JP2005240716A - Deterioration diagnostic device for catalyst - Google Patents

Deterioration diagnostic device for catalyst Download PDF

Info

Publication number
JP2005240716A
JP2005240716A JP2004053326A JP2004053326A JP2005240716A JP 2005240716 A JP2005240716 A JP 2005240716A JP 2004053326 A JP2004053326 A JP 2004053326A JP 2004053326 A JP2004053326 A JP 2004053326A JP 2005240716 A JP2005240716 A JP 2005240716A
Authority
JP
Japan
Prior art keywords
catalyst
fuel ratio
air
deterioration
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004053326A
Other languages
Japanese (ja)
Inventor
Asami Takaku
麻美 高久
Manabu Miura
学 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004053326A priority Critical patent/JP2005240716A/en
Publication of JP2005240716A publication Critical patent/JP2005240716A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately make deterioration determination of a catalyst even at a lean air fuel ratio. <P>SOLUTION: This deterioration diagnostic device for the catalyst is provided with the catalyst 42 arranged on an exhaust passage 2 and removing harmful components in exhaust gas, an upstream side air fuel ratio detecting means 43 for detecting an air fuel ratio in the catalyst upstream side, and a downstream side air fuel ratio detecting means 44 for detecting an air fuel ratio in the catalyst downstream side. During lean operation, deterioration of the catalyst 42 is determined by comparing a deviation of each excess air ratio calculated from outputs of the upstream side and downstream side air fuel ratio detecting means 43, 44 with a predetermined reference value. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はディーゼルエンジンやガソリンエンジンに用いられる触媒の劣化診断装置に関する。   The present invention relates to a deterioration diagnosis device for a catalyst used in a diesel engine or a gasoline engine.

ディーゼルエンジンやガソリンエンジンではエンジンから排出される有害成分を浄化するため排気通路に触媒を備えているが、使用に伴い触媒が劣化すると正規の浄化機能が得られなくなる。そこで、触媒に劣化が生じたか否かを診断するようにしたものがある(特許文献1参照)。
特開平7−109918号公報
In a diesel engine or a gasoline engine, a catalyst is provided in the exhaust passage in order to purify harmful components discharged from the engine. However, if the catalyst deteriorates with use, a regular purification function cannot be obtained. Therefore, there is one that diagnoses whether or not the catalyst has deteriorated (see Patent Document 1).
Japanese Patent Laid-Open No. 7-109918

ところで、上記の特許文献1に記載の装置では、触媒の劣化が進むと酸化還元反応が低下し、触媒上流の酸素濃度が同じても下流の酸素濃度が異なることに着目し、リーン目標空燃比に制御中に、触媒下流側の空燃比センサの出力の基準値からの偏差を見ることにより、触媒の劣化を判定するようにしたものである。   By the way, in the apparatus described in the above-mentioned Patent Document 1, it is noticed that the oxidation-reduction reaction decreases as the deterioration of the catalyst proceeds, and even if the oxygen concentration upstream of the catalyst is the same, the downstream oxygen concentration is different. During the control, the deterioration of the catalyst is determined by looking at the deviation from the reference value of the output of the air-fuel ratio sensor on the downstream side of the catalyst.

しかし、この場合には、空燃比が目標リーン空燃比にフィードバック制御されていることを前提とし、かつ予め決められた基準値との偏差に基づいて判定しているので、触媒の個々のバラツキに対応できず、必ずしも精度の高い劣化判定が得られない。   However, in this case, it is assumed that the air-fuel ratio is feedback-controlled to the target lean air-fuel ratio, and the determination is based on a deviation from a predetermined reference value. It is not possible to cope with it, and a highly accurate deterioration determination cannot be obtained.

本発明はかかる問題を解決し、リーン空燃比であっても精度よく触媒の劣化判定を行えるようにした触媒の劣化診断装置を提供することを目的とする。   An object of the present invention is to provide a catalyst deterioration diagnosis apparatus that solves such a problem and that can accurately determine deterioration of a catalyst even at a lean air-fuel ratio.

本発明は、ディーゼルエンジンやガソリンエンジンなどの内燃機関の触媒劣化診断装置であって、排気通路に設けられ排気中の有害成分を浄化する触媒と、前記触媒上流側の空燃比を検出する上流側空燃比検出手段と、前記触媒下流側の空燃比を検出する下流側空燃比検出手段と、リーン運転時に前記上流側、下流側空燃比検出手段の出力から算出した各空気過剰率の偏差を所定の基準値と比較して触媒の劣化を判定する劣化判定手段とを備える。   The present invention relates to a catalyst deterioration diagnosis device for an internal combustion engine such as a diesel engine or a gasoline engine, which is provided in an exhaust passage and purifies harmful components in exhaust gas, and an upstream side for detecting an air-fuel ratio upstream of the catalyst. Deviations of excess air ratios calculated from outputs of the air-fuel ratio detection means, the downstream air-fuel ratio detection means for detecting the air-fuel ratio downstream of the catalyst, and the upstream and downstream air-fuel ratio detection means during lean operation are predetermined. Deterioration determining means for determining deterioration of the catalyst in comparison with the reference value.

リーン運転時に触媒で排気中のHC、COなどが酸化され、これにより生じた水分が触媒に付着したときに発生する酸素イオンが触媒の劣化と共に減少するという現象に基づき、触媒の下流側と上流側の空気過剰率の偏差が劣化時ほど小さくなることに着目し、これら空気過剰率の偏差を所定の判定基準値と比較し、基準値よりも偏差が小さいときには触媒が劣化しているものと判定するようにしたので、触媒の劣化を正確に診断することができる。とくに触媒上流と下流の空燃比を検出し、これらから算出した空気過剰率の偏差を基準値と比較するので、判定時の空燃比に多少の変動があっても、あるいは触媒の個体差があっても、触媒の劣化診断が精度よく行える。   Based on the phenomenon that HC, CO, etc. in the exhaust gas are oxidized by the catalyst during lean operation, and oxygen ions generated when the resulting moisture adheres to the catalyst decrease with the deterioration of the catalyst, the downstream side and upstream side of the catalyst. Focusing on the fact that the deviation of the excess air ratio on the side becomes smaller as it deteriorates, the deviation of the excess air ratio is compared with a predetermined judgment reference value, and when the deviation is smaller than the reference value, the catalyst is deteriorated. Since the determination is made, it is possible to accurately diagnose the deterioration of the catalyst. In particular, the air-fuel ratio upstream and downstream of the catalyst is detected, and the deviation of the excess air ratio calculated from these is compared with the reference value, so even if there is some variation in the air-fuel ratio at the time of judgment, there are individual differences in the catalyst. However, the deterioration diagnosis of the catalyst can be performed with high accuracy.

本発明の実施の形態を図面に基づいて説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1は本発明の一実施形態を示す概略構成図である。   FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention.

図1において、1はディーゼルエンジンで、排気通路2と吸気通路3のコレクタ部3aとを結ぶEGR通路4に、ステップモータ5により駆動されるEGR弁6を備えている。ステップモータ5は、エンジンコントローラ31からの制御信号により駆動されるもので、これによって運転条件に応じた所定のEGR率を得るようにしている。   In FIG. 1, reference numeral 1 denotes a diesel engine, and an EGR valve 6 that is driven by a step motor 5 is provided in an EGR passage 4 that connects an exhaust passage 2 and a collector portion 3 a of the intake passage 3. The step motor 5 is driven by a control signal from the engine controller 31 and thereby obtains a predetermined EGR rate corresponding to the operating conditions.

エンジン1にはコモンレール式の燃料噴射装置10を備える。この燃料噴射装置10は、主に燃料タンク(図示しない)、サプライポンプ14、コモンレール(蓄圧室)16、気筒毎に設けられるノズル17からなり、サプライポンプ14により加圧された燃料は蓄圧室16にいったん蓄えられ、この蓄圧室16の高圧燃料が各気筒に設けたノズル17へと分配される。   The engine 1 includes a common rail fuel injection device 10. The fuel injection device 10 mainly includes a fuel tank (not shown), a supply pump 14, a common rail (pressure accumulation chamber) 16, and a nozzle 17 provided for each cylinder. The fuel pressurized by the supply pump 14 is accumulated in the pressure accumulation chamber 16. And the high pressure fuel in the pressure accumulating chamber 16 is distributed to the nozzles 17 provided in each cylinder.

ノズル17(燃料噴射弁)は、電磁的に駆動される針弁を備え、ソレノイドがOFF時には、針弁が着座状態にあるが、ソレノイドON状態になると針弁が上昇してノズル先端の噴孔より燃料が噴射される。ソレノイドのOFFからONへの切換により燃料の噴射開始時期が、またON時間により燃料噴射量が調整され、蓄圧室16の圧力が同じであればON時間が長くなるほど燃料噴射量が多くなる。   The nozzle 17 (fuel injection valve) includes an electromagnetically driven needle valve. When the solenoid is OFF, the needle valve is in a seating state, but when the solenoid is in the ON state, the needle valve rises and the nozzle hole at the tip of the nozzle More fuel is injected. The fuel injection start timing is adjusted by switching the solenoid from OFF to ON, and the fuel injection amount is adjusted by the ON time. If the pressure in the pressure accumulating chamber 16 is the same, the fuel injection amount increases as the ON time increases.

EGR通路4の開口部下流の排気通路2に、排気の熱エネルギーを回転エネルギーに変換するタービン22と吸気を圧縮するコンプレッサ23とを同軸で連結した可変容量ターボ過給機21を備える。タービン22のスクロール入口に、図示しないがアクチュエータにより駆動される可変ノズルが設けられ、エンジンコントローラ31により、可変ノズルは低回転速度域から所定の過給圧が得られるように、低回転速度側ではタービン22に導入される排気の流速を高めるノズル開度に、高回転速度側では排気を抵抗なくタービン22に導入させノズル開度(全開状態)に制御する。   The exhaust passage 2 downstream of the opening of the EGR passage 4 is provided with a variable capacity turbocharger 21 in which a turbine 22 that converts heat energy of exhaust gas into rotational energy and a compressor 23 that compresses intake air are connected coaxially. A variable nozzle that is driven by an actuator (not shown) is provided at the scroll inlet of the turbine 22, and the engine controller 31 allows the variable nozzle to obtain a predetermined supercharging pressure from the low rotational speed range. The nozzle opening degree for increasing the flow rate of the exhaust gas introduced into the turbine 22 is controlled to the nozzle opening degree (fully opened state) by introducing the exhaust gas into the turbine 22 without resistance on the high rotational speed side.

コレクタ3a入口には、図示しないアクチュエータにより駆動される吸気絞弁8が設けられている。   An intake throttle valve 8 driven by an actuator (not shown) is provided at the collector 3a inlet.

アクセル開度を検出するアクセルセンサ32、エンジン回転速度とクランク角度を検出するセンサ33、エンジン冷却水温度を検出する水温センサ34、吸入空気量を検出するエアフローメータ35からの信号が入力されるエンジンコントローラ31では、これらの信号に基づいて運転状態に応じて最適な目標EGR率と目標過給圧とが得られるようにEGR制御と過給圧制御を協調して行う。   An engine to which signals from an accelerator sensor 32 that detects an accelerator opening, a sensor 33 that detects an engine speed and a crank angle, a water temperature sensor 34 that detects an engine coolant temperature, and an air flow meter 35 that detects an intake air amount are input. Based on these signals, the controller 31 performs EGR control and supercharging pressure control in a coordinated manner so that an optimal target EGR rate and target supercharging pressure can be obtained according to the operating state.

排気通路2には排気中のパティキュレートを捕集するフィルタ41が設置される。フィルタ41のパティキュレートの堆積量が所定値に達すると、排気温度を上昇させてフィルタ41に堆積しているパティキュレートを燃焼除去して再生するため、空燃比をリーン空燃比から理論空燃比やリッチ空燃比へと切換える。   A filter 41 that collects particulates in the exhaust is installed in the exhaust passage 2. When the accumulated amount of particulates in the filter 41 reaches a predetermined value, the exhaust gas temperature is raised and the particulates accumulated in the filter 41 are burned and removed to be regenerated. Switch to rich air-fuel ratio.

フィルタ41の上流側にはHCトラップ触媒42を備える。このHCトラップ触媒42は排気の低温時にHCをトラップしておき、排気が所定温度以上になるとこのトラップしていたHCを脱離して放出しつつ排気中の酸素を用いて酸化して浄化する機能を有するものである。なお、触媒活性後は通常の酸化触媒として機能する。   An HC trap catalyst 42 is provided on the upstream side of the filter 41. The HC trap catalyst 42 traps HC when the exhaust gas is at a low temperature, and oxidizes and purifies by using oxygen in the exhaust gas while desorbing and releasing the trapped HC when the exhaust gas exceeds a predetermined temperature. It is what has. In addition, it functions as a normal oxidation catalyst after catalytic activity.

HCトラップ触媒42の前後に広域空燃比センサ43、44を設け、これら触媒42上流側の広域空燃比センサ(以下単に「上流側センサ」という)43と触媒下流側の広域空燃比センサ(以下単に「下流側センサ」という)44の出力に基づいて、前記エンジン今ローラ31が触媒劣化診断を行う。この場合、ディーゼルエンジンではリーン空燃比での運転が主であるので、リーン空燃比での運転時に上流側センサ43、下流側センサ44により検出される触媒前後の空気過剰率に基づいてHCトラップ触媒42に劣化が生じているか否かを判定する。36は触媒42の温度を検出する温度センサである。   Wide-range air-fuel ratio sensors 43 and 44 are provided before and after the HC trap catalyst 42, and a wide-area air-fuel ratio sensor (hereinafter simply referred to as “upstream sensor”) 43 upstream of the catalyst 42 and a wide-area air-fuel ratio sensor (hereinafter simply referred to as “upstream sensor”). Based on the output of the “downstream sensor” 44, the engine now roller 31 performs catalyst deterioration diagnosis. In this case, since the diesel engine is mainly operated at a lean air-fuel ratio, the HC trap catalyst is based on the excess air ratio before and after the catalyst detected by the upstream sensor 43 and the downstream sensor 44 when operating at the lean air-fuel ratio. It is determined whether or not 42 has deteriorated. A temperature sensor 36 detects the temperature of the catalyst 42.

触媒42の劣化診断原理は次の通りである。   The deterioration diagnosis principle of the catalyst 42 is as follows.

リーン空燃比での運転時にHCトラップ触媒42の劣化診断が可能になったのは、本発明者らによる、触媒42についての実験による新たな知見に基づくものである。これについて説明すると、図2は所定のリーン運転モードに従ってエンジンを運転したときの触媒入口の空気過剰率、触媒出口の空気過剰率が実際にどのように変化したのか、時間の経過を含めて、そのようすを示している。   The reason why the deterioration diagnosis of the HC trap catalyst 42 can be performed at the time of operation at a lean air-fuel ratio is based on new knowledge obtained by the present inventors through experiments on the catalyst 42. To explain this, FIG. 2 shows how the excess air ratio at the catalyst inlet and the excess air ratio at the catalyst outlet actually change when the engine is operated according to a predetermined lean operation mode, including the passage of time. It shows that.

排気空燃比をリーン側の略一定値に制御したときに、触媒上流側の空気過剰率よりも下流側の空気過剰率が大きくなる。しかも、この空気過剰率の差は、触媒劣化時には触媒新品時より小さくなる傾向がある。   When the exhaust air-fuel ratio is controlled to a substantially constant value on the lean side, the excess air ratio on the downstream side becomes larger than the excess air ratio on the upstream side of the catalyst. Moreover, the difference in the excess air ratio tends to be smaller when the catalyst is deteriorated than when the catalyst is new.

これには次のような理由が考えられる。   The following reasons can be considered for this.

ディーゼルエンジン1から排出される有害成分は低温時にはHCとCOが主であり、これらを触媒で酸化することによって、無害なH2O、CO2へと変換する。この場合に、H2Oすなわち水分は、触媒である貴金属(例えば白金)に付着して水素H2と酸素イオンO2-とに電離し、この酸素イオン分を下流側広域空燃比センサ44が酸素として感じてしまうため、下流側センサ44では上流側センサ43より酸素濃度が多い出力をするものと考えられる。言い換えると、空気過剰率が1.0を超える領域においてH2Oのような酸素イオン由来成分に起因して触媒前後で空気過剰率の差が生じる。 The harmful components discharged from the diesel engine 1 are mainly HC and CO at low temperatures, and are converted to harmless H 2 O and CO 2 by oxidizing them with a catalyst. In this case, H 2 O, that is, moisture adheres to a noble metal (for example, platinum) as a catalyst and is ionized into hydrogen H 2 and oxygen ions O 2−, and this oxygen ion content is detected by the downstream wide area air-fuel ratio sensor 44. Since it is felt as oxygen, it is considered that the downstream sensor 44 outputs a higher oxygen concentration than the upstream sensor 43. In other words, in the region where the excess air ratio exceeds 1.0, a difference in excess air ratio occurs before and after the catalyst due to oxygen ion-derived components such as H 2 O.

そして、触媒新品時ほど触媒金属に付着したH2Oから、より多くの水素H2と酸素イオンO2-とが電離し、この影響を受けて触媒42の前後での空気過剰率の差が大きくなるものと想定できる。 Then, as the catalyst is new, more hydrogen H 2 and oxygen ions O 2− are ionized from H 2 O adhering to the catalyst metal. It can be assumed that it will grow.

なお、図2に示す触媒の特性は、HCトラップ触媒42に固有のものであるのかどうかを確かめるため、他の触媒(NOxトラップ触媒、三元触媒、酸化触媒等)についても同様の実験をしてみたところ、触媒の種類を問わず、触媒であれば同様の特性が得られることが判明している。従って、本実施形態では主にリーン空燃比で運転するディーゼルエンジンへの適用例を述べるが、リーン空燃比で運転することがあり、かつ排気通路に触媒を備えるガソリンエンジンについても本発明を適用できる。   In order to confirm whether the characteristics of the catalyst shown in FIG. 2 are unique to the HC trap catalyst 42, the same experiment was conducted for other catalysts (NOx trap catalyst, three-way catalyst, oxidation catalyst, etc.). As a result, it has been found that the same characteristics can be obtained with any catalyst regardless of the type of the catalyst. Therefore, in this embodiment, an example of application to a diesel engine that operates mainly at a lean air-fuel ratio will be described, but the present invention can also be applied to a gasoline engine that may be operated at a lean air-fuel ratio and that has a catalyst in the exhaust passage. .

上記の上流側センサ43と下流側センサ44(広域空燃比センサ)とは、それぞれ上流側と下流側の空燃比検出手段及び酸素イオン由来成分検出手段として機能し、また、出力が理論空燃比を境にして比較的大きく変化する酸素センサであっても、リーン領域で酸素濃度に応じてある程度の出力変化があるので、これも空燃比検出手段及び酸素イオン由来成分検出手段として用いることは可能である。   The upstream sensor 43 and the downstream sensor 44 (wide air-fuel ratio sensor) function as upstream and downstream air-fuel ratio detection means and oxygen ion-derived component detection means, respectively, and the output is the stoichiometric air-fuel ratio. Even an oxygen sensor that changes relatively greatly at the boundary has some output change depending on the oxygen concentration in the lean region, so it can also be used as an air-fuel ratio detection means and oxygen ion-derived component detection means. is there.

ここで、エンジンコントローラ31により実行される触媒の診断内容を、図3、図4のフローチャートにより詳述する。まず、図3は触媒劣化診断の開始を行うためのもので、一定時間毎に繰り返し実行する。   Here, the diagnostic contents of the catalyst executed by the engine controller 31 will be described in detail with reference to the flowcharts of FIGS. First, FIG. 3 is for starting the catalyst deterioration diagnosis, and is repeatedly executed at regular intervals.

ステップS1では前記した各種センサ類の信号に基づいて運転状態の読み込みを行い、ステップS2で排気流量が所定流量、つまり図5に示すような排気流量よりも大きいかどうか判定する。所定流量よりも小さいときは、ステップS4に移行して触媒劣化判定を禁止する。所定流量とは、その流量よりも小さいときは、触媒劣化前と劣化後とでのHCの転化率が変化しない領域であり、触媒下流の酸素イオン発生率がHCの転化率に依存して変化するので、転化率が同じならば触媒が劣化しても、判定結果に差異が無くなり、つまり正確な判定ができなくなるためである。   In step S1, the operation state is read based on the signals of the various sensors described above, and in step S2, it is determined whether the exhaust flow rate is larger than a predetermined flow rate, that is, the exhaust flow rate as shown in FIG. When the flow rate is smaller than the predetermined flow rate, the process proceeds to step S4 to prohibit the catalyst deterioration determination. When the flow rate is smaller than the flow rate, the HC conversion rate before and after catalyst deterioration does not change, and the oxygen ion generation rate downstream of the catalyst changes depending on the HC conversion rate. Therefore, if the conversion rate is the same, even if the catalyst is deteriorated, there is no difference in the determination results, that is, accurate determination cannot be performed.

所定流量よりも大きいときは、ステップS3に進んで触媒温度が所定温度よりも高いかどうかの判定を行う。所定温度よりも高いときには、ステップS5に移行して触媒42の劣化判断を禁止する。所定の温度とは、図6に示すように、その温度よりも高いと触媒42の劣化前と劣化後とでのHCの転化率が変化しなくなる領域であり、上記と同じく劣化判定の結果に差異が出ないためである。   When the flow rate is higher than the predetermined flow rate, the process proceeds to step S3 to determine whether or not the catalyst temperature is higher than the predetermined temperature. When the temperature is higher than the predetermined temperature, the process proceeds to step S5, and the deterioration determination of the catalyst 42 is prohibited. As shown in FIG. 6, the predetermined temperature is a region where the conversion rate of HC before and after the deterioration of the catalyst 42 does not change when the temperature is higher than that temperature. This is because there is no difference.

所定温度よりも低いときは、ステップS6に移行して触媒劣化診断を開始する。   When the temperature is lower than the predetermined temperature, the process proceeds to step S6 and the catalyst deterioration diagnosis is started.

図4は触媒劣化診断を行うためのもので、一定時間毎に繰り返し実行する。   FIG. 4 is for performing catalyst deterioration diagnosis, and is repeatedly executed at regular intervals.

ステップS11ではリーン運転条件にあるかどうかの判定を行い、リーン以外では触媒42の前後での空気過剰率の変化が少なく、正確な劣化判定が行えないので、診断を行わずにルーチンを終了する。   In step S11, it is determined whether or not the lean operation condition is satisfied. Since there is little change in the excess air ratio before and after the catalyst 42 except for lean, an accurate deterioration determination cannot be performed, and thus the routine is terminated without performing diagnosis. .

ステップS11でリーン運転条件にある場合は、ステップS12に進んで触媒劣化判断のために、まず触媒42の上流側センサ43と下流側センサ44の出力に基づいて、それぞれの上、下流の空気過剰率λFとλRを算出し、さらに下流側の空気過剰率λRと、上流側の空気過剰率λFとの偏差であるΔλを、Δλ=λR−λFとして算出する。   If the lean operation condition is in step S11, the process proceeds to step S12, and in order to determine the catalyst deterioration, first, based on the outputs of the upstream sensor 43 and the downstream sensor 44 of the catalyst 42, the excess air in the upstream and downstream respectively. The ratios λF and λR are calculated, and Δλ, which is the deviation between the downstream excess air ratio λR and the upstream excess air ratio λF, is calculated as Δλ = λR−λF.

次にステップS13では、触媒42の劣化判定の基準値Δλtを算出する。このΔλtは、前記上流の空気過剰率と下流の空気過剰率の偏差の間にある値である。なお、この判定基準値であるΔλtは、触媒12の仕様等を考慮して設定される。   Next, in step S13, a reference value Δλt for determining deterioration of the catalyst 42 is calculated. This Δλt is a value between the deviation of the upstream excess air ratio and the downstream excess air ratio. The determination reference value Δλt is set in consideration of the specification of the catalyst 12 and the like.

ステップS14で上記したΔλと所定値Δλtとを比較し、Δλが所定値Δλtよりも大きいときは、ステップS15に進んで触媒12は劣化していないものとして、触媒劣化フラグは立てない。触媒42の機能が正常であれば、上記したとおり、触媒42での酸素イオン発生率が高まり、触媒上流よりも下流での酸素濃度が高くなる。したがって、下流側の空気過剰率λRと上流側の空気過剰率λFとの差であるΔλは、触媒42が新品時ほど大きく、劣化するに伴い小さくなる。したがってΔλが所定値Δλtよりも大きいときは触媒42は劣化がなく正常な状態である判定することができる。   In step S14, the above-mentioned Δλ is compared with a predetermined value Δλt. If Δλ is larger than the predetermined value Δλt, the process proceeds to step S15 and the catalyst 12 is not deteriorated, and the catalyst deterioration flag is not set. If the function of the catalyst 42 is normal, as described above, the oxygen ion generation rate in the catalyst 42 is increased, and the oxygen concentration in the downstream is higher than that in the upstream of the catalyst. Therefore, Δλ, which is the difference between the excess air ratio λR on the downstream side and the excess air ratio λF on the upstream side, increases as the catalyst 42 becomes new, and decreases as the catalyst 42 deteriorates. Therefore, when Δλ is larger than the predetermined value Δλt, it is possible to determine that the catalyst 42 is in a normal state with no deterioration.

これに対して、ステップS15でΔλがΔλtよりも大きくないときは、ステップS16に進んで触媒42が劣化していると判定し、ステップS17で触媒劣化フラグを立て、これに基づいて触媒42の劣化を報知したり警告したりする。   On the other hand, when Δλ is not larger than Δλt in step S15, it proceeds to step S16, determines that the catalyst 42 has deteriorated, sets a catalyst deterioration flag in step S17, and based on this, sets the catalyst deterioration flag. Inform and warn of deterioration.

このようにして、リーン空燃比での運転時に触媒劣化診断が行われ、触媒42の上流側と下流側の排気空燃比に基づいて空気過剰率が演算され、下流側と上流側の空気過剰率の差であるΔλが、劣化基準判定値であるΔλtよりも大きいときは、触媒による酸素イオンの発生率が高く、触媒42が正常に機能していると判定され、これに対して、ΔλがΔλtよりも小さいときは、触媒42による酸素イオンの発生率が小さく、触媒42は劣化しているものと判定される。   Thus, the catalyst deterioration diagnosis is performed during operation at the lean air-fuel ratio, the excess air ratio is calculated based on the upstream and downstream exhaust air-fuel ratios of the catalyst 42, and the downstream and upstream excess air ratios are calculated. Is larger than Δλt, which is a deterioration criterion determination value, it is determined that the rate of oxygen ion generation by the catalyst is high, and the catalyst 42 is functioning normally, whereas Δλ is When it is smaller than Δλt, the rate of generation of oxygen ions by the catalyst 42 is small, and it is determined that the catalyst 42 has deteriorated.

なお、上記図4の触媒劣化診断において、リーン空燃比での運転中に劣化診断を開始しているが、この場合、劣化判定時の空燃比を、触媒42での酸素イオンの発生確率が高くなるように、リーン空燃比のなかで、排気中により多くの酸素イオン由来成分が含まれる、すなわち還元剤としてのHCを多く含む空燃比に設定してもよい。すなわち、ストイキ空燃比までは濃くなることはないが、やや濃いめのリーン空燃比とすることで、触媒42に流入する排気中に含まれるHCやCOが増えると、それだけ触媒反応時に発生するH2Oも増え、触媒金属に触れて電離する酸素イオンの発生量も多くなる。このため、同一空燃比でも、触媒42の上流と下流の空気過剰率の偏差が大きくなり、触媒42の劣化判定をより精度よく行える。 In the catalyst deterioration diagnosis of FIG. 4 described above, the deterioration diagnosis is started during the operation at the lean air-fuel ratio. Thus, the lean air-fuel ratio may be set to an air-fuel ratio that contains more oxygen ion-derived components in the exhaust gas, that is, contains more HC as a reducing agent. That is, it does not increase until the stoichiometric air-fuel ratio, but by setting a slightly leaner air-fuel ratio, if the amount of HC and CO contained in the exhaust gas flowing into the catalyst 42 increases, the amount of H 2 generated during the catalytic reaction increases accordingly. O also increases, and the amount of oxygen ions that ionize by touching the catalyst metal increases. For this reason, even when the air-fuel ratio is the same, the deviation of the excess air ratio between the upstream and downstream of the catalyst 42 becomes large, and the deterioration determination of the catalyst 42 can be performed with higher accuracy.

なお、このようにディーゼル機関から排出される未燃物である還元剤は、リーン領域での空燃比を濃くすることにより増やせるが、例えば、CO(一酸化炭素)は機関燃焼室内での燃焼によって生成し、HC(炭化水素)については、排気通路内に燃料噴射することにより生成することもできる。   Note that the reducing agent, which is unburned from the diesel engine, can be increased by increasing the air-fuel ratio in the lean region. For example, CO (carbon monoxide) can be increased by combustion in the engine combustion chamber. The produced HC (hydrocarbon) can also be produced by injecting fuel into the exhaust passage.

以上のように本実施形態によれば、リーン運転時に触媒42で排気中のHC、COなどが酸化され、これにより生じた水分が触媒42に付着したときに発生する酸素イオンが触媒の劣化と共に減少するという現象に基づき、触媒の下流側と上流側の空気過剰率の偏差が劣化時ほど小さくなることに着目し、これら空気過剰率の偏差を所定の判定基準値と比較し、基準値よりも偏差が小さいときには触媒42が劣化しているものと判定するようにしたので、触媒42の劣化を正確に診断することができる。とくに触媒上流と下流の空燃比を検出し、これらの偏差を基準値と比較するので、判定時の空燃比に多少の変動があっても、あるいは触媒42の個体差があっても、触媒42の劣化診断が精度よく行える。   As described above, according to the present embodiment, HC, CO, etc. in the exhaust gas are oxidized by the catalyst 42 during the lean operation, and oxygen ions generated when the moisture generated thereby adheres to the catalyst 42 together with the deterioration of the catalyst. Focusing on the fact that the deviation of the excess air ratio between the downstream side and the upstream side of the catalyst becomes smaller as it deteriorates, based on the phenomenon of decreasing, the deviation of the excess air ratio is compared with a predetermined criterion value, However, when the deviation is small, it is determined that the catalyst 42 has deteriorated, so that the deterioration of the catalyst 42 can be accurately diagnosed. In particular, the air-fuel ratio upstream and downstream of the catalyst is detected, and these deviations are compared with a reference value. Therefore, even if there is a slight variation in the air-fuel ratio at the time of determination or there is an individual difference in the catalyst 42, the catalyst 42 Can be accurately diagnosed.

また、触媒42の劣化診断は、排気流量が所定値以下で、触媒42の劣化のいかんにかかわらずHCの転化率が変化しない領域では、触媒42での酸素イオン発生に影響を及ぼすHC量の変化が無いために、正確な劣化診断が行えないので、診断を禁止することでその誤診断を防ぎ、信頼性を向上させられる。   Further, in the deterioration diagnosis of the catalyst 42, in the region where the exhaust gas flow rate is not more than a predetermined value and the HC conversion rate does not change regardless of the deterioration of the catalyst 42, the amount of HC that affects the generation of oxygen ions in the catalyst 42 is determined. Since there is no change, an accurate deterioration diagnosis cannot be performed. Therefore, by prohibiting the diagnosis, the erroneous diagnosis can be prevented and the reliability can be improved.

同じように、触媒42でのHCの転化率が同じになってしまう排気温度が所定値以上の領域では、診断を禁止することにより、誤った診断を回避し、信頼性を高めている。   Similarly, in the region where the exhaust gas temperature at which the conversion rate of HC in the catalyst 42 becomes the same is higher than a predetermined value, the diagnosis is prohibited to avoid erroneous diagnosis and improve reliability.

また、触媒42の劣化判定にとっては、触媒42に付着するHC、CO、すなわち還元剤が多いほど酸素イオンの発生率が高まり、上流側と下流側での空気過剰率の偏差も大きくなるので、判定の精度が高められる。したがって、劣化判定時にはリーン空燃比の範囲内で排気中の還元剤の量ができるだけ多くなるように、例えば、機関での燃焼空燃比を制御したり、排気通路内に燃料噴射を行うことにより、精度のよい劣化判定を実施することが可能となる。   In addition, for the deterioration determination of the catalyst 42, the more HC and CO adhering to the catalyst 42, that is, the more the reducing agent, the higher the generation rate of oxygen ions, and the larger the deviation of the excess air ratio between upstream and downstream, The accuracy of determination is increased. Therefore, for example, by controlling the combustion air-fuel ratio in the engine or injecting fuel into the exhaust passage so that the amount of reducing agent in the exhaust gas is as much as possible within the range of the lean air-fuel ratio at the time of deterioration determination, It becomes possible to perform deterioration determination with high accuracy.

なお、上記実施形態では、本発明をディーゼル機関に適用した例を示したが、これに限らず、リーンバーンするガソリン機関にも当然に適用できる。また、触媒としては、HCトラップ触媒だけでなく、NOxトラップ触媒、三元触媒、酸化触媒等についても同様に劣化診断の対象とすることができる。   In the above embodiment, an example in which the present invention is applied to a diesel engine has been described. However, the present invention is not limited to this, and can naturally be applied to a gasoline engine that performs lean burn. Further, as the catalyst, not only the HC trap catalyst but also a NOx trap catalyst, a three-way catalyst, an oxidation catalyst, and the like can be similarly subjected to degradation diagnosis.

本発明の触媒劣化診断装置は、ディーゼルエンジンやガソリンエンジンなどに適用できる。   The catalyst deterioration diagnosis device of the present invention can be applied to a diesel engine, a gasoline engine, or the like.

本発明の一実施形態を示す概略構成図である。It is a schematic structure figure showing one embodiment of the present invention. 所定の運転モードに従ってディーゼルエンジンを運転したときの触媒入口の空気過剰率、触媒出口の空気過剰率の変化を示す波形図である。It is a wave form diagram which shows the change of the excess air ratio of a catalyst inlet, and the excess air ratio of a catalyst exit when driving a diesel engine according to a predetermined operation mode. 触媒の劣化判定の制御内容を示すフローチャートである。It is a flowchart which shows the control content of deterioration determination of a catalyst. 同じくフローチャートである。It is also a flowchart. 触媒劣化判定開始時の排気流量特性を示す特性図である。FIG. 6 is a characteristic diagram showing an exhaust flow rate characteristic at the start of catalyst deterioration determination. 触媒劣化判定開始時の触媒温度特性を示す特性図である。It is a characteristic view which shows the catalyst temperature characteristic at the time of a catalyst deterioration determination start.

符号の説明Explanation of symbols

1 エンジン
2 排気通路
31 エンジンコントローラ
33 クランク角センサ
42 HCトラップ触媒
43 上流側センサ(上流側空燃比検出手段、酸素イオン由来成分検出手段)
44 下流側センサ(下流側空燃比検出手段、酸素イオン由来成分検出手段)
DESCRIPTION OF SYMBOLS 1 Engine 2 Exhaust passage 31 Engine controller 33 Crank angle sensor 42 HC trap catalyst 43 Upstream side sensor (Upstream side air-fuel ratio detection means, oxygen ion origin component detection means)
44 Downstream sensor (downstream air-fuel ratio detection means, oxygen ion-derived component detection means)

Claims (8)

内燃機関において、
排気通路に設けられ排気中の有害成分を浄化する触媒と、
前記触媒上流側の空燃比を検出する上流側空燃比検出手段と、
前記触媒下流側の空燃比を検出する下流側空燃比検出手段と、
リーン運転時に前記上流側、下流側空燃比検出手段の出力から算出した各空気過剰率の偏差を所定の基準値と比較して触媒の劣化を判定する劣化判定手段と
を備えることを特徴とする触媒の劣化診断装置。
In internal combustion engines,
A catalyst provided in the exhaust passage for purifying harmful components in the exhaust;
Upstream air-fuel ratio detecting means for detecting the air-fuel ratio upstream of the catalyst;
Downstream air-fuel ratio detecting means for detecting the air-fuel ratio downstream of the catalyst;
And a deterioration determining means for determining the deterioration of the catalyst by comparing the deviation of each excess air ratio calculated from the outputs of the upstream and downstream air-fuel ratio detecting means during lean operation with a predetermined reference value. Catalyst deterioration diagnosis device.
前記下流側空燃比検出手段は酸素イオン由来成分を含む空燃比を検出する広域空燃比センサまたは酸素センサである請求項1に記載の触媒の劣化診断装置。   2. The catalyst deterioration diagnosis apparatus according to claim 1, wherein the downstream air-fuel ratio detection means is a wide-range air-fuel ratio sensor or an oxygen sensor that detects an air-fuel ratio containing an oxygen ion-derived component. 排気流量が所定流量よりも小さい場合は前記触媒の劣化判定を禁止する請求項1または2に記載の触媒の劣化診断装置。   The catalyst deterioration diagnosis device according to claim 1 or 2, wherein when the exhaust flow rate is smaller than a predetermined flow rate, the catalyst deterioration determination is prohibited. 前記触媒の温度が所定温度よりも高い場合は前記触媒の劣化判定を禁止する請求項1〜3のいずれか一つに記載の触媒の劣化診断装置。   The catalyst deterioration diagnosis device according to any one of claims 1 to 3, wherein determination of deterioration of the catalyst is prohibited when the temperature of the catalyst is higher than a predetermined temperature. 前記触媒の劣化判定は、排気中の還元剤の量が通常のリーン空燃比よりも多くなる状態で実施する請求項1〜4のいずれか一つに記載の触媒の劣化診断装置。   The catalyst deterioration diagnosis apparatus according to any one of claims 1 to 4, wherein the catalyst deterioration determination is performed in a state where the amount of reducing agent in the exhaust gas is larger than a normal lean air-fuel ratio. 前記還元剤は、一酸化炭素あるいは炭化水素の少なくともいずれか一方である請求項5に記載の触媒の劣化診断装置。   The catalyst deterioration diagnosis apparatus according to claim 5, wherein the reducing agent is at least one of carbon monoxide and hydrocarbon. 前記一酸化炭素は機関の燃焼によって生成する請求項6に記載の触媒の劣化診断装置。   The catalyst deterioration diagnosis apparatus according to claim 6, wherein the carbon monoxide is generated by combustion of an engine. 前記炭化水素は排気通路内への燃料噴射によって生成する請求項6に記載の触媒の劣化診断装置。   The catalyst deterioration diagnosis apparatus according to claim 6, wherein the hydrocarbon is generated by fuel injection into an exhaust passage.
JP2004053326A 2004-02-27 2004-02-27 Deterioration diagnostic device for catalyst Pending JP2005240716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004053326A JP2005240716A (en) 2004-02-27 2004-02-27 Deterioration diagnostic device for catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004053326A JP2005240716A (en) 2004-02-27 2004-02-27 Deterioration diagnostic device for catalyst

Publications (1)

Publication Number Publication Date
JP2005240716A true JP2005240716A (en) 2005-09-08

Family

ID=35022714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004053326A Pending JP2005240716A (en) 2004-02-27 2004-02-27 Deterioration diagnostic device for catalyst

Country Status (1)

Country Link
JP (1) JP2005240716A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012516971A (en) * 2009-02-05 2012-07-26 デルファイ・テクノロジーズ・ホールディング・エス.アー.エール.エル. In-vehicle oxidation catalyst diagnosis
WO2014045367A1 (en) * 2012-09-20 2014-03-27 トヨタ自動車株式会社 Control device for internal combustion engine
EP2636863A3 (en) * 2012-03-05 2015-07-22 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Device and method of determining deterioration of catalyst
EP3029291A1 (en) 2014-12-03 2016-06-08 NGK Insulators, Ltd. Catalyst deterioration diagnosis method
EP3029292A1 (en) 2014-12-03 2016-06-08 NGK Insulators, Ltd. Catalyst deterioration diagnosis method
EP3029290A1 (en) 2014-12-03 2016-06-08 NGK Insulators, Ltd. Catalyst deterioration diagnosis system and catalyst deterioration diagnosis method
DE102017204029A1 (en) 2016-03-28 2017-09-28 Ngk Insulators, Ltd. Method for diagnosing damage to a catalyst and catalyst damage diagnostic system
DE102017204007A1 (en) 2016-03-28 2017-09-28 Ngk Insulators, Ltd. A method of diagnosing damage to a catalyst and catalyst damage diagnostic system
DE102017006165A1 (en) 2016-07-05 2018-01-11 Ngk Insulators, Ltd. METHOD FOR DETERMINING THE INHIBITING OF A CATALYST

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012516971A (en) * 2009-02-05 2012-07-26 デルファイ・テクノロジーズ・ホールディング・エス.アー.エール.エル. In-vehicle oxidation catalyst diagnosis
EP2636863A3 (en) * 2012-03-05 2015-07-22 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Device and method of determining deterioration of catalyst
JPWO2014045367A1 (en) * 2012-09-20 2016-08-18 トヨタ自動車株式会社 Control device for internal combustion engine
WO2014045367A1 (en) * 2012-09-20 2014-03-27 トヨタ自動車株式会社 Control device for internal combustion engine
CN104641090A (en) * 2012-09-20 2015-05-20 丰田自动车株式会社 Control device for internal combustion engine
US10196958B2 (en) 2014-12-03 2019-02-05 Ngk Insulators, Ltd. Catalyst deterioration diagnosis method
EP3029291A1 (en) 2014-12-03 2016-06-08 NGK Insulators, Ltd. Catalyst deterioration diagnosis method
EP3029292A1 (en) 2014-12-03 2016-06-08 NGK Insulators, Ltd. Catalyst deterioration diagnosis method
EP3441586A1 (en) 2014-12-03 2019-02-13 NGK Insulators, Ltd. Catalyst deterioration diagnosis method
EP3441585A1 (en) 2014-12-03 2019-02-13 NGK Insulators, Ltd. Catalyst deterioration diagnosis method
EP3029290A1 (en) 2014-12-03 2016-06-08 NGK Insulators, Ltd. Catalyst deterioration diagnosis system and catalyst deterioration diagnosis method
US9891139B2 (en) 2014-12-03 2018-02-13 Ngk Insulators, Ltd. Catalyst deterioration diagnosis system and catalyst deterioration diagnosis method
US9939348B2 (en) 2014-12-03 2018-04-10 Ngk Insulators, Ltd. Catalyst deterioration diagnosis method
US10125656B2 (en) 2016-03-28 2018-11-13 Ngk Insulators, Ltd. Method for diagnosing degradation of catalyst and catalyst degradation diagnosis system
US10125657B2 (en) 2016-03-28 2018-11-13 Ngk Insulators, Ltd. Method for diagnosing degradation of catalyst and catalyst degradation diagnosis system
DE102017204029B4 (en) 2016-03-28 2022-12-08 Ngk Insulators, Ltd. Method for diagnosing deterioration of a catalytic converter and catalytic converter deterioration diagnostic system
DE102017204007A1 (en) 2016-03-28 2017-09-28 Ngk Insulators, Ltd. A method of diagnosing damage to a catalyst and catalyst damage diagnostic system
DE102017204029A1 (en) 2016-03-28 2017-09-28 Ngk Insulators, Ltd. Method for diagnosing damage to a catalyst and catalyst damage diagnostic system
DE102017204007B4 (en) 2016-03-28 2022-12-29 Ngk Insulators, Ltd. Method for diagnosing deterioration of a catalytic converter and catalytic converter deterioration diagnostic system
DE102017006165A1 (en) 2016-07-05 2018-01-11 Ngk Insulators, Ltd. METHOD FOR DETERMINING THE INHIBITING OF A CATALYST
US10428717B2 (en) 2016-07-05 2019-10-01 Ngk Insulators, Ltd. Method for diagnosing degradation in catalyst
DE102017006165B4 (en) 2016-07-05 2023-07-13 Ngk Insulators, Ltd. METHOD OF DETERMINING CATALYST DETERIORATION

Similar Documents

Publication Publication Date Title
US7168237B2 (en) Deterioration diagnosing device and diagnosing method for exhaust gas purification catalyst
JP6572932B2 (en) Abnormality diagnosis device for ammonia detector
US7325393B2 (en) Deterioration diagnosing device and diagnosing method for exhaust gas purification catalyst
JP4485553B2 (en) NOx sensor abnormality diagnosis device
US6711892B2 (en) Exhaust gas purifier for internal combustion engines
US20090165440A1 (en) Catalyst Deterioration Monitoring System and Catalyst Deterioration Monitoring Method
JP2006169997A (en) Deterioration determining device of catalyst
JP2005240716A (en) Deterioration diagnostic device for catalyst
JP5999008B2 (en) Inter-cylinder air-fuel ratio imbalance detector for multi-cylinder internal combustion engine
JP2009127597A (en) Catalyst degradation diagnostic device
JP3674358B2 (en) Exhaust gas purification device for internal combustion engine
JP2007327394A (en) Exhaust emission control device of internal combustion engine
JP2005155422A (en) Catalyst control device for internal combustion engine
JP4092485B2 (en) Exhaust gas purification catalyst deterioration diagnosis device
CN113202650B (en) Abnormality detection device for air-fuel ratio detection device
JP4273797B2 (en) Exhaust gas purification device for internal combustion engine
JP2012137050A (en) Abnormality detector for inter-cylinder air-fuel ratio dispersion in multi-cylinder internal combustion engine
JP2008144656A (en) Exhaust emission control device for internal combustion engine
JP2008267327A (en) Exhaust emission control device for internal combustion engine
JP4411755B2 (en) Exhaust purification catalyst deterioration state diagnosis device
US11434806B2 (en) Catalyst deterioration detection system
WO2024075265A1 (en) Method and device for diagnosing deterioration of exhaust gas purification catalyst
JP4063743B2 (en) Fuel injection timing control device for internal combustion engine
JP2018178738A (en) Control device for internal combustion engine
JP2004225665A (en) Exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080624