JPS5813085Y2 - cylinder number control engine - Google Patents

cylinder number control engine

Info

Publication number
JPS5813085Y2
JPS5813085Y2 JP18083879U JP18083879U JPS5813085Y2 JP S5813085 Y2 JPS5813085 Y2 JP S5813085Y2 JP 18083879 U JP18083879 U JP 18083879U JP 18083879 U JP18083879 U JP 18083879U JP S5813085 Y2 JPS5813085 Y2 JP S5813085Y2
Authority
JP
Japan
Prior art keywords
cylinder
engine
cylinders
intake port
idle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18083879U
Other languages
Japanese (ja)
Other versions
JPS5697528U (en
Inventor
泰彦 中川
吉彦 堂園
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP18083879U priority Critical patent/JPS5813085Y2/en
Publication of JPS5697528U publication Critical patent/JPS5697528U/ja
Application granted granted Critical
Publication of JPS5813085Y2 publication Critical patent/JPS5813085Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【考案の詳細な説明】 本考案は、エンジン軽負荷時に一部気筒の作動を休止さ
せて部分気筒運転を行う気筒数制御エンジンの改良に関
する。
[Detailed Description of the Invention] The present invention relates to an improvement in a cylinder number control engine that performs partial cylinder operation by suspending the operation of some cylinders when the engine is under light load.

一般に、エンジンを高い負荷状態で運転すると燃費が良
好になる傾向があり、このため多気筒エンジンにおいて
、エンジン負荷の小さいときに、部気筒への燃料の供給
をカットして作動を休止させ、この分だけ残りの稼動側
気筒の負荷を相対的に高め、全体として軽負荷領域の燃
費を改善するようにした気筒数制御エンジンが考えられ
た。
In general, fuel efficiency tends to improve when an engine is operated under a high load. For this reason, in a multi-cylinder engine, when the engine load is light, the fuel supply to the partial cylinders is cut to stop operation. An engine with controlled number of cylinders was devised that relatively increases the load on the remaining active cylinders by that amount, thereby improving overall fuel efficiency in the light load range.

しかしながらこのようなエンジンにおいては、一部気筒
の作動が停止する部分気筒運転時に、常に全気筒が作動
する通常のエンジンに比べてより安定した燃焼が要求さ
れ、実際いかにこれを解決するかが一つの課題となって
いる。
However, in such an engine, more stable combustion is required during partial cylinder operation in which some cylinders stop operating, compared to a normal engine in which all cylinders are always operating, and it is unclear how to actually solve this problem. This has become one issue.

ところでこの従来の気筒数制御エンジンでは、すべての
気筒を同一的に構成し、部分気筒運転時に作動の休止す
る休止側気筒と他の常に作動する稼動側気筒とを互いに
対称的に構成するのが一般的である。
By the way, in this conventional cylinder number control engine, all the cylinders are configured in the same way, and the inactive cylinder, which is inactive during partial cylinder operation, and the other active cylinder, which is always activated, are configured symmetrically with each other. Common.

例えば6気筒エンジンであれば、すべて同一的に構成し
た6気筒のうち3気筒を休止側気筒とし、これらと対称
的な他の3気筒を稼動側気筒としている。
For example, in a six-cylinder engine, three cylinders out of the six cylinders, which are all configured in the same way, are the inactive cylinders, and the other three cylinders that are symmetrical to these are the active cylinders.

しかし、中・高負荷時にのみ作動する休止側気筒と、軽
負荷時にも作動する稼動側気筒とでは、本来役目が異な
るはずであり、おのずと要求される特性も異なったもの
になってくる。
However, the roles of the idle cylinder, which operates only under medium or high loads, and the active cylinder, which operates even under light loads, are supposed to be different, and the required characteristics are naturally different.

すなわち、低速・軽負荷域での安定したエンジン運転性
能を確保できるように稼動側気筒の特性を設定すべきで
あろうとし、他方高速・高負荷域での充分なエンジン出
力を確保できるように休止側気筒を設定すべきであろう
In other words, the characteristics of the active cylinder should be set to ensure stable engine operating performance at low speeds and light loads, and on the other hand, to ensure sufficient engine output at high speeds and high loads. The cylinder on the idle side should be set.

本考案は上記の実状にかんがみてなされたもので、稼動
側気筒は安定した燃焼を確保できるように、他方休止側
気筒は充分な出力が得られるようにそれぞれ設定し、全
体として高負荷域での出力を損うことなく軽負荷域での
安定性や燃費をさらに改善できるようにした気筒数制御
エンジンを得ることを目的とする。
The present invention was developed in consideration of the above-mentioned circumstances, and the operating cylinders are set to ensure stable combustion, while the idle cylinders are set to obtain sufficient output, and the overall configuration is set so that the cylinders on the idle side can obtain sufficient output. The objective is to obtain an engine with controlled number of cylinders that can further improve stability and fuel efficiency in light load ranges without sacrificing output.

以下図面によって説明する。This will be explained below with reference to the drawings.

第1図は本考案の実施例を示す概略的な断面図である。FIG. 1 is a schematic cross-sectional view showing an embodiment of the present invention.

吸気通路1は絞り弁2の下流にて、稼動側気筒A、B、
Cに接続する稼動側吸気通路3と、休止側気筒り、E、
Fに接続する休止側気道路4とに分岐している。
The intake passage 1 is located downstream of the throttle valve 2 and connects the working cylinders A, B,
The working side intake passage 3 connected to C, the idle side cylinder, E,
It branches into a closed side air road 4 that connects to F.

このうち休止側吸気路4の上流部には、遮断弁5が介装
されており、部分気筒運転時にこの遮断弁5が閉じて休
止側気筒り、E、Fへの新気の供給を遮断する。
A cutoff valve 5 is interposed in the upstream portion of the inactive intake passage 4, and during partial cylinder operation, this shutoff valve 5 closes to cut off the supply of fresh air to the inactive cylinders E and F. do.

一方、排気通路6も稼動側気筒A、B、Cに接続する稼
動側排気通路7と、休止側気筒り、E、Fに接続する休
止側排気通路8とに途中まで分岐している。
On the other hand, the exhaust passage 6 also branches halfway into an active exhaust passage 7 that connects to the active cylinders A, B, and C, and an idle exhaust passage 8 that connects to the idle cylinders E and F.

このうち、休止側排気通路8は排気還流通路9を介して
遮断弁5下流の休止側吸気通路4と結ばれている。
Of these, the idle side exhaust passage 8 is connected to the idle side intake passage 4 downstream of the cutoff valve 5 via an exhaust gas recirculation passage 9.

そして、この排気還流通路9には三方向電磁弁10、お
よびこれに応動するダイヤフラム装置11によって開閉
される排気還流弁12が介装されており、部分気筒運転
時にこの排気還流弁12が開いて作動体止中の休止側気
筒り、E、Fに略大気圧の排気を吸入させる。
The exhaust gas recirculation passage 9 is provided with a three-way solenoid valve 10 and an exhaust gas recirculation valve 12 that is opened and closed by a diaphragm device 11 that responds to the valve. Exhaust gas at approximately atmospheric pressure is made to be sucked into the cylinders E and F on the idle side when the operating body is inactive.

これによって休止側気筒り、E。Fにおけるポンピング
ロスが低減され、一層の燃費改善が図られる。
As a result, the cylinder on the idle side becomes E. Pumping loss at F is reduced, further improving fuel efficiency.

また、排気通路6には空燃比センサ13と、その下流に
排気浄化用の三元触媒14とが配設されている。
Furthermore, an air-fuel ratio sensor 13 and a three-way catalyst 14 for purifying exhaust gas are arranged downstream of the air-fuel ratio sensor 13 in the exhaust passage 6.

このうちセンサ13からの空燃比検出信号は制御回路1
5へ送られる。
Of these, the air-fuel ratio detection signal from the sensor 13 is sent to the control circuit 1.
Sent to 5.

そして制御回路15ではこの空燃比信号に応じて各気筒
A−Fに対応しての燃料噴射弁a−fをコントロールし
て、理論空燃比の混合気が得られるように燃料噴射量を
フィーニドパック制御する。
Then, the control circuit 15 controls the fuel injection valves a-f corresponding to each cylinder A-F according to this air-fuel ratio signal, and fine-tunes the fuel injection amount so that a mixture at the stoichiometric air-fuel ratio is obtained. Pack control.

これに加えて制御回路15は、部分気筒運転時に燃料噴
射弁d、e、fを常に閉じるようコントロールし、休止
側気筒り、E、Fへの燃料供給をカッ1−してそれらの
作動を停止し、気筒数制御エンジンとしての基本的な作
動を行う。
In addition, the control circuit 15 controls the fuel injection valves d, e, and f to always be closed during partial cylinder operation, and cuts the fuel supply to the idle cylinders, E, and F to prevent their operation. The engine stops and performs basic operations as a cylinder number control engine.

第2図は稼動側気筒Aの詳細を示す断面図である。FIG. 2 is a sectional view showing details of the working cylinder A.

他の稼動側気筒B、Cはこの気筒Aと全く同し様に構成
されているのでそれらの説明は省略する。
The other working cylinders B and C are constructed in exactly the same way as this cylinder A, so their explanation will be omitted.

図において、16は燃焼室、17は吸気弁、18は点火
栓、19はピストン、20は稼動側吸気通路4の下流部
を構成する吸気ポートである。
In the figure, 16 is a combustion chamber, 17 is an intake valve, 18 is a spark plug, 19 is a piston, and 20 is an intake port that constitutes the downstream portion of the working side intake passage 4.

本考案の特徴は、燃焼室16内に発生するスワールを強
化することにより、稼動側気筒Aでの安定燃焼ならびに
燃費改善を図る点にある。
A feature of the present invention is that by strengthening the swirl generated within the combustion chamber 16, stable combustion in the operating cylinder A and improved fuel efficiency are achieved.

具体的には第3図に示すように平面的にみて、吸気ポー
ト20の軸線を曲線状に形成するとともに、燃焼室16
の中心から偏心して吸気ポート20を開口させ、また、
第2図のように吸気ポート20の傾斜角もシリンダ軸心
に対してできるだけ直角に近づけて、いわゆるスワール
発生ポートとなるように吸気ポー1へ20を構成し、ス
ワールの強化を図る。
Specifically, as shown in FIG. 3, the axis of the intake port 20 is formed into a curved line, and the combustion chamber 16 is
The intake port 20 is opened eccentrically from the center of the
As shown in FIG. 2, the inclination angle of the intake port 20 is made as close as possible to a right angle to the cylinder axis, and the intake port 20 is configured to form a so-called swirl generating port to strengthen the swirl.

第4図は休止側気筒りの詳細を示す断面図である。FIG. 4 is a sectional view showing details of the cylinder on the idle side.

他の休止側気筒E、Fはこの気筒りと全く同じ様に構成
されているのでそれらの説明は省略する。
The other cylinders E and F on the idle side are constructed in exactly the same way as this cylinder, so their explanation will be omitted.

図において、21は燃焼室、22は吸気弁、23は点火
栓、24はピストン、25は休止側吸気通路3の下流部
を構成する吸気ポー1へである。
In the figure, 21 is a combustion chamber, 22 is an intake valve, 23 is an ignition plug, 24 is a piston, and 25 is an intake port 1 constituting the downstream part of the intake passage 3 on the idle side.

本考案の別の特徴は第4図で説明した休止側気筒におい
て、第5図に示すように、平面的にみて吸気ポー1〜2
5の軸線を直線状に形成するとともに、稼動側気筒A、
B、Cに比べて吸気ポーl−25の内径を相対的に大き
くするとともに、吸気ポート25の傾斜角をシリンダ軸
心線方向に近づけて、混合気の充てん効率を高めること
により、休止側気筒りでの充分な高出力を確保する点に
ある。
Another feature of the present invention is that in the cylinder on the deactivation side explained in FIG. 4, as shown in FIG.
5 in a straight line, and the working cylinder A,
By making the inner diameter of the intake port 1-25 relatively larger than those in B and C, and by bringing the inclination angle of the intake port 25 closer to the cylinder axis direction to increase the filling efficiency of the air-fuel mixture, The point is to ensure a sufficiently high output at the same time.

以上のように構成された本考案では、稼動側気筒A、B
、Cのみ作動する軽負荷時には、休止側気筒り、E、F
の分の負荷が増え、相対的に燃焼が良好となるのに加え
て、スワール発生型の吸気ポート20の作用により、シ
リンダ内ガス流動が強まり着火後の火炎伝播が急速に行
われるため、一層安定した燃焼と燃費の改善が図れる。
In the present invention configured as described above, the working cylinders A and B
When the load is light when only , C is activated, the cylinders on the idle side, E, and F are activated.
In addition to the increased load and relatively better combustion, the action of the swirl-generating intake port 20 strengthens the gas flow within the cylinder and causes rapid flame propagation after ignition. Stable combustion and improved fuel efficiency can be achieved.

一方、休止側気筒り、E、Fも同時に作動する高負荷時
には、充てん車内上型の吸気ポート25の作用で、充分
な混合気が供給され高出力を発揮することができる。
On the other hand, under high load conditions when the idle cylinders E and F operate simultaneously, sufficient air-fuel mixture is supplied by the action of the upper intake port 25 in the filling car, making it possible to produce high output.

したがって本考案によれば、高負荷域で゛の出力を損う
ことなく、従来に比べてなお一層軽負荷域での燃焼安定
性と燃費改善を促進できる。
Therefore, according to the present invention, it is possible to further improve combustion stability and fuel efficiency in light load ranges than in the past without losing output in high load ranges.

なお、前述の実施例では本考案を直列型6気筒エンジン
に適用した場合を示したが、同様にして本考案は■型エ
ンジンや8気筒エンジンなどにも適用できる。
In the above-mentioned embodiment, the present invention was applied to an in-line 6-cylinder engine, but the present invention can be similarly applied to a ■-type engine, an 8-cylinder engine, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の実施例を示す概略的な断面図、第2図
は第1図の実施例における稼動側気筒を詳細に示す断面
図、第3図は同じく稼動側気筒の吸気ポートを示す概略
的な平面図、第4図は第1図の実施例における休止側気
筒を詳細に示す断面図、第5図は同じく休止側気筒の吸
気ポートを示す概略的な平面図である。 1・・・・・・吸気通路、2・・・・・・絞り弁、3・
・・・・・稼動側吸気通路、4・・・・・・休止側吸気
通路、5・・・・・・遮断弁、9・・・・・・排気還流
通路、12・・・・・・排気還流弁、15・・・・・・
制御回路、16・・・・・・燃焼室、20・・・・・・
吸気ポート、21・・・・・・燃焼室、25・・・・・
・吸気ポート、A、B、C・・・・・・稼動側気筒、D
。 E、F・・・・・・休止側気筒、a、l)、c、d、e
、f・・・・・・燃料噴射弁。
Fig. 1 is a schematic sectional view showing an embodiment of the present invention, Fig. 2 is a sectional view showing details of the working cylinder in the embodiment of Fig. 1, and Fig. 3 is an intake port of the working cylinder. FIG. 4 is a cross-sectional view showing details of the cylinder on the idle side in the embodiment of FIG. 1, and FIG. 5 is a schematic plan view showing the intake port of the cylinder on the idle side. 1... Intake passage, 2... Throttle valve, 3...
...Intake passage on working side, 4...Intake passage on rest side, 5...Shutoff valve, 9...Exhaust recirculation passage, 12... Exhaust recirculation valve, 15...
Control circuit, 16... Combustion chamber, 20...
Intake port, 21... Combustion chamber, 25...
・Intake port, A, B, C... Working side cylinder, D
. E, F...Cylinder on the idle side, a, l), c, d, e
, f...Fuel injection valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] エンジン軽負荷時に燃料の供給が遮断され作動の停止す
る休止側気筒と、他の常に作動する稼動側気筒とを備え
た多気筒エンジンにおいて、稼動側気筒の吸気ポートを
燃焼室中心に対して偏心して開口させてスワールポート
に形成する一方、休止側気筒の吸気ポートの軸線を直線
状に形成するとともに、その有効径を稼動側気筒の吸気
ポートに比べて相対的に大きく構成した気筒数制御エン
ジン。
In a multi-cylinder engine that has a dormant cylinder whose fuel supply is cut off and stops operating when the engine is under light load, and an active cylinder which is always in operation, the intake port of the active cylinder is offset from the center of the combustion chamber. A cylinder number control engine in which a swirl port is formed by opening at the center of the cylinder, while the axis of the intake port of the cylinder on the idle side is formed in a straight line, and its effective diameter is configured to be relatively larger than the intake port of the cylinder on the operating side. .
JP18083879U 1979-12-26 1979-12-26 cylinder number control engine Expired JPS5813085Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18083879U JPS5813085Y2 (en) 1979-12-26 1979-12-26 cylinder number control engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18083879U JPS5813085Y2 (en) 1979-12-26 1979-12-26 cylinder number control engine

Publications (2)

Publication Number Publication Date
JPS5697528U JPS5697528U (en) 1981-08-01
JPS5813085Y2 true JPS5813085Y2 (en) 1983-03-14

Family

ID=29691241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18083879U Expired JPS5813085Y2 (en) 1979-12-26 1979-12-26 cylinder number control engine

Country Status (1)

Country Link
JP (1) JPS5813085Y2 (en)

Also Published As

Publication number Publication date
JPS5697528U (en) 1981-08-01

Similar Documents

Publication Publication Date Title
US20040060527A1 (en) Control unit for spark ignition-type engine
JPS5853178B2 (en) cylinder number control engine
JPS5813085Y2 (en) cylinder number control engine
JPS595169Y2 (en) cylinder number control engine
JPS6039856B2 (en) Internal combustion engine with combustion chamber with multiple intake ports
JP3633209B2 (en) Evaporative fuel processing apparatus in cylinder injection internal combustion engine
JPH09324672A (en) Fuel injection timing control device of lean-burn engine
JPS6014906Y2 (en) cylinder number control engine
JPH0236772B2 (en)
JPS61268845A (en) Control method for air-fuel ratio in internal-combustion engine
JPS5922247Y2 (en) spark ignition internal combustion engine
JPH0154546B2 (en)
JPS6023480Y2 (en) cylinder number control engine
JPS6350427Y2 (en)
JPS6337476Y2 (en)
JPS5821089B2 (en) Automotive jet-controlled combustion engine
JPH0347453A (en) Egr timing adjustable engine
JPH0634579Y2 (en) Double intake valve engine
JPS5823977Y2 (en) Exhaust recirculation device
JPS597566Y2 (en) Dual intake internal combustion engine
JPS6120275Y2 (en)
JPS6185533A (en) Fuel injection controller for internal-combustion engine with double-suction valve
JPH0647955B2 (en) Double intake valve engine
JPS5938411B2 (en) Haikigasujiyoukasouchi
JPS641650B2 (en)