JP4404841B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP4404841B2
JP4404841B2 JP2005331282A JP2005331282A JP4404841B2 JP 4404841 B2 JP4404841 B2 JP 4404841B2 JP 2005331282 A JP2005331282 A JP 2005331282A JP 2005331282 A JP2005331282 A JP 2005331282A JP 4404841 B2 JP4404841 B2 JP 4404841B2
Authority
JP
Japan
Prior art keywords
injection
internal combustion
combustion engine
fuel
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005331282A
Other languages
Japanese (ja)
Other versions
JP2007138769A (en
Inventor
勝治 和田
典男 鈴木
久夫 羽賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005331282A priority Critical patent/JP4404841B2/en
Publication of JP2007138769A publication Critical patent/JP2007138769A/en
Application granted granted Critical
Publication of JP4404841B2 publication Critical patent/JP4404841B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、内燃機関の制御装置に関し、特に、触媒温度と排出ガスの空燃比とを所定値に保ちつつトルク変動を生じないようにする内燃機関の制御装置に関するものである。   The present invention relates to a control device for an internal combustion engine, and more particularly to a control device for an internal combustion engine that keeps catalyst temperature and an air-fuel ratio of exhaust gas at predetermined values so as not to cause torque fluctuation.

燃焼室に供給された燃料の燃焼開始を点火プラグで行うガソリン内燃機関に対し、自己着火により行うディーゼル内燃機関は、燃焼効率や排気性状を改善する上に燃料の噴射タイミングの制御が極めて重要である。特に、排気性状の改善および燃焼音の低減には、燃焼速度を低くすることが重要な要件であり、1回の燃料噴射プロセスの中で複数回に分けて燃料を噴射することが一般的である(例えば、パイロット噴射、メイン噴射、ポスト噴射等)。   In contrast to a gasoline internal combustion engine that uses a spark plug to start combustion of fuel supplied to the combustion chamber, a diesel internal combustion engine that performs self-ignition is extremely important in controlling the fuel injection timing in order to improve combustion efficiency and exhaust properties. is there. In particular, in order to improve the exhaust properties and reduce the combustion noise, it is an important requirement to lower the combustion speed, and it is common to inject fuel in multiple times in one fuel injection process. There are (for example, pilot injection, main injection, post injection, etc.).

他方、ディーゼル内燃機関の排気通路には、排出ガス中の窒素酸化物(以下、NOと略称する)を還元浄化するためのリーンNO浄化触媒(以下、LNCと略称する)が設けられることがある。このLNCにおいては、排出ガスの空燃比(以下、排気A/Fと略称する)が所定値よりも高い(以下、リーンと呼称する)時、換言すると酸素濃度が高い時に取り込んだNOを、排気A/Fが所定値よりも低い(以下、リッチと呼称する)時、換言すると酸素濃度が低下した時に放出し且つ還元して無害化する処理を行っている。 On the other hand, a lean NO X purification catalyst (hereinafter abbreviated as LNC) for reducing and purifying nitrogen oxide (hereinafter abbreviated as NO X ) in exhaust gas is provided in the exhaust passage of the diesel internal combustion engine. There is. In this LNC, when the air-fuel ratio of exhaust gas (hereinafter referred to as exhaust A / F) is higher than a predetermined value (hereinafter referred to as lean), in other words, NO X taken in when the oxygen concentration is high, When the exhaust A / F is lower than a predetermined value (hereinafter referred to as rich), in other words, when the oxygen concentration is reduced, the exhaust A / F is released and reduced to be harmless.

このようなディーゼル内燃機関においては、高回転速度・高負荷運転域での排気A/Fのリッチ化に伴ってスモークの排出量および燃焼音の増大を招くが、これを抑制するために、また上述したLNCのNO吸収量が飽和しないように再生処理を行うために、膨張行程で微量な燃料を燃焼室に噴射するポスト噴射を行うことが知られている(特許文献1を参照されたい)。
特開2001−55946号公報
In such a diesel internal combustion engine, as the exhaust A / F becomes richer in the high rotation speed / high load operation region, the smoke emission amount and the combustion noise increase. To suppress this, In order to perform the regeneration process so that the above-described LNC NO X absorption amount is not saturated, it is known to perform post injection in which a small amount of fuel is injected into the combustion chamber in the expansion stroke (see Patent Document 1). ).
JP 2001-55946 A

しかるに、高回転速度・高負荷運転中に、燃焼室への吸気流量を変えずにポスト噴射を実行した場合、ポスト噴射量の増大に伴って排気中に含まれる未燃燃料分が増大するため、排気通路に設けられた触媒における酸化反応が促進され、触媒温度が上昇する。この触媒温度を適正に保つためにポスト噴射量を増減すると、排気A/Fが適正値とならず、触媒の再生処理が不十分となり、再生処理に要する時間が長引くことによる燃費の悪化を招いてしまう。   However, if post-injection is performed without changing the intake flow rate to the combustion chamber during high-speed / high-load operation, the amount of unburned fuel contained in the exhaust increases as the post-injection amount increases. The oxidation reaction in the catalyst provided in the exhaust passage is promoted, and the catalyst temperature rises. If the post-injection amount is increased or decreased to keep the catalyst temperature appropriate, the exhaust A / F does not become an appropriate value, the catalyst regeneration process becomes insufficient, and the fuel consumption deteriorates due to the prolonged time required for the regeneration process. I will.

一方、ポスト噴射を行いつつ排気A/Fを適正値にするには、パイロット噴射あるいはメイン噴射を減量することが考えられるが、そうすると、燃焼に寄与する燃料噴射量が減少することになるので、発生トルクが低下してしまう。   On the other hand, in order to set the exhaust A / F to an appropriate value while performing the post injection, it is conceivable to reduce the pilot injection or the main injection. However, as a result, the fuel injection amount contributing to the combustion is reduced. The generated torque will decrease.

本発明は、このような従来技術の不都合を解消すべく案出されたものであり、その主な目的は、触媒温度および排気A/Fを所定値に保ちつつ、ポスト噴射実行時におけるトルク変動の抑制を図ることのできる内燃機関の制御装置を提供することにある。   The present invention has been devised to eliminate such disadvantages of the prior art, and its main purpose is to maintain the catalyst temperature and the exhaust A / F at predetermined values while maintaining torque fluctuations during post injection. It is an object of the present invention to provide a control device for an internal combustion engine that can suppress this.

このような課題を解決するために本発明の請求項1は、内燃機関の燃焼室に燃料を噴射する燃料噴射手段(燃料噴射弁14)と、該燃料噴射手段からの燃料噴射を1回の燃料噴射プロセスの中で主噴射、副噴射と複数回に分けて実行するように制御する燃料噴射制御手段(ECU18に含まれる)と、前記燃焼室への吸気流量を制御する吸気流量制御手段(吸気制御弁5およびEGR制御弁13)とを有する内燃機関の制御装置において、前記吸気流量制御手段は、新気流量を制御するものであり、前記副噴射は、前記内燃機関の高負荷運転領域において実行され、前記副噴射の実行時は、該副噴射の噴射量変化に対応して前記燃焼室に供給する吸気流量を変化させることにより、予め設定された所定の排気空燃比となるように制御し、前記所定の排気空燃比の制御は、過給圧を加えない自然吸気の環境下で行われることを特徴とするものとした。
また請求項2の発明は、排気浄化装置(LNC9)を備え、前記副噴射の実行時に当該排気浄化装置の再生処理が行われることとした。
In order to solve such a problem, claim 1 of the present invention provides a fuel injection means (fuel injection valve 14) for injecting fuel into a combustion chamber of an internal combustion engine, and a single fuel injection from the fuel injection means. Fuel injection control means (contained in the ECU 18) for controlling the main injection and sub-injection to be executed in a plurality of times in the fuel injection process, and intake flow rate control means for controlling the intake flow rate to the combustion chamber ( In the control apparatus for an internal combustion engine having the intake control valve 5 and the EGR control valve 13), the intake flow rate control means controls a fresh air flow rate, and the sub-injection is performed in a high load operation region of the internal combustion engine. When the sub-injection is executed, the intake air flow rate supplied to the combustion chamber is changed in response to the change in the injection amount of the sub-injection so that the predetermined exhaust air-fuel ratio is set in advance. control, and the Control of the constant of the exhaust air-fuel ratio, and shall be characterized by being carried out in an environment of naturally aspirated without added boost pressure.
Further, the invention of claim 2 is provided with an exhaust purification device (LNC9), and regeneration processing of the exhaust purification device is performed when the sub-injection is executed.

このような本発明によれば、ポスト噴射の噴射量の変動に対応して吸気流量を変化させることによって排気A/Fを一定に保つことができるので、出力トルクの変動を抑制すると同時に、触媒温度を適正値に保つことができる。従って、高回転速度・高負荷運転領域での排気A/Fのリッチ化制御時にLNCの再生処理を同時に行っても、排気A/Fが一定値に維持されるので、還元剤の過度な供給による排気エミッションの悪化や燃費の悪化を回避することもできる。   According to the present invention as described above, the exhaust A / F can be kept constant by changing the intake flow rate in response to the change in the injection amount of the post-injection. The temperature can be maintained at an appropriate value. Therefore, even if the regeneration process of the LNC is performed at the same time as the exhaust A / F enrichment control in the high rotation speed / high load operation region, the exhaust A / F is maintained at a constant value. It is also possible to avoid the deterioration of exhaust emission and the deterioration of fuel consumption due to.

以下に添付の図面を参照して本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明が適用される内燃機関Eの基本的な構成図である。この内燃機関(ディーゼルエンジン)Eは、その機械的な構成自体は周知のものと何ら変わるところはなく、過給圧可変機構付きターボチャージャ1を備えるものであり、ターボチャージャ1のコンプレッサ側に吸気通路2が連結され、ターボチャージャ1のタービン側に排気通路3が連結されている。そして吸気通路2の上流端にエアクリーナ4が接続され、吸気通路2の適所に燃焼室に流入する新気の流量を調節するための吸気制御弁5と、低回転速度・低負荷運転域で流路断面積を絞って吸気流速を高めるためのスワールコントロール弁6とが設けられている。また排気通路3の下流端には、三元触媒(以下、TWCと略称する)7と、煤などの粒子状物質を除去するフィルタ(以下、DPFと略称する)8と、前記したLNC9とを、排気の流れに沿ってこの順に連設してなる排気浄化装置10が接続されている。   FIG. 1 is a basic configuration diagram of an internal combustion engine E to which the present invention is applied. The internal combustion engine (diesel engine) E has a mechanical structure itself that is not different from that of a known one, and includes a turbocharger 1 with a supercharging pressure variable mechanism. A passage 2 is connected, and an exhaust passage 3 is connected to the turbine side of the turbocharger 1. An air cleaner 4 is connected to the upstream end of the intake passage 2, and an intake control valve 5 for adjusting the flow rate of fresh air flowing into the combustion chamber at an appropriate position of the intake passage 2, and flows in a low rotation speed / low load operation region. A swirl control valve 6 is provided for reducing the cross-sectional area of the road and increasing the intake air flow velocity. At the downstream end of the exhaust passage 3, a three-way catalyst (hereinafter abbreviated as TWC) 7, a filter (hereinafter abbreviated as DPF) 8 for removing particulate matter such as soot, and the LNC 9 described above are provided. The exhaust gas purification apparatus 10 is connected in this order along the flow of exhaust gas.

スワールコントロール弁6と排気通路3における燃焼室の直後との間は、排出ガス再循環(以下、EGRと略称す)通路11を介して互いに連結されている。このEGR通路11は、切換弁12を介して分岐されたクーラー通路11aとバイパス通路11bとからなり、その合流部に、燃焼室に流入するEGR量を調節するEGR制御弁13が設けられている。   The swirl control valve 6 and the exhaust passage 3 immediately after the combustion chamber are connected to each other via an exhaust gas recirculation (hereinafter abbreviated as EGR) passage 11. The EGR passage 11 includes a cooler passage 11a and a bypass passage 11b branched via a switching valve 12, and an EGR control valve 13 for adjusting the amount of EGR flowing into the combustion chamber is provided at the junction. .

内燃機関Eのシリンダヘッドには、その先端を燃焼室に臨ませた燃料噴射弁14が設けられている。この燃料噴射弁14は、燃料を所定の高圧状態で蓄えるコモンレール15に連結され、コモンレール15には、クランク軸にて駆動されて燃料タンク16から燃料を汲み上げる燃料ポンプ17が接続されている。   The cylinder head of the internal combustion engine E is provided with a fuel injection valve 14 with its tip facing the combustion chamber. The fuel injection valve 14 is connected to a common rail 15 that stores fuel in a predetermined high pressure state. A fuel pump 17 that is driven by a crankshaft and pumps fuel from the fuel tank 16 is connected to the common rail 15.

これらのターボチャージャ1の過給圧可変機構19、吸気制御弁5、EGR通路切換弁12およびEGR制御弁13、燃料噴射弁14、燃料ポンプ17・・・等は、電子制御装置(以下、ECUと略称する)18からの制御信号によって作動するように構成されている(図2参照)。   These turbocharger 1 supercharging pressure variable mechanism 19, intake control valve 5, EGR passage switching valve 12 and EGR control valve 13, fuel injection valve 14, fuel pump 17... (Referred to as FIG. 2).

一方、ECU18には、図2に示すように、内燃機関Eの所定箇所に配置された吸気弁開度センサ20、クランク軸回転速度センサ21、吸気流量センサ22、過給圧センサ23、EGR弁開度センサ24、コモンレール圧センサ25、アクセルペダル操作量センサ26、Oセンサ27、TWC温度センサ28、LNC温度センサ29・・・等からの出力信号が入力されている。 On the other hand, as shown in FIG. 2, the ECU 18 includes an intake valve opening sensor 20, a crankshaft rotation speed sensor 21, an intake flow rate sensor 22, a supercharging pressure sensor 23, and an EGR valve disposed at predetermined locations of the internal combustion engine E. Output signals from the opening sensor 24, the common rail pressure sensor 25, the accelerator pedal operation amount sensor 26, the O 2 sensor 27, the TWC temperature sensor 28, the LNC temperature sensor 29, etc. are input.

ECU18のメモリには、クランク軸回転速度および要求トルク(アクセルペダル操作量)に応じて実験等によって予め求めた最適燃料噴射量をはじめとする各制御対象の制御目標値を設定したマップが格納されており、内燃機関Eの負荷状況に応じて最適な燃焼状態が得られるように、各部の制御が行われる。   The memory of the ECU 18 stores a map in which control target values for each control object including the optimum fuel injection amount obtained in advance by experiments or the like according to the crankshaft rotation speed and the required torque (accelerator pedal operation amount) are set. Therefore, each part is controlled so that an optimal combustion state is obtained according to the load state of the internal combustion engine E.

このディーゼル内燃機関Eにおいては、例えば、定速走行から急加速しようとするときのように、クランク軸回転速度および要求トルクが急激に増大した場合に、A/Fのリッチ化によってスモーク排出量の増大や燃焼音の増大を招くことがあるので、これらを抑制するために、膨張行程で補助燃料を噴射するポスト噴射が行われる。また、高負荷域でのポスト噴射を有効活用するために、LNC9の再生処理も同時に行われる。   In the diesel internal combustion engine E, for example, when the crankshaft rotational speed and the required torque are suddenly increased as in the case of sudden acceleration from constant speed running, the smoke emission amount is reduced by the enrichment of A / F. Since increase and combustion noise may be caused, post injection for injecting auxiliary fuel in the expansion stroke is performed in order to suppress these. Further, in order to effectively use post injection in a high load region, regeneration processing of the LNC 9 is also performed at the same time.

次に本発明の制御要領について図3、4を参照して説明する。
クランク軸回転速度と要求トルク(アクセルペダルの操作量)とをアドレスとするポスト噴射領域判別マップ31(図5)を検索し、現在の運転状況がポスト噴射実行領域か否かを判別する(ステップ1)。このポスト噴射領域判別マップ31は、非実行領域から実行領域へ移る境界と、実行領域から非実行領域へと移る境界との間に所定のヒステリシスが設けてあり、境界付近での判別処理にハンチングが生じないようにしてある。
Next, the control procedure of the present invention will be described with reference to FIGS.
A post injection region determination map 31 (FIG. 5) having the crankshaft rotational speed and the required torque (accelerator pedal operation amount) as addresses is searched to determine whether or not the current driving state is the post injection execution region (step). 1). The post-injection region discrimination map 31 has a predetermined hysteresis between the boundary from the non-execution region to the execution region and the boundary from the execution region to the non-execution region. Is prevented from occurring.

ここで現状がポスト噴射実行領域にあると判断された場合は、そのときの実LNC温度をLNC温度センサ29にて検出し、予め設定された所定の規定温度値を維持するように、燃料噴射弁14のポスト噴射量をフィードバック制御する(ステップ2)。   If it is determined that the current state is in the post-injection execution region, the actual LNC temperature at that time is detected by the LNC temperature sensor 29, and the fuel injection is performed so as to maintain a predetermined specified temperature value set in advance. The post injection amount of the valve 14 is feedback controlled (step 2).

これと同時に、クランク軸回転速度と要求トルク(アクセルペダルの操作量)とをアドレスとする目標吸気量マップ32を検索し、そのときの目標吸気量Qairを求め、予め設定された所定の排気A/Fの規定値を維持するように、吸気制御弁5およびEGR制御弁13の開度をフィードバック制御してこの目標吸気量Qairを補正する(ステップ3)。   At the same time, the target intake air amount map 32 having the crankshaft rotation speed and the required torque (accelerator pedal operation amount) as addresses is retrieved to obtain the target intake air amount Qair at that time, and a predetermined exhaust A is set in advance. The target intake air amount Qair is corrected by feedback control of the opening degree of the intake control valve 5 and the EGR control valve 13 so as to maintain the specified value of / F (step 3).

更に、クランク軸回転速度と要求トルク(アクセルペダルの操作量)とをアドレスとするパイロット噴射およびメイン噴射の燃料噴射量マップ33から得られた目標噴射量Qinjとなるように、燃料噴射弁14によるパイロット噴射およびメイン噴射の噴射量を制御する(ステップ4)。   Further, by the fuel injection valve 14, the target injection amount Qinj obtained from the fuel injection amount map 33 of the pilot injection and the main injection having the crankshaft rotational speed and the required torque (accelerator pedal operation amount) as addresses is obtained. The injection amounts of pilot injection and main injection are controlled (step 4).

一方、ステップ1において現状がポスト噴射非実行領域にあると判断された場合は、LNC9の温度制御のためのポスト噴射を停止し(ステップ5)、且つ排気A/Fに基づく目標吸気量Qairの補正制御を停止する(ステップ6)。これと同時に、上記した噴射量マップ33から得られたパイロット噴射およびメイン噴射の目標噴射量Qinjを、予め設定された所定の排気A/Fの規定値を維持するように補正する(ステップ7)。   On the other hand, if it is determined in step 1 that the current state is in the post-injection non-execution region, post-injection for temperature control of the LNC 9 is stopped (step 5), and the target intake air amount Qair based on the exhaust A / F is Correction control is stopped (step 6). At the same time, the target injection amount Qinj of the pilot injection and the main injection obtained from the injection amount map 33 is corrected so as to maintain a predetermined specified exhaust A / F value (step 7). .

このようにして、ポスト噴射実行/非実行領域判別マップ31から、そのときの内燃機関の負荷状況を判断し、ポスト噴射実行領域と判断されたときは、LNC9の温度が所定値を維持するようにその噴射量がフィードバック制御されるポスト噴射に対応し、所定の排気A/Fを維持するように燃焼室に流入する吸気量を補正制御することにより、ポスト噴射量の変動に伴うトルク変動の抑制を図っている。   In this way, the post-injection execution / non-execution region determination map 31 is used to determine the load state of the internal combustion engine at that time, and when it is determined that the post-injection execution region, the temperature of the LNC 9 is maintained at a predetermined value. In response to post injection in which the injection amount is feedback-controlled, the intake air amount flowing into the combustion chamber is corrected and controlled so as to maintain a predetermined exhaust A / F. We are trying to suppress it.

この制御は、過給圧制御では望ましい応答性を得難いので、過給圧を実質的に加えない自然吸気の環境下で行われるようにすると良い。   Since it is difficult to obtain a desired responsiveness in the supercharging pressure control, it is preferable that this control be performed in a natural intake environment in which the supercharging pressure is not substantially applied.

なお、吸気制御弁5、EGR制御弁13、および燃料噴射弁14は、デューティー比制御などによってその開度が連続的に制御される。   In addition, the opening degree of the intake control valve 5, the EGR control valve 13, and the fuel injection valve 14 is continuously controlled by duty ratio control or the like.

本発明が適用される内燃機関の全体構成図である。1 is an overall configuration diagram of an internal combustion engine to which the present invention is applied. 本発明が適用される制御装置のブロック図である。It is a block diagram of a control device to which the present invention is applied. 本発明制御に関わるブロック図である。It is a block diagram in connection with this invention control. 本発明制御に関わるフロー図である。It is a flowchart in connection with this invention control. ポスト噴射実行/非実行領域判別マップの概念図である。It is a conceptual diagram of a post injection execution / non-execution region discrimination map.

符号の説明Explanation of symbols

E 内燃機関
2 吸気通路
5 吸気制御弁
9 LNC
13 EGR制御弁
14 燃料噴射弁
18 ECU
31 ポスト噴射領域判別マップ
32 目標吸気量マップ
33 燃料噴射量マップ
E Internal combustion engine 2 Intake passage 5 Intake control valve 9 LNC
13 EGR control valve 14 Fuel injection valve 18 ECU
31 Post-injection region discrimination map 32 Target intake air amount map 33 Fuel injection amount map

Claims (2)

内燃機関の燃焼室に燃料を噴射する燃料噴射手段と、該燃料噴射手段からの燃料噴射を1回の燃料噴射プロセスの中で主噴射、副噴射と複数回に分けて実行するように制御する燃料噴射制御手段と、前記燃焼室への吸気流量を制御する吸気流量制御手段とを有する内燃機関の制御装置であって、
前記吸気流量制御手段は、新気流量を制御するものであり、
前記副噴射は、前記内燃機関の高負荷運転領域において実行され、
前記副噴射の実行時は、該副噴射の噴射量変化に対応して前記燃焼室に供給する吸気流量を変化させることにより、予め設定された所定の排気空燃比となるように制御し、
前記所定の排気空燃比の制御は、過給圧を加えない自然吸気の環境下で行われることを特徴とする内燃機関の制御装置。
Control is performed so that fuel injection means for injecting fuel into the combustion chamber of the internal combustion engine and fuel injection from the fuel injection means are executed in a single fuel injection process divided into main injection and sub-injection. An internal combustion engine control device comprising fuel injection control means and intake air flow rate control means for controlling the intake air flow rate to the combustion chamber,
The intake air flow rate control means controls the fresh air flow rate,
The sub-injection is executed in a high load operation region of the internal combustion engine,
When the sub-injection is executed, the intake air flow rate supplied to the combustion chamber is changed in response to the change in the injection amount of the sub-injection, thereby controlling the exhaust air-fuel ratio to be set in advance .
The control apparatus for an internal combustion engine, wherein the control of the predetermined exhaust air-fuel ratio is performed in a natural intake environment where no supercharging pressure is applied .
排気浄化装置を備え、前記副噴射の実行時に当該排気浄化装置の再生処理が行われることを特徴とする請求項1に記載の内燃機関の制御装置。   2. The control device for an internal combustion engine according to claim 1, further comprising an exhaust purification device, wherein regeneration processing of the exhaust purification device is performed when the sub-injection is executed.
JP2005331282A 2005-11-16 2005-11-16 Control device for internal combustion engine Expired - Fee Related JP4404841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005331282A JP4404841B2 (en) 2005-11-16 2005-11-16 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005331282A JP4404841B2 (en) 2005-11-16 2005-11-16 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007138769A JP2007138769A (en) 2007-06-07
JP4404841B2 true JP4404841B2 (en) 2010-01-27

Family

ID=38201966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005331282A Expired - Fee Related JP4404841B2 (en) 2005-11-16 2005-11-16 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4404841B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104066961A (en) * 2012-01-26 2014-09-24 丰田自动车株式会社 Internal combustion engine control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4442704B2 (en) * 2008-08-26 2010-03-31 トヨタ自動車株式会社 Control device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104066961A (en) * 2012-01-26 2014-09-24 丰田自动车株式会社 Internal combustion engine control device

Also Published As

Publication number Publication date
JP2007138769A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
EP0828063B1 (en) Exhaust gas purifying device for engine
JP4120523B2 (en) Exhaust gas recirculation control device for internal combustion engine
US8291697B2 (en) Internal combustion engine control device
US7993582B2 (en) Sulfur purge control device for an internal combustion engine
JP4574610B2 (en) Control device for internal combustion engine
JP4309908B2 (en) Exhaust gas purification device for internal combustion engine
US10443521B2 (en) Exhaust emission control system of engine
US20110203260A1 (en) Exhaust purification system of internal combustion engine
US10443524B2 (en) Exhaust emission control system of engine
JP4591403B2 (en) Control device for internal combustion engine
JP4404841B2 (en) Control device for internal combustion engine
EP1887202B1 (en) Sulfur purge control device for an internal combustion engine
JP2007077913A (en) Fuel injection control device for internal combustion engine
JP2008038622A (en) Exhaust emission control device and method of internal combustion engine
JP4311066B2 (en) Exhaust gas purification system for internal combustion engine
JP2008121494A (en) Controller of internal combustion engine
JP4266890B2 (en) Exhaust gas purification device for internal combustion engine
JP2004360484A (en) Nox purge controller
JPH11229864A (en) Exhaust emission control device of internal combustion engine
JP4063743B2 (en) Fuel injection timing control device for internal combustion engine
JP4312651B2 (en) Control device for internal combustion engine
JP2009052504A (en) Controller of internal combustion engine
JP2007138768A (en) Exhaust emission control device of internal combustion engine
JP6459004B2 (en) Engine exhaust purification system
JP2001214731A (en) Control device for engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees