO2023223504A1 (en) Device and method for controlling oxygen storage amount in three-way catalyst
JPS6210451Y2 (en)
WO2022264565A1 (en) Control device for catalyst temperature raising system